当前位置:首页 » 文件管理 » 压缩性气流数

压缩性气流数

发布时间: 2022-06-02 00:42:46

‘壹’ 已知压缩机的输出气流流量和压力,如何计算空气压缩机的效率

压缩机消耗的功率; 一部分是直接用于压缩气体的,为指示功率,另一部分用于克服机械摩擦,为摩擦功率。两

者之和称轴功率。

对于全封闭式涡旋压缩机,因其轴功率难于测量,常常在计算压缩机的能效比或COP值时,用的是电机输入功

率,而把电机损失作为常数处理,而且把压缩机指示功率分为压缩内功和各种内部损失两部分。内部损失则包括气

体泄漏损失、加热损失、吸排气压力损失、流体阻力损失等。压缩机效率通常以能效比或COP值来衡量。

若实际吸气容积为VS(m3/min),折算到吸气状态的实际排气量为:

V=n(Vs-vsmo)(1)

式中:n--转速rev/min;vs--吸气比容(单位质量物质所占容积,m3/kg);mo--每分钟泄漏量kg/min。

假设ηv(容积效率)为0.9∽0.98。

估算:

V=ηv·vs·n(2)

∴ 实际制冷量Q=( V·qv·n)/(6.02×107)

=(ηv·vs·n2·qv)/ (6.02×107)(3)

qo-单位制冷量

当制冷或空调工质、工况确定后,Q只与ηv、vs及n有关。

COP=Q/N(w/w)(4)

N--电机输入功率

COP值与能效比(EER)的数值关系

EER = 0.86 COP(5)

3 因素分析

从以上分析可知,影响涡旋压缩机性能的主要因素有:

3.1 电机输入功率

造成全封闭式涡旋压缩机电机输入功率偏大的原因,在压缩机实际工作过程中是非常复杂的,但主要有:电机

损耗过大,包括铜损、铁损,这与电机材料和加工工艺有关(本文不作详细分析);压缩机工作过程引起的功率消耗。

3.1.1 机械摩擦

当压缩机工作时,动、定盘之间,防自转滑环与配合键槽之间,曲轴与各被驱动面(轴承)之间接触并发生相对滑

动等,不可避免的产生摩擦损失。

①动盘与定盘之间的摩擦损失

动、定盘间的摩擦损失,即是压缩机工作腔内的摩擦损失,若动定盘的涡旋线、齿顶、底面,或镜板面因加工

精度、平面度、位置度等没有达到要求,则会在这些地方产生异常摩擦;或者压缩机整机含尘量较高,又或者固体

尘埃(如焊渣、加工余屑等)颗粒直径过大�也会造成压缩机工作腔内异常摩擦,严重时甚至影响压缩机正常工作。

②防自转滑环与各配合键槽之间的摩擦损失

防自转滑环主要用于防止动盘的自转运动,在压缩机工作过程中,防自转滑环在机架和动盘上分别沿垂直方向

上与键槽滑动配合,在滑动过程中产生滑动摩擦损失。若十字键或键槽的垂直度、平行度、光洁度、平面度超差

较大时,则会增大摩擦,加大功耗。另外,因为对立式涡旋压缩机防自转滑环是直接与机架上的支撑面接触的,在运

动过程中,也不可避免产生摩擦损失。

③曲轴与各驱动面间的摩擦损失

电动机驱动力是通过曲轴转动,从而带动动盘旋转来完成吸气、压缩、排气的过程。由于曲轴中心线与滑动

轴承的中心线重合是非常困难的,而且由于加工误差和装配误差的影响,轴和轴承常常是偏心的,由此而产生的摩

擦损失也是必然的,另外止推轴承与主轴承内圈之间也存在摩擦损失。

④润滑油的影响

以上各摩擦面、啮合面都必须有足够的润滑,才能保证压缩机安全、可靠、高效的工作。在制冷压缩机中,不

论是强制冷却或是自然风冷,润滑油总是在降温后由上油孔或上油管进入各摩擦面,吸收十字环、工作腔、轴承等

处的热,随高压气体经排气口排出,从而保证压缩机正常工作。但是如果润滑油量过多时,则会随排气进入系统且

滞留在冷凝器、蒸发器等存油弯,影响两器换热,严重时会影响压缩机正常工作。

以上列出涡旋压缩机各零部件制作过程中主要质量监控点,若失控,将直接影响压缩机正常工作,或明显影响

压缩机性能。

3.1.2 流体阻力

①动盘运动引起的流动阻力损失

当动盘旋转时,因其背面受中间压力腔中流体(包括气体、油气混合物)阻碍,会产生流动阻力损失,阻力大小与

动盘背部结构、几何尺寸、旋转角度及流体密度有关。

②平衡块的流动阻力损失

平衡块所在空间是具有一定压力的气体,油或油气混合物,当平衡块随曲轴一起旋转运动时,会产生阻力损失,

阻力大小与平衡块几何尺寸、流体扰动系数、粘度、密度等有关。

③吸、排气阻力损失

气体流动时,由于气体内部的摩擦以及气体与管壁之间的摩擦,而导致流动阻力损失。

当气体通过吸气管道和吸气阀(逆止阀)时,产生阻力损失,使吸气压力降低,既减少了吸气密度,相应地使实际

排气量降低,降低了容积效率;同样地,排气孔口处的流动阻力,使得压缩机实际排气压力升高,而使功耗增加。

3.2 气体泄漏

3.2.1 气体泄漏种类

气体泄漏可分为内泄漏和外泄漏。

内泄漏是指压缩机各压缩腔之间,压缩腔与背压腔之间的气体泄漏,表现为高压气体向低压腔泄漏,再从低压

腔压力压缩到泄漏前压力,造成重复压缩消耗功率,所以内泄漏直接结果为增加功耗。

外泄漏是指压缩机在吸气过程中与外界(大于吸气压力的高压气体)进行气体交换。显然,高压气体进入到吸

气腔内膨胀,并占据空间,使得实际吸气量减少。即外泄漏不仅使功耗增加,而且还减少吸入气体量,使排气量减少

和制冷量降低。

3.2.2 泄漏通道

①内泄漏

涡旋压缩机中,内泄漏的发生途径主要有工作腔之间的泄漏,工作腔与背压腔之间的泄漏,安全阀孔泄漏等。

①工作腔之间的泄漏

径向泄漏:气体或油中溶解的工质通过轴向间隙产生的泄漏(图1)。

轴向泄漏:气体或油中溶解的工质通过径向间隙产生的泄漏(图2)。

②工作腔与背压腔之间的泄漏

中间压力腔与背压腔之间的气体、或油中溶解的工质的交换(图3)。

背压腔与动盘端板面密封之间的气体或油气混合物的交换(图4)。

③安全阀孔泄漏

主要是排气缓冲腔内的高压气体通过安全阀孔泄漏到低压工作腔(图5)。所以,目前有些压缩机在确保正确使

用的前提下,也采用取消安全阀的设计,以减少内泄漏,提高压缩机效率。外泄漏主要是指由于定盘吸气孔O型环

密封性差,导致高压气体进入吸气腔的泄漏.

3.3 吸气预热

吸入气体受压缩机机体或环境加热,使吸入气体密度减少,实际吸气量减小,从而实际排气量减小,制冷量降低,

功耗增加。有资料表明,吸气预热每增加3℃则能效比下降1%。

4 总结

综上所述可知,影响涡旋压缩机性能的因素是错综复杂的,它包括了设计、制造和使用等各个环节,除以上分

析的因素外,还有如吸油管搅油损失,气体流动摩擦损失,动定盘材料(热膨胀系数)影响,动定盘齿高选配等。在涡

旋压缩机生产过程中出现能效比偏低时,则应抓住主要矛盾,系统化分析原因,才能行之有效地解决问题。

‘贰’ 飞机如何压缩气流

分轴流式的和离心式的,轴流式的体积大,单级压缩比低,离心式的轴向体积小,但是单级压缩率高,具体选择那种,要看飞机以及发动机匹配的问题了。

‘叁’ 为什么马赫数大小可反映流动可压缩性的强弱

严格来说,马赫数小于0.4就属于不可压缩流体。因为流体速度越接近音速,自身所发出的扰动波就会逐渐叠加在一起,导致周围的空气密度发生变化,空气可压缩。当气流到达音速时,所有的波全部重叠,此时空气的可压缩性最明显

‘肆’ 什么是气体的压缩性

气体的压缩性就是指气体的体积可以该利用外力来改变。在其它条件不变的情况下,加压气体体积变小,减压气体体积变大。

这是由于气体的各分子之间的间距比液体和固体的大所造成的。而气体分子之间的间距则是由于气体分子之间的相互斥力和吸引力产生的。



(4)压缩性气流数扩展阅读:

空气在压强作用下的可压缩程度,用弹性模量E(即压强变化量与单位质量空气体积的相对变化量之比)度量。

由温度脉动引起的空气压缩性对速度和温度边界层粘性底层区的速度、温度分布影响较小,但使完全湍流区的无量纲速度、温度以及速度、温度变化梯度增大,且速度边界层和温度边界层厚度在压缩情形下变小,随着来流Ma的增大,压缩性的影响逐渐增大。

‘伍’ 压缩气体的压强跟气流速度的关系

气流速度快,压强越小!气流速度慢,压强越大!,而压缩气体的的速度想要达到你想要的速度,就必须不断给贮气罐打气,直接大于外界气压,即大气压

‘陆’ 压缩空气流量怎么计算

压力为7kg/m3是的流速p=v2p/2

其中p是空气压力(帕)=700000帕

v是流速p为空气密度=1.2千克/立方米

计算的v=1080米/秒

以内径10厘米为例计算:由v=sv=1/4πd2v=1/4x3.14x0.1x0.1x1080=8.5立方米/秒=30600立方米/小时,注意这是在没有阻力情况下计算的,实际流量要小一些

流量计量

压缩空气是企事业单位重要的二次能源,大多由电能或热能经压缩机转化而来。当空气压力值要求较低时,则由鼓风机产生。对由大量能源转化而来的工质进行管理,以收到节约能源和提高设备管理水平的效果,是压缩空气流量计量的主要目的。

在化工等生产过程中,有一种重要的工艺过程氧化反应,它是以空气作原料,和另外某种原料在规定的条件下进行化学反应。空气质量流量过大和过小,都会对安全生产、产品质量和贵重原料的消耗产生关键影响。在这种情况下,空气流量测量精确度要求特别高,多半还配有自动调节。

以上内容参考:网络-压缩空气流量计

‘柒’ 空气压缩机都有哪些参数各有什么含义

空气压缩机的种类很多,按工作原理可分为容积式压缩机,往复式压缩机,离心式压缩机,容积式压缩机的工作原理是压缩气体的体积,使单位体积内气体分子的密度增加以提高压缩空气的压力;离心式压缩机的工作原理是提高气体分子的运动速度,使气体分子具有的动能转化为气体的压力能,从而提高压缩空气的压力。往复式压缩机(也称活塞式压缩机)的工作原理是直接压缩气体,当气体达到一定压力后排出。 现在常用的空气压缩机有活塞式空气压缩机,螺杆式空气压缩机,(螺杆空气压缩机又分为双螺杆空气压缩机和单螺杆空气压缩机),离心式压缩机以及滑片式空气压缩机,涡旋式空气压缩机。下面是各种压缩机的定义。凸轮式,膜片式和扩散泵等压缩机没有列入其中,是因为它们用途特殊而尺寸相对较小。 空气具有可压缩性,经空气压缩机做机械运动使本身体积缩小,压力提高后的空气称为压缩空气。它是一种重要的动力源,有着无污染,清晰透明,输送方便,无害,易燃性小,不怕起负荷等显着的特点。 空气压缩机作为一种重要的能源产生形式,被广泛应用于生活生产的各个环节。尤其是双螺杆式的空气压缩机被广泛应用机械,冶金,电子电力,医药,包装,化工,食品,采矿,纺织,交通等众多工业领域,成为压缩空气的主流产品空压机,就是把一个标准大气压的空气通过能量转化的方式输出来满足用户需求的空气的设备,能量转化一般都是可理解为机械能转为动能。按压缩方式分为动力式和容积式,动力式又分为透干式 离心式等;容积式分为活塞式 螺杆式 滑片式等。 螺杆式空压机原理 1、吸气过程: 螺杆式的进气侧吸气口,必须设计得使压缩室可以充分吸气,而螺杆式压缩机并无进气与排气阀组,进气只靠一调节阀的开启、关闭调节,当转子转动时,主副转子的齿沟空间在转至进气端壁开口时,其空间最大,此时转子的齿沟空间与进气口之自由空气相通,因在排气时齿沟之空气被全数排出,排气结束时,齿沟乃处于真空状态,当转到进气口时,外界空气即被吸入,沿轴向流入主副转子的齿沟内。当空气充满整个齿沟时,转子之进气侧端面转离了机壳之进气口,在齿沟间的空气即被封闭。 2、封闭及输送过程: 主副两转子在吸气结束时,其主副转子齿峰会与机壳闭封,此时空气在齿沟内闭封不再外流,即[封闭过程]。两转子继续转动,其齿峰与齿沟在吸气端吻合,吻合面逐渐向排气端移动。 3、压缩及喷油过程: 在输送过程中,啮合面逐渐向排气端移动,亦即啮合面与排气口间的齿沟间渐渐减小,齿沟内之气体逐渐被压缩,压力提高,此即[压缩过程]。而压缩同时润滑油亦因压力差的作用而喷入压缩室内与室气混合。 4、排气过程: 当转子的啮合端面转到与机壳排气相通时,(此时压缩气体之压力最高)被压缩之气体开始排出,直至齿峰与齿沟的啮合面移至排气端面,此时两转子啮合面与机壳排气口这齿沟空间为零,即完成(排气过程),在此同时转子啮合面与机壳进气口之间的齿沟长度又达到最长,其吸气过程又在进行

‘捌’ 空气的压缩系数是多少

空气的压缩系数即压缩因子。压缩因子Z是理想气体状态方程用于实际气体时必须考虑的一个校正因子,用以表示实际气体受到压缩后与理想气体受到同样的压力压缩后在体积上的偏差。

由于理想气体作了两个近似:忽略气体分子本身的体积和分子间的相互作用力,所以实际气体都会偏离理想气体。偏离的程度取决于气体本身的性质以及温度、压强等因素。

一般而言,沸点低的气体在较高温度和较低压强时偏差较小,反之偏差较大。

压缩因子Z被引用来修正理想气体状态方程:

(8)压缩性气流数扩展阅读

对于理想气体,在任何温度压力下,Z=1。

当Z<1时,说明真实气体的Vm比同样条件下理想气体的Vm小,此时真实气体比理想气体易于压缩,这是因为实际分子内聚力使得气体分子对气壁碰撞产生的压强减小,所以实测的压强比理想状态的压强要小些,p测<p理想。

当Z>1时,说明真实气体的Vm比同样条件下理想气体的Vm大,此时真实气体比理想气体难于压缩,这是因为分子占有一定的空间体积,实测的体积总是大于理想气体的体积,V测>V理想。

热点内容
opengl服务器源码 发布:2025-01-22 15:40:02 浏览:908
python部署服务 发布:2025-01-22 15:38:46 浏览:282
压缩机卡装 发布:2025-01-22 15:37:04 浏览:446
每天跑步40分钟可以缓解压力吗 发布:2025-01-22 15:33:24 浏览:448
线性表的链式存储结构与顺序存储 发布:2025-01-22 15:32:45 浏览:295
解压缩大师 发布:2025-01-22 15:26:51 浏览:386
xp访问win7共享打印机无权限 发布:2025-01-22 15:23:22 浏览:830
python中pandas 发布:2025-01-22 15:21:42 浏览:639
编程系列书 发布:2025-01-22 15:10:16 浏览:402
北京电脑服务器托管物理机 发布:2025-01-22 15:10:05 浏览:782