当前位置:首页 » 存储配置 » 示波器高速存储

示波器高速存储

发布时间: 2022-05-22 10:41:51

A. 示波器的原理以及功能

示波器是一种用途十分广泛的电子测量仪器。俗话说,电是看不见摸不着的。但是示波器可以帮我们“看见”电信号,便于人们研究各种电现象的变化过程。所以示波器的核心功能,就和他的名字一样,是显示电信号波形的仪器,以供工程师查找定位问题或评估系统性能等等。

而波形,也有多种定义,比如时域或者频域的波形,对于示波器而言,大多数时候测量的是电压随时间的变化,也就是时域的波形。因此,示波器可以分析被测点电压变化情况,从而被广泛的应用于各个电子行业及领域中。

一般我们业内对示波器的分类只按模拟示波器和数字示波器来分,有些厂家可能为了突出其示波器的某项功能给其命名为其他名字,比如数字荧光示波器等。但其本质原理依然逃不出这2大示波器类别。

模拟示波器是属于早期的示波器,主要基于阴极射线管(也叫显像管,曾广泛应用于早期的电视机、显示器)打出的电子束通过水平偏转和垂直偏转系统,打在屏幕的荧光物质上显示波形。

③ARM处理器控制FPGA调节ADC模数转换器采样率,示波器软件上表现为调节时基,由于存储深度为固定值,采样率 = 存储深度 ÷ 波形记录时长,通常时基设置的改变是通过改变采样率来实现的。因此厂家标注的采样率往往是在特定时基设置之下才有效的,在大时基下受存储深度的影响,采样率不得不降低。ADC模数转换器和RAM高速存储器影响着示波器的另外两大指标:采样率和存储深度。

④接下去,由FPGA驱动ADC同步采样,ADC将采集到的数据进行二进制数据化并写入高速缓存。存储器缓存即存储深度,一般存储器的大小是示波器标识存储深度大小的四倍,因为FPGA无法控制示波器的触发,因此采集的信号必定先是标识存储深度的2倍,然后再来根据触发筛选其中的一段波形,所以示波器可以看到触发位置之前的波形。又由于示波器在筛选之前采集的波形的时候,采集不能停,否则就会导致波形捕获率太低,因此同时还需要继续采集同样长度的采样点,如此反复,这样一来就是四倍了。

⑤收到触发指令后,存储器再把数据交给ARM处理器处理

⑥ARM处理器将数据处理后通过显示接口将数据输出至显示屏展示给使用者。通过计算,示波器还能模仿出类似模拟示波器的多级辉度显示,以及数字示波器特有的色温显示效果,余晖显示效果。

⑦示波器处理完数据后,可以把当前的波形图像或者是数据保存到存储器中,要注意这里的存储完全不同于存储深度的高速存缓,大多数示波器采用外部存储器如U盘,SD卡,电脑等,现在一些现代化的示波器会内置大存储可以直接保存在示波器里。

这个过程中,②③④都是并行处理的。


由于数字示波器处理速度的制约,所以它并不能保证被测信号的波形能连续不断地实时显示在屏幕上,显示的两个波形之间会有波形数据丢失,也即所说的死区时间,这也是数字示波器相比较于模拟示波器的最大缺点了。不过,随着示波器运算能力的增强,波形捕获率的不断上升,这一缺点也在被慢慢弥补。

B. 选择示波器都要看哪些指标

选择示波器要看的指标:

测量范围

一般来说,由于探头衰减比的存在,示波器能测多大电压只和示波器探头有关。比如测量上千伏的高压,就要选购高压探头,示波器标配的探头一般只能测量几百伏的峰值。

但是也要注意查看示波器的通道衰减比选择,以及示波器的通道垂直档位范围。先把示波器通道衰减比打到1X,查看垂直档位范围,比如1mV/div-10V/div。然后根据示波器可以设置的通道衰减比就可以知道示波器的电压测量范围了。

C. 存储深度对示波器的影响到底有多大

得益于电子技术的发展,在国外三巨头垄断的示波器领域,国产示波器也如雨后春笋般涌现出来,优秀国产示波器的代表:鼎阳(Siglent)科技和北京普源精电,如今得到了长足的发展,但由于信号传输的链路瓶颈以及IC封锁,夹缝中生长的国产示波器注定暂时只能走低端路线,这导致了国产示波器同质化比较严重、各厂家生产的示波器性能跟质量参差不齐。放眼望去,外观乃至界面各厂商都一致地采用所谓的“主流”操作方式,而作为衡量示波器的技术指标,工程师更多地考虑那些出现在产品手册和杂志广告的标题中列出的技术指标,在这些主要的技术指标中,众所周知的是带宽、采样率和存储深度。诚然带宽指标理所当然非常重要。带宽决定示波器对信号的基本测量能力。随着信号频率的增加,示波器对信号的准确显示能力将下降。如果没有足够的带宽,示波器将无法分辨高频变化。幅度将出现失真,边缘将会消失,细节数据将被丢失。如果没有足够的带宽,得到的关于信号的所有特性,响铃和振鸣等都毫无意义。本规格指出示波器所能准确测量的频率范围。每位工程师都足够重视带宽对测量的影响,所以大家都遵循测量的五倍法则:示波器所需带宽=被测信号的最高信号频率*5,使用五倍准则选定的示波器的测量误差将不会超过+/-2%,对大多的操作来说已经足够。关于采样率,指数字示波器对信号采样的频率,类似于电影摄影机中的帧的概念。示波器的采样速率越快,所显示的波形的分辨率和清晰度就越高,重要信息和事件丢失的概率就越小,信号重建时也就越真实。采样率又分为实时采样率跟等效采样率,我们平常所说的采样率是指实时采样率,这是因为实时采样率可以用来实时地捕获非周期异常信号,而等效采样率则只能用于采集周期性的稳定信号。 存储深度虽然也作为重要指标之一,但在衡量示波器时候却往往忽略它的重要性,一直以来都把它作为一个“次要”指标看待,并不是很清楚大的存储深度对于测量有什么影响,再加上有些示波器厂家对“存储深度”的误导,同时存储深度跟采样率的隐藏关联关系,导致存储深度处于一个形同虚设的指标,为了纠正这些误解,下面跟大家一起探讨什么是存储深度?大的存储深度对测量有什么影响? 何谓存储深度存储深度是示波器所能存储的采样点多少的量度。如果您需要不间断的捕捉一个脉冲串,则要求示波器有足够的存储器以便捕捉整个事件。将所要捕捉的时间长度除以精确重现信号所须的取样速度,可以计算出所要求的存储深度,也称记录长度。并不是有些国内二流厂商对外宣称的“存储深度是指波形录制时所能录制的波形最长记录“,这样的偷换概念,完全向相反方向引导人们的理解,难怪乎其技术指标高达”1042K“的记录长度。这就是为什么他们不说存储深度是在高速采样下,一次实时采集波形所能存储的波形点数。把经过A/D数字化后的八位二进制波形信息存储到示波器的高速CMOS内存中,就是示波器的存储,这个过程是“写过程”。内存的容量(存储深度)是很重要的。对于DSO,其最大存储深度是一定的,但是在实际测试中所使用的存储长度却是可变的。在存储深度一定的情况下,存储速度越快,存储时间就越短,他们之间是一个反比关系。同时采样率跟时基(timebase)是一个联动的关系,也就是调节时基档位越小采样率越高。存储速度等效于采样率,存储时间等效于采样时间,采样时间由示波器的显示窗口所代表的时间决定,所以:存储深度=采样率× 采样时间(距离 = 速度×时间)由于DSO的水平刻度分为12格,每格的所代表的时间长度即为时基(timebase),单位是s/div,所以采样时间= timebase × 12. 由存储关系式知道:提高示波器的存储深度可以间接提高示波器的采样率,当要测量较长时间的波形时,由于存储深度是固定的,所以只能降低采样率来达到,但这样势必造成波形质量的下降;如果增大存储深度,则可以以更高的采样率来测量,以获取不失真的波形。下图曲线揭示了采样率、存储深度、采样时间三者的关系及存储深度对示波器实际采样率的影响。比如,当时基选择10us/div档位时,整个示波器窗口的采样时间是10us/div * 12格=120us,在1Mpts的存储深度下,当前的实际采样率为:1M÷120us︽8.3GS/s,如果存储深度只有250K,那当前的实际采样率就只要2.0GS/s了! 存储深度决定了实际采样率的大小一句话,存储深度决定了DSO同时分析高频和低频现象的能力,包括低速信号的高频噪声和高速信号的低频调制。明白了存储深度与取样速度密切关系后,我们来浅谈下长存储对于我们平常的测量带来什么的影响呢?平常分析一个十分稳定的正弦信号,只需要500点的记录长度;但如果要解析一个复杂的数字数据流,则需要有上万个点或更多点的存储深度,这是普通存储是做不到的,这时候就需要我们选择长存储模式。可喜的是现在国产示波已经具有这样的选择,比如鼎阳(Siglent)公司推出的ADS1000CA系列示波器高达2M的存储深度,是目前国产示波器最大的存储深度示波器,打破了只有高端示波器才可能具有大的存储深度的功能。通过选择长存储模式,以便对一些操作中的细节进行优化,同时配备1G实时采样率以及高刷新率,完美再现捕获波形。长存储对平常的测量中,影响最明显的是在表头含有快速变化的数据链和功率测量中。这是由于功率电子的频率相对较低(大部分小于1MHz),这对于我们选择示波器带宽来说300MHz的示波器带宽相对于几百KHz的电源开关频率来说已经足够,但很多时候我们却忽略了对采样率和存储深度的选择.比如说在常见的开关电源的测试中,电压开关的频率一般在200KHz或者更快,由于开关信号中经常存在着工频调制,工程师需要捕获工频信号的四分之一周期或者半周期,甚至是多个周期。开关信号的上升时间约为100ns,我们建议为保证精确的重建波形需要在信号的上升沿上有5个以上的采样点,即采样率至少为5/100ns=50MS/s,也就是两个采样点之间的时间间隔要小于100/5=20ns,对于至少捕获一个工频周期的要求,意味着我们需要捕获一段20ms长的波形,这样我们可以计算出来示波器每通道所需的存储深度=20ms/20ns=1Mpts !这就是为什么我们需要大的存储深度的原因了!如果此时存储深度达不到1 Mpts,只有普通示波器的几K呢?那么要么我们无法观测如此长周期信号,要么就是观测如此长周期信号时只能以低采样率进行采样,结果波形重建的时候根本无法详细显示开关频率的波形情况。长存储模式下,既保证了采样在高速率下对信号进行采样,又能保证记录长时间的信号。如果此时只进行单次捕捉或停止采集,那么在不同时基下扩展波形时由于数据点充分,可以很好观测叠加在信号上面的小毛刺等异常信号,这对于工程师发现问题、调测设备带来极大的便利。而如果是普通存储,为了保持高的采样率,则在长的记录时间内,由于示波器的连续采样,则内存中已经记录了几帧数据,内存中的数据并不是一次采集获得的数据,此时如果停止采集,并对波形旋转时基进行放大显示,则只能达到有限的几个档位,无法实现全扫描范围的观察。在DSO中,通过快速傅立叶变换(FFT)可以得到信号的频谱,进而在频域对一个信号进行分析。如电源谐波的测量需要用FFT来观察频谱,在高速串行数据的测量中也经常用FFT来分析导致系统失效的噪声和干扰。对于FFT运算来说,示波器可用的采集内存的总量将决定可以观察信号成分的最大范围(奈奎斯特频率),同时存储深度也决定了频率分辨率△f。如果奈奎斯特频率为500 MHz,分辨率为10 kHz,考虑一下确定观察窗的长度和采集缓冲区的大小。若要获得10kHz 的分辨率,则采集时间至少为: T = 1/△f = 1/10 kHz = 100 ms,对于具有100kB 存储器的数字示波器,可以分析的最高频率为:△ f × N/2 = 10 kHz × 100kB/2 = 500MHz。对于DSO来说,长存储能产生更好的FFT结果,既增加了频率分辨率又提高了信号对噪声的比率。 一句话,长存储起到一个总览全局又细节呈现的的效果,存储深度决定了DSO同时分析高频和低频现象的能力,包括低速信号的高频噪声和高速信号的低频调制。

D. 示波器的存储深度大简单来说有什么好处

存储深度的理论可能说了以后还有点迷惑,直接给个实例:

有位深圳福田华强北的工程师是专门研发生产屏幕的,需要用示波器测量出苹果平板电脑 ipad 给屏幕上电时的一串脉冲信号,示波器捕捉下来后,他就可以对照着模拟出这段信号。但是这位朋友测了好几次都不成功,或者对捕捉到的信号不满意

E. 示波器 如何自动存储数据

示波器的分段存储功能可以解决你的问题:

分段存储其实就是让示波器只记录我们想要的片段,从而可以更高效地利用示波器的存储深度且保证波形细节。在足够的采样率下捕获多个波形事件,以便进行有效的分析。分段存储还可以帮助测试者捕获偶发信号和更优化地保存和显示所需的数据。

我们来看看如何设置分段存储以记录上图中I2C总线信号的有用片段,以及如何用分段存储来捕获偶发信号和更优化地保存所需的数据。

首先,我们调整示波器的时基,设置好触发方式,使得有用信息部分占满整个示波器屏幕,如下图所示,可见此时的采样率为1GSa/s

F. 示波器的工作原理

示波器是一种用途十分广泛的电子测量仪器。俗话说,电是看不见摸不着的。但是示波器可以帮我们“看见”电信号,便于人们研究各种电现象的变化过程。所以示波器的核心功能,就和他的名字一样,是显示电信号波形的仪器,以供工程师查找定位问题或评估系统性能等等。

而波形,也有多种定义,比如时域或者频域的波形,对于示波器而言,大多数时候测量的是电压随时间的变化,也就是时域的波形。因此,示波器可以分析被测点电压变化情况,从而被广泛的应用于各个电子行业及领域中。

一般我们业内对示波器的分类只按模拟示波器和数字示波器来分,有些厂家可能为了突出其示波器的某项功能给其命名为其他名字,比如数字荧光示波器等。但其本质原理依然逃不出这2大示波器类别。

模拟示波器是属于早期的示波器,主要基于阴极射线管(也叫显像管,曾广泛应用于早期的电视机、显示器)打出的电子束通过水平偏转和垂直偏转系统,打在屏幕的荧光物质上显示波形。

③ARM处理器控制FPGA调节ADC模数转换器采样率,示波器软件上表现为调节时基,由于存储深度为固定值,采样率 = 存储深度 ÷ 波形记录时长,通常时基设置的改变是通过改变采样率来实现的。因此厂家标注的采样率往往是在特定时基设置之下才有效的,在大时基下受存储深度的影响,采样率不得不降低。ADC模数转换器和RAM高速存储器影响着示波器的另外两大指标:采样率和存储深度。

④接下去,由FPGA驱动ADC同步采样,ADC将采集到的数据进行二进制数据化并写入高速缓存。存储器缓存即存储深度,一般存储器的大小是示波器标识存储深度大小的四倍,因为FPGA无法控制示波器的触发,因此采集的信号必定先是标识存储深度的2倍,然后再来根据触发筛选其中的一段波形,所以示波器可以看到触发位置之前的波形。又由于示波器在筛选之前采集的波形的时候,采集不能停,否则就会导致波形捕获率太低,因此同时还需要继续采集同样长度的采样点,如此反复,这样一来就是四倍了。

⑤收到触发指令后,存储器再把数据交给ARM处理器处理

⑥ARM处理器将数据处理后通过显示接口将数据输出至显示屏展示给使用者。通过计算,示波器还能模仿出类似模拟示波器的多级辉度显示,以及数字示波器特有的色温显示效果,余晖显示效果。

⑦示波器处理完数据后,可以把当前的波形图像或者是数据保存到存储器中,要注意这里的存储完全不同于存储深度的高速存缓,大多数示波器采用外部存储器如U盘,SD卡,电脑等,现在一些现代化的示波器会内置大存储可以直接保存在示波器里。

这个过程中,②③④都是并行处理的。


由于数字示波器处理速度的制约,所以它并不能保证被测信号的波形能连续不断地实时显示在屏幕上,显示的两个波形之间会有波形数据丢失,也即所说的死区时间,这也是数字示波器相比较于模拟示波器的最大缺点了。不过,随着示波器运算能力的增强,波形捕获率的不断上升,这一缺点也在被慢慢弥补。

G. 示波器高速波形怎样进行存储对比应用

示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。它是观察数字电路实验现象、分析实验中的问题、测量实验结果必不可少的重要仪器。示波器由示波管和电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统、标准信号源组成。
示波器用来测量交流电或脉冲电流波的形状的仪器,由电子管放大器、扫描振荡器、阴极射线管等组成。除观测电流的波形外,还可以测定频率、电压强度等。凡可以变为电效应的周期性物理过程都可以用示波器进行观测。
示波器分为数字示波器和模拟示波器。模拟示波器采用的是模拟电路(示波管,其基础是电子枪)电子枪向屏幕发射电子,发射的电子经聚焦形成电子束,并打到屏幕上。屏幕的内表面涂有荧光物质,这样电子束打中的点就会发出光来。 而数字示波器则是数据采集,A/D转换,软件编程等一系列的技术制造出来的高性能示波器。数字示波器一般支持多级菜单,能提供给用户多种选择,多种分析功能。还有一些示波器可以提供存储,实现对波形的保存和处理。
示波器工作原理是:利用显示在示波器上的波形幅度的相对大小来反映加在示波器Y偏转极板上的电压最大值的相对大小,从而反映出电磁感应中所产生的交变电动势的最大值的大小。因此借助示波器可以研究感应电动势与其产生条件的关系。
希望这些对你有帮助!答案补充
1.波形不稳定 稳定度电位器顺时针旋转过度,致使扫描电路处于自激扫描状态(未处于待触发的临界状态)。
触发耦合方式AC、AC(H)、DC开关未能按照不同触发信号频率正确选择相应档级。
选择高频触发状态时,触发源选择开关误置于外档(应置于内档。)
部分示波器扫描处于自动档(连续扫描)时,波形不稳定。
2.黑屏 电源未接通。
辉度旋钮未调节好。
X,Y轴移位旋钮位置调偏。
Y轴平衡电位器调整不当,造成直流放大电路严重失衡。限定范围内参数后可以测量示波器,示波器型号XJ4328,,x轴0.5V y轴20uSDDR2 SDRAM Component
-DDR2-400, DDR2-533,DDR2-667,DDR2-800

H. 什么是示波器示波器的作用和原理是什么

示波器的作用是用来测量交流电或脉冲电流波的形状的仪器,由电子管放大器、扫描振荡器、阴极射线管等组成。除观测电流的波形外,还可以测定频率、电压强度等。凡可以变为电效应的周期性物理过程都可以用示波器进行观测。

示波器是一种用途十分广泛的电子测量仪器。它能把肉眼看不见的电信号变换成看得见的图像,便于人们研究各种电现象的变化过程。示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点(这是传统的模拟示波器的工作原理)。在被测信号的作用下,电子束就好像一支笔的笔尖,可以在屏面上描绘出被测信号的瞬时值的变化曲线。利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅度等等。
分类
按照信号的不同分类
模拟示波器采用的是模拟电路(示波管,其基础是电子枪)电子枪向屏幕发射电子,发射的电子经聚焦形成电子束,并打到屏幕上。屏幕的内表面涂有荧光物质,这样电子束打中的点就会发出光来。
数字示波器则是数据采集,A/D转换,软件编程等一系列的技术制造出来的高性能示波器。数字示波器的工作方式是通过模拟转换器(ADC)把被测电压转换为数字信息。数字示波器捕获的是波形的一系列样值,并对样值进行存储,存储限度是判断累计的样值是否能描绘出波形为止,随后,数字示波器重构波形。数字示波器可以分为数字存储示波器(DSO),数字荧光示波器(DPO)和采样示波器。

I. 示波器的存储深度大有什么好处

示波器是用来观察波形的仪器,我们当然希望观察更长时间的波形并且波形细节越多越好,这就涉及到了示波器的两个参数,采样时间和采样率,而存储深度等于采样率乘以采样时间,所以,如果对采样时间和采样率有较高要求,建议使用大存储深度的示波器。

J. 示波器大存储深度有什么优势

大存储深度具有很多优势,在观察长时间连续波形,快慢信号组合,串行解码、统计分析和FFT分析时都能表现出显着优势。大存储深度将会影响示波器的波形刷新率,所以当需要高波形刷新率时存储深度可设为自动。

热点内容
phpapache伪静态 发布:2024-09-20 20:54:45 浏览:588
新浪云缓存 发布:2024-09-20 20:53:45 浏览:286
怎么上传学历 发布:2024-09-20 20:53:42 浏览:848
华为至尊平板电脑是什么配置 发布:2024-09-20 20:47:47 浏览:293
shell脚本字符串查找 发布:2024-09-20 20:47:44 浏览:274
如何在服务器上搭建linux系统 发布:2024-09-20 20:43:32 浏览:386
上传汽车保单 发布:2024-09-20 20:30:46 浏览:436
樱花服务器测试ip 发布:2024-09-20 20:10:39 浏览:280
炉石传说安卓怎么玩 发布:2024-09-20 20:09:59 浏览:313
ios开会员为什么比安卓贵 发布:2024-09-20 20:09:55 浏览:569