矩阵压缩存储
为了节省存储空间并且加快处理速度,需要对这类矩阵进行压缩存储,压缩存储的原则是:不重复存储相同元素;不存储零值元素。稀疏矩阵,有三元组表示法、带辅助行向量的二元组表示法(也即行逻辑链表的顺序表),十字链表表示法等。算法基本思想:num[col]:第col列的非零元素个数;cpot[col]:第col列第一个非零元在b.data中的恰当位置;在转置过程中,指示该列下一个非零元在b.data中的位置。
❷ 怎样压缩矩阵元素的存储空间
AC
稀疏矩阵(SparseMatrix):是矩阵中的一种特殊情况,其非零元素的个数远小于零元素的个数.
压缩存储:为多个值相同的元素只分配一个存储空间;对0元素不分配空间.目的是节省大量存储空间.
当使用三元组顺序表(又称有序的双下标法)压缩存储稀疏矩阵时,对矩阵中的每个非零元素用三个域分别表示其所在的行号,列号和元素值.它的特点是,非零元在表中按行序有序存储,因此便于进行依行顺序处理的矩阵运算.当矩阵中的非0元素少于1/3时即可节省存储空间.
❸ 对稀疏矩阵进行压缩存储的目的是什么
对稀疏矩阵进行压缩存储目的是节省存储空间。
存储矩阵的一般方法是采用二维数组,其优点是可以随机地访问每一个元素,因而能够较容易地实现矩阵的各种运算。
但对于稀疏矩阵而言,若用二维数组来表示,会重复存储了很多个0了,浪费空间,而且要花费时间来进行零元素的无效计算。所以必须考虑对稀疏矩阵进行压缩存储。
(3)矩阵压缩存储扩展阅读
优点
稀疏矩阵的计算速度更快,因为MATLAB只对非零元素进行操作,这是稀疏矩阵的一个突出的优点。假设矩阵A,B中的矩阵一样,计算2*A需要一百万次的浮点运算,而计算2*B只需要2000次浮点运算。
因为MATLAB不能自动创建稀疏矩阵,所以要用特殊的命令来得到稀疏矩阵。算术和逻辑运算都适用于稀疏矩阵。对于一个用二维数组存储的稀疏矩阵Amn,如果假设存储每个数组元素需要L个字节,那么存储整个矩阵需要m*n*L个字节。
❹ 稀疏矩阵的压缩存储方法有
稀疏矩阵的压缩存储,数据结构提供有 3 种具体实现方式:
三元组顺序表;
行逻辑链接的顺序表;
十字链表;
❺ 特殊矩阵和稀疏矩阵哪一种采用压缩存储会失去随机存取的功能为什么
稀疏矩阵压缩存储后,必会失去随机存取功能。
稀疏矩阵在采用压缩存储后将会失去随机存储的功能。因为在这种矩阵中,非零元素的分布是没有规律的,为了压缩存储,就将每一个非零元素的值和它所在的行、列号做为一个结点存放在一起,这样的结点组成的线性表中叫三元组表,它已不是简单的向量,所以无法用下标直接存取矩阵中的元素。
❻ 稀疏矩阵的压缩存储只需要存储什么
非零元素。
对于一个用二维数组存储的稀疏矩阵Amn,如果假设存储每个数组元素需要L个字节,那么存储整个矩阵需要m*n*L个字节。但是,这些存储空间的大部分存放的是0元素,从而造成大量的空间浪费。为了节省存储空间,可以只存储其中的非0元素。
(6)矩阵压缩存储扩展阅读
稀疏矩阵算法的最大特点是通过只存储和处理非零元素从而大幅度降低存储空间需求以及计算复杂度,代价则是必须使用专门的稀疏矩阵压缩存储数据结构。稀疏矩阵算法是典型的不规则算法,计算访存比很低,并且计算过程中的访存轨迹与稀疏矩阵的稀疏结构相关。
❼ 矩阵的压缩存储是什么
二维数组在形式上是矩阵,因此一般用二维数组来存储矩阵。在不压缩存储的情况下,矩阵采用按行优先或按列优先方式存储,占用的存储单元数等于矩阵的元素个数。在实际应用中,经常出现一些阶数很高的矩阵,同时在矩阵中非零元素呈某种规律分布或者矩阵中有大量的零元素,若仍然用常规方法存储,可能存储重复的非零元素或零元素,这将造成存储空间的大量浪费。因此对这类矩阵进行压缩存储,从而合理地利用存储空间。
为了节省存储空间,可以利用特殊矩阵的规律,对它们进行压缩存储,也就是说为多个值相同的元素只分配一个存储单元,对零元素不分配空间。适合压缩存储的矩阵一般是值相同的元素或者零元素在矩阵中分布有一定规律的特殊矩阵和稀疏矩阵。常见的特殊矩阵有对称矩阵、三角矩阵和对角矩阵。
❽ 对稀疏矩阵进行压缩存储目的是() A.便于进行矩阵运算 B.便于输入和输出 C.节省存储空间 D.降低运
对稀疏矩阵进行压缩存储目的是节省存储空间。
稀疏矩阵的存储方式:
存储矩阵的一般方法是采用二维数组,其优点是可以随机地访问每一个元素,因而能够较容易地实现矩阵的各种运算。但对于稀疏矩阵而言,若用二维数组来表示,会重复存储了很多个0了,浪费空间,而且要花费时间来进行零元素的无效计算。所以必须考虑对稀疏矩阵进行压缩存储。
(8)矩阵压缩存储扩展阅读:
最常用的稀疏矩阵存储格式主要有:三元组(i,j,a(i,j))和CSR(Compressed Sparse Row)。
(1) 三元组(i,j,a(i,j))(也叫COO(Coordinate Format))
三元组(i,j,a(i,j))很简单,就是使用3个数组,分别存储全部非零元的行下标(row index)、列下标(column index)和值(value)
(2) CSR存储(Compressed Sparse Row,压缩稀疏的行)
CSR是比较标准的一种,也需要三类数据来表达:数值,列号,以及行偏移。数值和列号与COO一致,表示一个元素以及其列号,行偏移表示某一行的第一个元素在values里面的起始偏移位置。
❾ 上三角矩阵的压缩存储原则是怎样的
上三角矩阵的压缩存储原则:对于三角矩阵,从1到N的总和是这么多,也就是说整个矩阵有这么多元素。另外正三角阵对应正方形。
经常出现一些阶数很高的矩阵,同时在矩阵中非零元素呈某种规律分布或者矩阵中有大量的零元素,若仍然用常规方法存储,可能存储重复的非零元素或零元素,这将造成存储空间的大量浪费。因此对这类矩阵进行压缩存储,从而合理地利用存储空间。
简正模式:
矩阵在物理学中的另一类泛应用是描述线性耦合调和系统。这类系统的运动方程可以用矩阵的形式来表示,即用一个质量矩阵乘以一个广义速度来给出运动项,用力矩阵乘以位移向量来刻画相互作用。求系统的解的最优方法是将矩阵的特征向量求出(通过对角化等方式)。
称为系统的简正模式。这种求解方式在研究分子内部动力学模式时十分重要:系统内部由化学键结合的原子的振动可以表示成简正振动模式的叠加。描述力学振动或电路振荡时,也需要使用简正模式求解。
❿ 稀疏矩阵一般的压缩存储方法有两种
分别是三元组和十字链表。
三元组是指形如((x,y),z)的集合(这就是说,三元组是这样的偶,其第一个射影亦是一个偶),常简记为(x,y,z)。
三元组是计算机专业的一门公共基础课程——数据结构里的概念。主要是用来存储稀疏矩阵的一种压缩方式,也叫三元组表。假设以顺序存储结构来表示三元组表(triple table),则得到稀疏矩阵的一种压缩存储方式,即三元组顺序表,简称三元组表。
十字链表(Orthogonal List)是有向图的另一种链式存储结构。该结构可以看成是将有向图的邻接表和逆邻接表结合起来得到的。用十字链表来存储有向图,可以达到高效的存取效果。同时,代码的可读性也会得到提升。
拓展资料:
十字链表(Orthogonal List)是有向图的另一种链式存储结构。可以看成是将有向图的邻接表和逆邻接表结合起来得到的一种链表。在十字链表中,对应于有向图中每一条弧都有一个结点,对应于每个定顶点也有一个结点。
十字链表之于有向图,类似于邻接表之于无向图。
也可以理解为 将行的单链表和列的单链表结合起来存储稀疏矩阵称为十字链表, 每个节点表示一个非零元素。
三元组解释:
1、所谓“三元组”是指图形的几何元素构成、图线间的拓扑关系和尺寸约束。如果一组图形的前二元相同而只是尺寸大小不同,则这组图形构成一族形状相同的系列化图形。
2、把组成一个元素的三个数称为三元组。一个三元组包含以下三部分的内容SDO_STARTING_OFFSET表明每个几何元素的第一个坐标在SDO_ORDINATES数组中的存储位置。
3、…Mt:N2)的表示称为三元组...…Mt称为标号,N1、N2为结点R为关系。当n≠0时,称Li为对结点N1的修饰。t≠0时,称Mj为对结点N2的修饰。
参考资料:网络:十字链表
网络:三元组