scsi存储
‘壹’ SCSI硬盘和IDE硬盘有什么区别
IDE硬盘与SCSI硬盘的技术应用,是完全不同的两个方向。IDE硬盘是作为系统操作硬盘使用,而SCSI硬盘是作为数据存储硬盘使用。随着技术的发展,IDE硬盘以其价格优势不断向数据领域扩展。
10年以前广播电视领域出现了第一台视频服务器。在当时,可供选择的硬盘技术只有典型的SCSI技术以及几年后的光纤驱动器。从那时起,磁盘驱动器的容量和性能不断地提高,磁盘驱动器的生产厂家主要在磁盘媒介和磁头设计方面有明显的改进。SCSI硬盘和光纤驱动器由于有着最高的容量、性能和稳定性而成为领先者。
随着技术的不断发展,IDE硬盘的性能有很大提高,推出的基于IDE技术的ATA硬盘,增大了缓存,提高了转速和传输带宽,增加了寿命,一些技术参数接近甚至超过SCSI硬盘。与老一代的IDE硬盘相比较,性能有了很大的飞跃。所以很多存储器厂家纷纷推出基于ATA硬盘的盘塔,希望代替SCSI硬盘的盘塔或FC硬盘的盘塔。
现就对这两种硬盘的性能指标作一肤浅的分析。
1. 数据传输速率
现在SCSI和ATA的数据传输速率很接近,ATA驱动器最高可达56MB/秒, SCSI驱动器是65MB/秒
2. 比特错误率
驱动器发生错误的频率叫做“比特错误率”。ATA驱动器和SCSI驱动器的比特错误率现在已非常接近,达到了10-14。
3. 磁盘转速
SCSI驱动器最高转速为15,000转/分钟,ATA驱动器是7,200转/分钟的驱动器。转速的快慢,决定了寻道时间。
4. 用寿命在技术白皮书上,ATA硬盘的使用寿命是100万小时,SCSI硬盘的使用寿命是120万小时,相差并不悬殊。得出这个结论的测试方法,是基于服务器单个硬盘,并非基于数据存储盘塔。作为服务器单个硬盘,它的应用环境是单任务、不连续地工作。对于视频服务器,是做数据存储盘塔,它的应用环境是大量文件的频繁读写,多任务、连续地工作,对硬盘的可靠性要求非常高。
从实际使用角度看,SCSI硬盘的使用寿命要高于IDE硬盘。目前国内主要的非线性网络厂家都使用SCSI硬盘的存储中心。当然IDE硬盘技术的发展很快,实际使用寿命还得由时间来检验。
从保修期看,单个SCSI硬盘的保修期是5年。单个IDE硬盘保修期是3年。应用环境不同,硬盘的保修期不同。
5. 缓存ATA硬盘的缓存是2MB,一段的,它可以很好处理单任务的请求,但不能并行处理多任务的请求。如果有多任务,只能等待一个任务处理完成后,再处理下一个。
SCSI硬盘的缓存是8MB,多段的,可以很好地并行处理多任务的请求。如果有多任务,可以同时处理完成。
6. 端口处理协议
SCSI硬盘的端口采用“双端口处理命令标记队列”协议,可以对任务请求排序处理。
IDE硬盘的端口是单端口,没有这种协议。所以I/O无法排队,无法并行处理任务请求。
7. 抗振动能力
作为视频服务器盘塔阵列,多个硬盘在一个机箱内,同时高速旋转运行所带来的振动效应,对硬盘的寿命影响很大。这取决于两个因素:一是硬盘本身,另一个是机箱结构。机箱结构方面很简单,只要减振措施得当,问题就可以解决。但是硬盘不同。SCSI硬盘独有的高级多硬盘系统(SAMS),从根本上降低了振动效应,从而确保了性能的可靠。
但对单个IDE硬盘来讲,在工作状态时ATA驱动器的防震等级是55G,要比SCSI驱动器的45G好20%;在非工作状态下ATA驱动器是350G,要比SCSI驱动器的225G好50%。
8. 硬件结构
SCSI硬盘的连接是一种串接链式结构,可以连接多个硬盘,并且需要在每个链的末端连接一个终结器。SCSI硬盘的跳线设置简单。对于SCSI硬盘,只须确认每一个SCSI硬盘都设置为不同的ID号即可。
IDE硬盘的连接虽然也是一种串接链式结构,但是只可以连接很少的几个硬盘。IDE硬盘的跳线设置简单,只有三种不同的设置选择:主盘、从属盘和单盘,没有ID号设置。
IDE硬盘与SCSI硬盘的选择使用,一般是由应用环境决定的,系统操作硬盘与数据存储硬盘对硬盘的要求不同,非线性编辑网络的盘塔硬盘与播出服务器盘塔硬盘要求也不相同。随着技术的发展,这两种硬盘的性能都在提高中渗透,各自应用领域的交界线不断地在模糊,性价比在不断地提高,但目前还是存在着差异性,所以必须从设备系统出发,考虑这两种硬盘的选用。
‘贰’ 什么是存储SCSI锁
SCSI锁是多台主机用来操作LUN的基本机制。在Windows存储环境中,当多台Windows主机需要访问一个LUN的情况下,例如Windows Cluster环境,就会用到SCSI锁。https://community.emc.com/docs/DOC-20876 在一个共享存储的环境下,多台前端主机可能会同时访问同一台存储设备,如果此时多台主机在同一时点上对一个LUN进行写操作,那么可想而知这个LUN将不知道哪个数据先写,哪个数据后写。为了防止这种情况发生而导致的数据损坏,所以就有了SCSI锁的概念。通过SCSI Reservation机制来进行SCSI锁的操作,目前绝大多数的磁盘都支持‘SCSI reservvation命令‘。如果一台主机给磁盘传输了一条SCSI Reservation命令,则这个磁盘对于其他的主机就处于锁定状态。如果有其他的主机给已经被锁定的磁盘发送读写请求,则会收到‘reservation conflict’报错信息。如果保留SCSI锁的主机崩溃,或者其他主机给磁盘发送‘break reservation或者reset target命令,用来解除SCSI锁。然后,第二个主机发送I/O请求之前需要重新发送SCSI Reservation命令给磁盘。
‘叁’ IDE,SCSI,SATA硬盘接口三者的区别和比较
IDE,SCSI,SATA硬盘接口三者的区别比较:
1、IDE的工作方式需要CPU的全程参与,CPU读写数据的时候不能再进行其他操作,这种情况在Windows95/NT的多任务操作系统中,自然就会导致系统反应的大大减慢。而SCSI接口,则完全通过独立的高速的SCSI卡来控制数据的读写操作,CPU就不必浪费时间进行等待,显然可以提高系统的整体性能。不过,现在的IDE接口为改善这个问题也做了很大改进,已经可以使用DMA模式而非PIO模式来读写,数据的交换由DMA通道负责,对CPU的占用可大大减小。
2、SCSI的扩充性比IDE大,一般每个IDE系统可有2个IDE通道,总共连4个IDE设备,而SCSI接口可连接7~15个设备,比IDE要多很多,而且连接的电缆也远长于IDE。
3、虽然SCSI设备价格高些,但与IDE相比,SCSI的性能更稳定、耐用,可靠性也更好。
(3)scsi存储扩展阅读:
IDE的英文全称为:(Integrated Drive Electronics)
IDE是目前最主流的硬盘接口,包括光储类的主要接口。它经过数年的发展变得很成熟、廉价、稳定。IDE接口使用一根40芯或80芯的扁平电缆连接硬盘与主板,每条线最多连接2个IDE设备(硬盘或者光储)。
3、SATA接口(提示:xSeries 拥有80GB和160GB两款SATA硬盘)
SATA的英文全称是:Serial-ATA(串行),IDE系列属于Parallel-ATA(并行),SATA是最近颁布的新标准,具有更快的外部接口传输速度,数据校验措施更为完善,初步的传输速率已经达到了150MB/s,比IDE最高的UDMA/133还高不少。由于改用线路相互之间干扰较小的串行线路进行信号传输,因此相比原来的并行总线,SATA的工作频率得意大大提升。
虽然总线位宽较小,但SATA 1.0标准仍可达到150MB/s,未来的SATA 2.0/3.0更可提升到300以至600MB/s。并且S-ATA具有更简洁方便的布局连线方式,在有限的机箱内,更有利于散热,并且简洁的连接方式,使内部电磁干扰降低很多。相信最后存在的是SATA接口,SCSI及IDE接口硬盘今后都会采用SATA接口标准。我们知道SATA接口与IDE硬盘接口不兼容,供电接口方式也不相同。
参考资料:网络——SATA硬盘
‘肆’ 什么是SCSI磁盘阵列
磁盘阵列技术
磁盘阵列(DiscArray)是由许多台磁盘机或光盘机按一定的规则,如分条(Striping)、分块(Declustering)、交叉存取(Interleaving)等组成一个快速,超大容量的外存储器子系统。它在阵列控制器的控制和管理下,实现快速,并行或交叉存取,并有较强的容错能力。从用户观点看,磁盘阵列虽然是由几个、几十个甚至上百个盘组成,但仍可认为是一个单一磁盘,其容量可以高达几百~上千千兆字节,因此这一技术广泛为多媒体系统所欢迎。
盘阵列的全称是:
RendanArrayofInexpensiveDisk,简称RAID技术。它是1988年由美国加州大学Berkeley分校的DavidPatterson教授等人提出来的磁盘冗余技术。从那时起,磁盘阵列技术发展得很快,并逐步走向成熟。现在已基本得到公认的有下面八种系列。
1.RAID0(0级盘阵列)
RAID0又称数据分块,即把数据分布在多个盘上,没有容错措施。其容量和数据传输率是单机容量的N倍,N为构成盘阵列的磁盘机的总数,I/O传输速率高,但平均无故障时间MTTF(MeanTimeToFailure)只有单台磁盘机的N分之一,因此零级盘阵列的可靠性最差。
2.RAID1(1级盘阵列)
RAID1又称镜像(Mirror)盘,采用镜像容错来提高可靠性。即每一个工作盘都有一个镜像盘,每次写数据时必须同时写入镜像盘,读数据时只从工作盘读出。一旦工作盘发生故障立即转入镜像盘,从镜像盘中读出数据,然后由系统再恢复工作盘正确数据。因此这种方式数据可以重构,但工作盘和镜像盘必须保持一一对应关系。这种盘阵列可靠性很高,但其有效容量减小到总容量一半以下。因此RAID1常用于对出错率要求极严的应用场合,如财政、金融等领域。
3.RAID2(2级盘阵列)
RAID2又称位交叉,它采用汉明码作盘错检验,无需在每个扇区之后进行CRC(CyclicReDundancycheck)检验。汉明码是一种(n,k)线性分组码,n为码字的长度,k为数据的位数,r为用于检验的位数,故有:n=2r-1r=n-k
因此按位交叉存取最有利于作汉明码检验。这种盘适于大数据的读写。但冗余信息开销还是太大,阻止了这类盘的广泛应用。
4.RAID3(3级盘阵列)
RAID3为单盘容错并行传输阵列盘。它的特点是将检验盘减小为一个(RAID2校验盘为多个,DAID1检验盘为1比1),数据以位或字节的方式存于各盘(分散记录在组内相同扇区号的各个磁盘机上)。它的优点是整个阵列的带宽可以充分利用,使批量数据传输时间减小;其缺点是每次读写要牵动整个组,每次只能完成一次I/O。
5.RAID4(4级盘阵列)
RAID4是一种可独立地对组内各盘进行读写的阵列。其校验盘也只有一个。
RAID4和RAID3的区别是:RAID3是按位或按字节交叉存取,而RAID4是按块(扇区)存取,可以单独地对某个盘进行操作,它无需象RAID3那样,那怕每一次小I/O操作也要涉及全组,只需涉及组中两台磁盘机(一台数据盘,一台检验盘)即可。从而提高了小量数据的I/O速率。
6.RAID5(5级盘阵列)
RAID5是一种旋转奇偶校验独立存取的阵列。它和RAID1、2、3、4各盘阵列的不同点,是它没有固定的校验盘,而是按某种规则把其冗余的奇偶校验信息均匀地分布在阵列所属的所有磁盘上。于是在同一台磁盘机上既有数据信息也有校验信息。这一改变解决了争用校验盘的问题,因此DAID5内允许在同一组内并发进行多个写操作。所以RAID5即适于大数据量的操作,也适于各种事务处理。它是一种快速,大容量和容错分布合理的磁盘阵列。
7.RAID6(6级盘阵列)
RAID6是一种双维奇偶校验独立存取的磁盘阵列。它的冗余的检、纠错信息均匀分布在所有磁盘上,而数据仍以大小可变的块以交叉方式存于各盘。这类盘阵列可容许双盘出错。
8.RAID7(7级盘阵列)
RAID7是在RAID6的基础上,采用了cache技术,它使得传输率和响应速度都有较大的提高。Cache是一种高速缓冲存储器,即数据在写入磁盘阵列以前,先写入cache中。一般采用cache分块大小和磁盘阵列中数据分块大小相同,即一块cache分块对应一块磁盘分块。在写入时将数据分别写入两个独立的cache,这样即使其中有一个cache出故障,数据也不会丢失。写操作将直接在cache级响应,然后再转到磁盘阵列。数据从cache写到磁盘阵列时,同一磁道的数据将在一次操作中完成,避免了不少块数据多次写的问题,提高了速度。在读出时,主机也是直接从cache中读出,而不是从阵列盘上读取,减少与磁盘读操作次数,这样比较充分地利用了磁盘带宽。
这样cache和磁盘阵列技术的结合,弥补了磁盘阵列的不足(如分块写请求响应差等缺陷),从而使整个系统以高效、快速、大容量、高可靠以及灵活、方便的存储系统提供给用户,从而满足了当前的技术发展的需要,尤其是多媒体系统的需要。
解析磁盘阵列的关键技术
存储技术在计算机技术中受到广泛关注,服务器存储技术更是业界关心的热点。一谈到服务器存储技术,人们几乎立刻与SCSI(Small Computer Systems Interface)技术联系在一起。尽管廉价的IDE硬盘在性能、容量等关键技术指标上已经大大地提高,可以满足甚至超过原有的服务器存储设备的需求。但由于Internet的普及与高速发展,网络服务器的规模也变得越来越大。同时,Internet不仅对网络服务器本身,也对服务器存储技术提出了苛刻要求。无止境的市场需求促使服务器存储技术飞速发展。而磁盘阵列是服务器存储技术中比较成熟的一种,也是在市场上比较多见的大容量外设之一。
在高端,传统的存储模式无论在规模上,还是安全上,或是性能上,都无法满足特殊应用日益膨胀的存储需求。诸如存储局域网(SAN)等新的技术或应用方案不断涌现,新的存储体系结构和解决方案层出不穷,服务器存储技术由直接连接存储(DAS)向存储网络技术(NAS)方面扩展。在中低端,随着硬件技术的不断发展,在强大市场需求的推动下,本地化的、基于直接连接的磁盘阵列存储技术,在速度、性能、存储能力等方面不断地迈上新台阶。并且,为了满足用户对存储数据的安全、存取速度和超大的存储容量的需求,磁盘阵列存储技术也从讲求技术创新、重视系统优化,以技术方案为主导的技术推动期逐渐进入了强调工业标准、着眼市场规模,以成熟产品为主导的产品普及期。
回顾磁盘阵列的发展历程,一直和SCSI技术的发展紧密关联,一些厂商推出的专有技术,如IBM的SSA(Serial Storage Architecture)技术等,由于兼容性和升级能力不尽如人意,在市场上的影响都远不及SCSI技术广泛。由于SCSI技术兼容性好,市场需求旺盛,使得SCSI技术发展很快。从最原始5MB/s传输速度的SCSI-1,一直发展到现在LVD接口的160MB/s传输速度的Ultra 160 SCSI,320MB/s传输速度的Ultra 320 SCSI接口也将在2001年出现(见表1)。从当前市场看,Ultra 3 SCSI技术和RAID(Rendant Array of Inexpensive Disks)技术还应是磁盘阵列存储的主流技术。
SCSI技术
SCSI本身是为小型机(区别于微机而言)定制的存储接口,SCSI协议的Version 1 版本也仅规定了5MB/s传输速度的SCSI-1的总线类型、接口定义、电缆规格等技术标准。随着技术的发展,SCSI协议的Version 2版本作了较大修订,遵循SCSI-2协议的16位数据带宽,高主频的SCSI存储设备陆续出现并成为市场的主流产品,也使得SCSI技术牢牢地占据了服务器的存储市场。SCSI-3协议则增加了能满足特殊设备协议所需要的命令集,使得SCSI协议既适应传统的并行传输设备,又能适应最新出现的一些串行设备的通讯需要,如光纤通道协议(FCP)、串行存储协议(SSP)、串行总线协议等。渐渐地,“小型机”的概念开始弱化,“高性能计算机”和“服务器”的概念在人们的心目中得到强化,SCSI一度成为用户从硬件上来区分“服务器”和PC机的一种标准。
通常情况下,用户对SCSI总线的关心放在硬件上,不同的SCSI的工作模式意味着有不同的最大传输速度。如40MB/s的Ultra SCSI、160MB/s的Ultra 3 SCSI等等。但最大传输速度并不代表设备正常工作时所能达到的平均访问速度,也不意味着不同SCSI工作模式之间的访问速度存在着必然的“倍数”关系。SCSI控制器的实际访问速度与SCSI硬盘型号、技术参数,以及传输电缆长度、抗干扰能力等因素关系密切。提高SCSI总线效率必须关注SCSI设备端的配置和传输线缆的规范和质量。可以看出,Ultra 3模式下获得的实际访问速度还不到Ultra Wide模式下实际访问速度的2倍。
一般说来,选用高速的SCSI硬盘、适当增加SCSI通道上连接硬盘数、优化应用对磁盘数据的访问方式等,可以大幅度提高SCSI总线的实际传输速度。尤其需要说明的是,在同样条件下,不同的磁盘访问方式下获得的SCSI总线实际传输速度可以相差几十倍,对应用的优化是获得高速存储访问时必须关注的重点,而这却常常被一些用户所忽视。按4KB数据块随机访问6块SCSI硬盘时,SCSI总线的实际访问速度为2.74MB/s,SCSI总线的工作效率仅为总线带宽的1.7%;在完全不变的条件下,按256KB的数据块对硬盘进行顺序读写,SCSI总线的实际访问速度为141.2MB/s,SCSI总线的工作效率高达总线带宽的88%。
随着传输速度的提高,信号传输过程中的信号衰减和干扰问题显得越来越突出,终结器在一定程度上可以起到降低信号波反射,改善信号质量的作用。同时,LVD(Low-Voltage Differential)技术的应用也越来越多。LVD工作模式是和SE(Single-Ended)模式相对应的,它可以很好地抵抗传输干扰,延长信号的传输距离。同时,Ultra 2 SCSI和Ultra 3 SCSI模式也通过采用专用的双绞型SCSI电缆来提高信号传输的质量。
在磁盘阵列的概念中,大容量硬盘并不是指单个硬盘容量大,而是指将单个硬盘通过RAID技术,按RAID 级别组合成更大容量的硬盘。所以在磁盘阵列技术中,RAID技术是比较关键的,同时,根据所选用的RAID级别的不同,得到的“大硬盘”的功能也有不同。
RAID是一项非常成熟的技术,但由于其价格比较昂贵,配置也不方便,缺少相对专业的技术人员,所以应用并不十分普及。据统计,全世界75%的服务器系统目前没有配置RAID。由于服务器存储需求对数据安全性、扩展性等方面的要求越来越高,RAID市场的开发潜力巨大。RAID技术是一种工业标准,各厂商对RAID级别的定义也不尽相同。目前对RAID级别的定义可以获得业界广泛认同的只有4种,RAID 0、RAID 1、RAID 0+1和RAID 5。
RAID 0是无数据冗余的存储空间条带化,具有低成本、极高读写性能、高存储空间利用率的RAID级别,适用于Video / Audio信号存储、临时文件的转储等对速度要求极其严格的特殊应用。但由于没有数据冗余,其安全性大大降低,构成阵列的任何一块硬盘损坏都将带来数据灾难性的损失。所以,在RAID 0中配置4块以上的硬盘,对于一般应用来说是不明智的。
RAID 1是两块硬盘数据完全镜像,安全性好,技术简单,管理方便,读写性能均好。但其无法扩展(单块硬盘容量),数据空间浪费大,严格意义上说,不应称之为“阵列”。
RAID 0+1综合了RAID 0和RAID 1的特点,独立磁盘配置成RAID 0,两套完整的RAID 0互相镜像。它的读写性能出色,安全性高,但构建阵列的成本投入大,数据空间利用率低,不能称之为经济高效的方案。
RAID 5是目前应用最广泛的RAID技术。各块独立硬盘进行条带化分割,相同的条带区进行奇偶校验(异或运算),校验数据平均分布在每块硬盘上。以n块硬盘构建的RAID 5阵列可以有n-1块硬盘的容量,存储空间利用率非常高(见图6)。任何一块硬盘上数据丢失,均可以通过校验数据推算出来。它和RAID 3最大的区别在于校验数据是否平均分布到各块硬盘上。RAID 5具有数据安全、读写速度快,空间利用率高等优点,应用非常广泛,但不足之处是1块硬盘出现故障以后,整个系统的性能大大降低。
对于RAID 1、RAID 0+1、RAID 5阵列,配合热插拔(也称热可替换)技术,可以实现数据的在线恢复,即当RAID阵列中的任何一块硬盘损坏时,不需要用户关机或停止应用服务,就可以更换故障硬盘,修复系统,恢复数据,对实现HA(High Availability)高可用系统具有重要意义。
各厂商还在不断推出各种RAID级别和标准。例如更高安全性的,从RAID控制器开始镜像的RAID;更快读写速度的,为构成RAID的每块硬盘配置CPU和Cache的RAID等等,但都不普及。用IDE硬盘构建RAID的技术是新出现的一个技术方向,对市场影响也较大,其突出优点就是构建RAID阵列非常廉价。目前IDE RAID可以支持RAID 0、RAID 1和RAID 0+1三个级别,最多支持4块IDE硬盘。由于受IDE设备扩展性的限制,同时,也由于IDE设备也缺乏热可替换的技术支持的原因,IDE RAID的应用还不多。
总之,发展是永恒的主题,在服务器存储技术领域也不例外。一方面,一些巨头厂商尝试推出新的概念或标准,来领导服务器及存储技术的发展方向,较有代表性的如Intel力推的IA-64架构及存储概念;另一方面,致力于存储的专业厂商以现有技术和工业标准为基础,推动SCSI、RAID、Fibre Channel等基于现有存储技术和方案快速更新和发展。在市场经济条件下,检验技术发展的唯一标准是市场的认同。市场呼唤好的技术,而新的技术必须起到推动市场向前发展作用时才能被广泛接受和承认。随着高性能计算机市场的发展,高性能比、高可靠性、高安全性的存储新技术也会不断涌现。
现在市场上的磁盘阵列产品有很多,用户在选择磁盘阵列产品的过程中,也要根据自己的需求来进行选择,现在列举几个磁盘阵列产品,同时也为需要磁盘阵列产品的用户提供一些选择。表2列出了几种磁盘阵列的主要技术指标。
‘伍’ SCSI硬盘、STAT硬盘、SAS硬盘之间的区别是什么
SCSI的英文名称是“Small Computer System Interface”,中文翻译为"小型计算机系统专用接口";顾名思义,这是为了小型计算机设计的扩充接口,它可以让计算机加装其他外设设备以提高系统性能或增加新的功能。SCSI硬盘速度快,CPU占用率小,多用于企业级以上高端服务器。
SAS是新一代的SCSI技术,和现在流行的Serial ATA(SATA)硬盘相同,都是采用串行技术以获得更高的传输速度,并通过缩短连结线改善内部空间等。SAS是并行SCSI接口之后开发出的全新接口。此接口的设计是为了改善存储系统的效能、可用性和扩充性,提供与串行ATA (Serial ATA,缩写为SATA)硬盘的兼容性。
SATA是串行ATA,是新一代ATA,与SAS的出身不同!尽管连接线相同。
SAS的接口技术可以向下兼容SATA。SAS系统的背板(Backplane)既可以连接具有双端口、高性能的SAS驱动器,也可以连接高容量、低成本的SATA驱动器。因为SAS驱动器的端口与SATA驱动器的端口形状看上去类似,所以SAS驱动器和SATA驱动器可以同时存在于一个存储系统之中。但需要注意的是,SATA系统并不兼容SAS,所以SAS驱动器不能连接到SATA背板上。由于SAS系统的兼容性,IT人员能够运用不同接口的硬盘来满足各类应用在容量上或效能上的需求,因此在扩充存储系统时拥有更多的弹性,让存储设备发挥最大的投资效益。
SAS技术还有简化内部连接设计的优势,存储设备厂商目前投入相当多的成本以支持包括光纤通道阵列、SATA阵列等不同的存储设备,而SAS连接技术将可以通过共用组件降低设计成本。
SAS(串行SCSI)是点到点的结构,可以建立磁盘到控制器的直接连接.
串行SCSI(SAS)硬盘使用与S-ATA相同的接口,但是使用较多的信号,因此SAS硬盘不能与S-ATA硬盘控制器连结。SAS是通用接口,支持SAS和S-ATA,SAS控制器可以支持SAS和SATA磁盘。S-ATA使用SAS控制器的信号子集,因此SAS控制器支持S-ATA硬盘。
初期的SAS硬盘使用2.5英寸封装,这样可以使机架服务器支持更多的硬盘,现在已经有厂商推出标准3.5英寸的SAS硬盘;初期产品的转速是10000RPM,而现在15000RPM的产品也已经问世。SAS硬盘与相同转速的SCSI硬盘相比有相同或者更好的性能。串行接口减少了线缆的尺寸,允许更快的传输速度,SAS硬盘传输数据可以达到3.0Gbit/sec。
应用上,SCSI优于SAS,SAS优于SATA,SATA优于ATA。SCSI硬盘多用于企业级以上服务器,SAS目前多用于工作组级服务器,SATA及ATA则多用于PC机等低负荷的终端设备上。线缆上,SAS与SATA用相同的线缆,SCSI与ATA的线缆外观相近,但内含电缆数不同,完全不能互换!ATA线缆一条最个挂接两个硬盘,而一条SCSI线缆可挂接多达成15个SCSI设备。
‘陆’ 什么是SCSI硬盘跟SATA硬盘区别
SCSI硬盘是用SCSI作为接口的硬盘。跟SATA硬盘区别如下:
一、主体不同
1、SCSI硬盘:使用SCSI接口的硬盘,定义了怎样在8位SCSI总线上每秒传输20M数据和在16位Wide SCSI总线上每秒传输40M数据。
2、SATA硬盘:串口硬盘,是由Intel、IBM、Maxtor 和 Seagate等公司共同提出的硬盘接口新规范。
二、特点不同
1、SCSI硬盘:必须通过SCSI接口才能使用,有的服务器主板集成了SCSI接口,有的按有专用的SCSI接口卡,一块SCSI接口卡可以接7个SCSI设备。
2、SATA硬盘:存储结点由存储器控制接口 MCI 和 SATA 硬盘控制器构成MCI 负责按照消息帧格式生成、封装或解封装消息包,根据接收到消息包,提取并解析访问存储结点的操作命令。
三、优势不同
1、SCSI硬盘:接口速度快,并且由于主要用于服务器,因此硬盘本身的性能也比较高,硬盘转速快,缓存容量大,CPU占用率低,扩展性远优于IDE硬盘,并且支持热插拔。
2、SATA硬盘:能有效的将噪声从正常讯号中滤除,良好的噪声滤除能力使得SATA只要使用低电压操作即可。
‘柒’ scsi硬盘与IDE硬盘有什么区别
SCSI与IDE的区别
除了SCSI,IDE也是一种极为常用的接口。从使用简便的角度来看,IDE更加适合普通用户,再加上个人电脑用户不但需要配置的外设不多,而且对速度要求也不高,因此选用IDE接口更合适些。此外,IDE还具有性能价格比高、适用面广等特点。而SCSI接口尽管具有很多无与伦比的特点,但不论从哪个角度看,该接口及其使用该接口的外设售价过于昂贵,一般用户实在无法承受,这也就决定了它的实际使用范围的局限性。
1.IDE的工作方式需要CPU的全程参与,CPU读写数据的时候不能再进行其他操作,这种情况在Windows95/NT的多任务操作系统中,自然就会导致系统反应的大大减慢。而SCSI接口,则完全通过独立的高速的SCSI卡来控制数据的读写操作,CPU就不必浪费时间进行等待,显然可以提高系统的整体性能。不过,现在的IDE接口为改善这个问题也做了很大改进,已经可以使用DMA模式而非PIO模式来读写,数据的交换由DMA通道负责,对CPU的占用可大大减小。尽管如此,比较SCSI和IDE在CPU的占用率,还是可以发现SCSI仍具有相当的优势。
2.SCSI的扩充性比IDE大,一般每个IDE系统可有2个IDE通道,总共连4个IDE设备,而SCSI接口可连接7~15个设备,比IDE要多很多,而且连接的电缆也远长于IDE。
3.虽然SCSI设备价格高些,但与IDE相比,SCSI的性能更稳定、耐用,可靠性也更好。