当前位置:首页 » 存储配置 » 数据存储技术主要学什么

数据存储技术主要学什么

发布时间: 2022-05-12 14:15:42

1. 大数据技术是学什么的

大数据系统类主要偏向于系统研发,比如Hadoop系统就属于系统类技术。这就要求熟悉Hadoop大数据平台的核心框架和组件,能够运用java、R、Python等编程语言基于大数据平台来写代码开发应用,实现产品功能,支撑业务应用。首先,学习大数据是需要有Java,Python和R语言的基础。为什么一定要学Java呢?大数据的第一个框架Hadoop以及其他大数据技术框架,底层语言全是Java写的,所以推荐首选学习Java。Python学习起来比较容易。你学会了Java,再来学习Python会很简单的,一周的时间就可以入门Python。R语言也可以学习,但是更推荐Java,因为Java用的人最多,大数据的第一个框架Hadoop,底层全是Java写的。Hadoop:这是现在流行的大数据处理平台,几乎已经成为大数据的代名词。所以这个是必学的。Hadoop里面包括几个组件HDFS、MapRece和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapRece是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些。学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。

2. 大数据专业主要学什么

大数据技术专业属于交叉学科:以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。此外还需学习数据采集、分析、处理软件,学习数学建模软件及计算机编程语言等,知识结构是二专多能复合的跨界人才(有专业知识、有数据思维)。

3. 云计算与大数据专业的主要课程是什么

大数据的基础知识,科普类的,个人去买本书就行了,大数据时代这样的书很多介绍的大数据的。

另外大数据的技术,如数据采集,数据存取,基础架构,数据处理,统计分析,数据挖掘,模型预测,结果呈现。

大数据分析挖掘与处理、移动开发与架构、软件开发、云计算等前沿技术等。

主修课程:面向对象程序设计、Hadoop实用技术、数据挖掘、机器学习、数据统计分析、高等数学、Python编程、JAVA编程、数据库技术、Web开发、Linux操作系统、大数据平台搭建及运维、大数据应用开发、可视化设计与开发等。

旨在培养学生系统掌握数据管理及数据挖掘方法,成为具备大数据分析处理、数据仓库管理、大数据平台综合部署、大数据平台应用软件开发和数据产品的可视化展现与分析能力的高级专业大数据技术人才。


(3)数据存储技术主要学什么扩展阅读:

应用领域

大数据技术被渗透到社会的方方面面,医疗卫生、商业分析、国家安全、食品安全、金融安全等方面。2014年,从大数据作为国家重要的战略资源和加快实现创新发展的高度,在全社会形成“用数据来说话、用数据来管理、用数据来决策、用数据来创新”的文化氛围与时代特征。

大数据科学将成为计算机科学、人工智能技术(虚拟现实、商业机器人、自动驾驶、全能的自然语言处理)、数字经济及商业、物联网应用、还有各个人文社科领域发展的核心。

4. 关于大学计算机专业数据库方向

大学计算机专业数据库方向:
1、数据库应用开发 (application development)
除了基本的sql方面的知识,还要对开发流程,软件工程,各种框架和开发工具等等
数据库应用开发这个方向上的机会最多,职位最多。
2、数据建模专家 (data modeler)
除了基本的SQL方面的知识,非常熟悉数据库原理,数据建模负责将用户对数据的需求转化为数据库物理设计和物理设计,这个方向上在大公司(金融,保险,研究,软件开发商等)有专门职位,在中小公司则可能由程序员承担。
3、商业智能专家 (business intelligence - BI)
主要从商业应用,最终用户的角度去从数据中获得有用的信息,涉及OLAP (online analytical processing) ,需要使用SSRS, cognos, crystal report等报表工具,或者其他一些数据挖掘,统计方面的软件工具。
4、ETL开发 (ETL Developer)
使用ETL工具或者自己编写程序在不同的数据源之间对数据进行导入,导出,转换,所接触的数据库一般数据量非常大,要求进行的数据转换也比较复杂和数据仓库和商业智能的关系比较密切。在一些数据库应用规模很大的公司里面有专门的职位,中小公司里面则可能由程序员或者DBA负责这方面的工作。
5、数据构架师 (Data Architect)
主要从全局上制定和控制关于数据库在逻辑这一层的大方向,也包括数据可用性,扩展性等长期性战略,协调数据库的应用开发,建模,DBA之间的工作。这个方向上在大公司(金融,保险,研究,软件开发商等)有专门职位, 在中小公司或者没有这个职位,或者由开发人员,DBA负责。
6、数据库管理员 (database administrator - DBA)
数据库的安装,配置,调优,备份/恢复,监控,自动化等,协助应用开发(有些职位还要求优化SQL,写存储过程和函数等)。这个方向上的职位相对少一些,但一般有点规模的公司还是会有这样的职位
7、数据仓库专家 (data warehouse - DW)
应付超大规模的数据,历史数据的存储,管理和使用,和商业智能关系密切,很多时候BI和DW是放在一个大类里面的,但是我觉得DW更侧重于硬件和物理层上的管理和优化。
8、存储工程师 (storage engineer)
专门负责提供数据存储方案,使用各种存储技术满足数据访问和存储需求,和DBA的工作关系比较密切。对高可用性有严格要求(比如通信,金融,数据中心等)的公司通常有这种职位, 这种职位也非常少。
9、性能优化工程师 (performance engineer)
专长数据库的性能调试和优化,为用户提供解决性能瓶颈方面的问题。也有专门的性能优化工程师,负责为其数据库产品和关键应用提供这方面的技术支持。对数据库性能有严格要求的公司(比如金融行业)可能会有这种职位。 因为针对性很强,甚至要求对多种数据库非常熟悉,所以职位极少。
10、高级数据库管理员 (senior DBA)
在DBA的基础上,还涉及上面3种职位的部分工作,具体包括下面这些:对应用系统的数据(布局,访问模式,增长模式,存储要求等)比较熟悉。对性能优化非常熟悉,可以发现并优化从SQL到硬件I/O,网络等各个层面上的瓶颈,对于存储技术相对熟悉,可能代替存储工程师的一些工作,对数据库的高可用性技术非常熟悉(比如MSSQL的集群,ORACLERAC/FailSafe, IBM的DPF, HADR等),对大规模数据库有效进行物理扩展(比如表分区)或者逻辑扩展(比如数据库分区,联合数据库等)。熟悉各种数据复制技术,比如单向,双向,点对点复制技术,以满足应用要求。灾难数据恢复过程的建立,测试和执行。这种职位一般只在对数据库要求非常高并且规模非常大(比如金融,电信,数据中心等)的公司需要,而且这种公司一般有一个专门独立负责数据库的部门或组。这种职位非常少。

5. 数据库技术的主要目的是什么包括什么

数据库技术的主要目的是研究如何组织和存储数据,如何高效地获取和处理数据。包括:信息,数据,数据处理,数据库,数据库管理系统以及数据库系统等。

数据库技术是信息系统的一个核心技术。是一种计算机辅助管理数据的方法,它研究如何组织和存储数据,如何高效地获取和处理数据。是通过研究数据库的结构、存储、设计、管理以及应用的基本理论和实现方法,并利用这些理论来实现对数据库中的数据进行处理、分析和理解的技术。

数据库技术涉及到许多基本概念,主要包括:信息,数据,数据处理,数据库,数据库管理系统以及数据库系统等。

地位:

数据库技术是现代信息科学与技术的重要组成部分,是计算机数据处理与信息管理系统的核心。数据库技术研究和解决了计算机信息处理过程中大量数据有效地组织和存储的问题。

在数据库系统中减少数据存储冗余、实现数据共享、保障数据安全以及高效地检索数据和处理数据。数据库技术的根本目标是要解决数据的共享问题。

6. 大数据工程师需要学哪些技术

一、大数据采集


大数据采集,即对各种来源的结构化和非结构化海量数据,所进行的采集。


数据库采集:流行的有Sqoop和ETL,传统的关系型数据库MySQL和Oracle 也依然充当着许多企业的数据存储方式。当然了,目前对于开源的Kettle和Talend本身,也集成了大数据集成内容,可实现hdfs,hbase和主流Nosq数据库之间的数据同步和集成。


网络数据采集:一种借助网络爬虫或网站公开API,从网页获取非结构化或半结构化数据,并将其统一结构化为本地数据的数据采集方式。


文件采集:包括实时文件采集和处理技术flume、基于ELK的日志采集和增量采集等等。


二、大数据预处理


大数据预处理,指的是在进行数据分析之前,先对采集到的原始数据所进行的诸如“清洗、填补、平滑、合并、规格化、一致性检验”等一系列操作,旨在提高数据质量,为后期分析工作奠定基础。数据预处理主要包括四个部分:数据清理、数据集成、数据转换、数据规约。


三、大数据储存


大数据每年都在激增庞大的信息量,加上已有的历史数据信息,对整个业界的数据存储、处理带来了很大的机遇与挑战.为了满足快速增长的存储需求,云存储需要具备高扩展性、高可靠性、高可用性、低成本、自动容错和去中心化等特点.常见的云存储形式可以分为分布式文件系统和分布式数据库。其中,分布式文件系统采用大规模的分布式存储节点来满足存储大量文件的需求,而分布式的NoSQL数据库则为大规模非结构化数据的处理和分析提供支持。


四、大数据清洗


MapRece作为Hadoop的查询引擎,用于大规模数据集的并行计算,”Map(映射)”和”Rece(归约)”,是它的主要思想。它极大的方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统中。随着业务数据量的增多,需要进行训练和清洗的数据会变得越来越复杂,这个时候就需要任务调度系统,比如oozie或者azkaban,对关键任务进行调度和监控。


关于大数据工程师需要学哪些技术,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

7. 云计算与大数据专业主要是学习什么的

大数据的一些基础知识,比如java和hadoop等等,这个基本得自学。大学里面最接近这些的也就是计算机类专业。
云计算需要学习的知识是:1、网络通信知识,包括互联网基础建设相关的所有知识;2、虚拟化知识,应该了解硬件运行原理以及虚拟化实现技术;3、数据库技术;4、网络存储技术;5、网络信息安全技术,最起码得明白什么是iso 17799;6、电子商务;7、容灾及备份技术;8、JAVA编程技术;9、分布式系统架构

8. 大数据专业主要学什么啊

1、大数据专业,一般是指大数据采集与管理专业;
2、课程设置,大数据专业将从大数据应用的三个主要层面(即数据管理、系统开发、海量数据分析与挖掘)系统地帮助企业掌握大数据应用中的各种典型问题的解决办法,包括实现和分析协同过滤算法、运行和学习分类算法、分布式Hadoop集群的搭建和基准测试、分布式Hbase集群的搭建和基准测试、实现一个基于、Maprece的并行算法、部署Hive并实现一个的数据操作等等,实际提升企业解决实际问题的能力。
3、核心技术,
(1)大数据与Hadoop生态系统。详细介绍分析分布式文件系统HDFS、集群文件系统ClusterFS和NoSQL Database技术的原理与应用;分布式计算框架Maprece、分布式数据库HBase、分布式数据仓库Hive。
(2)关系型数据库技术。详细介绍关系型数据库的原理,掌握典型企业级数据库的构建、管理、开发及应用。
(3)分布式数据处理。详细介绍分析Map/Rece计算模型和Hadoop Map/Rece技术的原理与应用。
(4)海量数据分析与数据挖掘。详细介绍数据挖掘技术、数据挖掘算法–Minhash, Jaccard and Cosine similarity,TF-IDF数据挖掘算法–聚类算法;以及数据挖掘技术在行业中的具体应用。
(5)物联网与大数据。详细介绍物联网中的大数据应用、遥感图像的自动解译、时间序列数据的查询、分析和挖掘。
(6)文件系统(HDFS)。详细介绍HDFS部署,基于HDFS的高性能提供高吞吐量的数据访问。
(7)NoSQL。详细介绍NoSQL非关系型数据库系统的原理、架构及典型应用。
4、行业现状,
今天,越来越多的行业对大数据应用持乐观的态度,大数据或者相关数据分析解决方案的使用在互联网行业,比如网络、腾讯、淘宝、新浪等公司已经成为标准。而像电信、金融、能源这些传统行业,越来越多的用户开始尝试或者考虑怎么样使用大数据解决方案,来提升自己的业务水平。
在“大数据”背景之下,精通“大数据”的专业人才将成为企业最重要的业务角色,“大数据”从业人员薪酬持续增长,人才缺口巨大。

9. 大数据主要学习什么知识

分享大数据学习路线:

第一阶段为JAVASE+MYSQL+JDBC

主要学习一些Java语言的概念,如字符、流程控制、面向对象、进程线程、枚举反射等,学习MySQL数据库的安装卸载及相关操作,学习JDBC的实现原理以及Linux基础知识,是大数据刚入门阶段。

第二阶段为分布式理论简介

主要讲解CAP理论、数据分布方式、一致性、2PC和3PC、大数据集成架构。涉及的知识点有Consistency一致性、Availability可用性、Partition
tolerance分区容忍性、数据量分布、2PC流程、3PC流程、哈希方式、一致性哈希等。

第三阶段为数据存储与计算(离线场景)

主要讲解协调服务ZK(1T)、数据存储hdfs(2T)、数据存储alluxio(1T)、数据采集flume、数据采集logstash、数据同步Sqoop(0.5T)、数据同步datax(0.5T)、数据同步mysql-binlog(1T)、计算模型MR与DAG(1T)、hive(5T)、Impala(1T)、任务调度Azkaban、任务调度airflow等。

第四部分为数仓建设

主要讲解数仓仓库的历史背景、离线数仓项目-伴我汽车(5T)架构技术解析、多维数据模型处理kylin(3.5T)部署安装、离线数仓项目-伴我汽车升级后加入kylin进行多维分析等;

第五阶段为分布式计算引擎

主要讲解计算引擎、scala语言、spark、数据存储hbase、redis、ku,并通过某p2p平台项目实现spark多数据源读写。

第六阶段为数据存储与计算(实时场景)

主要讲解数据通道Kafka、实时数仓druid、流式数据处理flink、SparkStreaming,并通过讲解某交通大数让你可以将知识点融会贯通。

第七阶段为数据搜索

主要讲解elasticsearch,包括全文搜索技术、ES安装操作、index、创建索引、增删改查、索引、映射、过滤等。

第八阶段为数据治理

主要讲解数据标准、数据分类、数据建模、图存储与查询、元数据、血缘与数据质量、Hive Hook、Spark Listener等。

第九阶段为BI系统

主要讲解Superset、Graphna两大技术,包括基本简介、安装、数据源创建、表操作以及数据探索分析。

第十阶段为数据挖掘

主要讲解机器学习中的数学体系、Spark Mlib机器学习算法库、Python scikit-learn机器学习算法库、机器学习结合大数据项目。

对大数据分析有兴趣的小伙伴们,不妨先从看看大数据分析书籍开始入门!B站上有很多的大数据教学视频,从基础到高级的都有,还挺不错的,知识点讲的很细致,还有完整版的学习路线图。也可以自己去看看,下载学习试试。

10. 数据库技术是学什么的

数据库技术是现代信息科学与技术的重要组成部分,是计算机数据处理与信息管理系统的核心。数据库技术研究和解决了计算机信息处理过程中大量数据有效地组织和存储的问题,在数据库系统中减少数据存储冗余、实现数据共享、保障数据安全以及高效地检索数据和处理数据。

随着计算机技术与网络通信技术的发展,数据库技术已成为信息社会中对大量数据进行组织与管理的重要技术手段及软件技术,是网络信息化管理系统的基础。本章主要介绍数据库技术的应用与发展、关系模型的基本概念、关系数据库的设计理论及数据库设计方法等内容,是学习和掌握现代数据库技术的基础。

1.1 数据库技术的发展与应用
从20世纪60年代末期开始到现在,数据库技术已经发展了30多年。在这30多年的历程中,人们在数据库技术的理论研究和系统开发上都取得了辉煌的成就,而且已经开始对新一代数据库系统的深入研究。数据库系统已经成为现代计算机系统的重要组成部分。

1.1.1 数据库技术与信息技术
信息技术(Information Technology,IT)是当今使用频率最高的名词之一,它随着计算机技术在工业、农业以及日常生活中的广泛应用,已经被越来越多的个人和企业作为自己赶超世界潮流的标志之一。而数据库技术则是信息技术中一个重要的支撑。没有数据库技术,人们在浩瀚的信息世界中将显得手足无措。

数据库技术是计算机科学技术的一个重要分支。从20世纪50年代中期开始,计算机应用从科学研究部门扩展到企业管理及政府行政部门,人们对数据处理的要求也越来越高。1968年,世界上诞生了第一个商品化的信息管理系统IMS(Information Management System),从此,数据库技术得到了迅猛发展。在互联网日益被人们接受的今天,Internet又使数据库技术、知识、技能的重要性得到了充分的放大。现在数据库已经成为信息管理、办公自动化、计算机辅助设计等应用的主要软件工具之一,帮助人们处理各种各样的信息数据。

1.1.2 数据库技术的应用及特点
数据库最初是在大公司或大机构中用作大规模事务处理的基础。后来随着个人计算机的普及,数据库技术被移植到PC机(Personal Computer,个人计算机)上,供单用户个人数据库应用。接着,由于PC机在工作组内连成网,数据库技术就移植到工作组级。现在,数据库正在Internet和内联网中广泛使用。

20世纪60年代中期,数据库技术是用来解决文件处理系统问题的。当时的数据库处理技术还很脆弱,常常发生应用不能提交的情况。20世纪70年代关系模型的诞生为数据库专家提供了构造和处理数据库的标准方法,推动了关系数据库的发展和应用。1979年,Ashton-Tate公司引入了微机产品dBase Ⅱ,并称之为关系数据库管理系统,从此数据库技术移植到了个人计算机上。20世纪80年代中期到后期,终端用户开始使用局域网技术将独立的计算机连接成网络,终端之间共享数据库,形成了一种新型的多用户数据处理,称为客户机/服务器数据库结构。现在,数据库技术正在被用来同Internet技术相结合,以便在机构内联网、部门局域网甚至WWW上发布数据库数据。

1.1.3 数据库技术发展历史
数据模型是数据库技术的核心和基础,因此,对数据库系统发展阶段的划分应该以数据模型的发展演变作为主要依据和标志。按照数据模型的发展演变过程,数据库技术从开始到现在短短的30年中,主要经历了三个发展阶段:第一代是网状和层次数据库系统,第二代是关系数据库系统,第三代是以面向对象数据模型为主要特征的数据库系统。数据库技术与网络通信技术、人工智能技术、面向对象程序设计技术、并行计算技术等相互渗透、有机结合,成为当代数据库技术发展的重要特征。

热点内容
怎么给汉字加密 发布:2025-01-18 20:49:44 浏览:865
遍历javamap 发布:2025-01-18 20:39:05 浏览:624
我的世界租服务器哪里最便宜 发布:2025-01-18 20:38:50 浏览:564
dhcp服务器地址租期时间怎么调整 发布:2025-01-18 20:28:02 浏览:267
加密区的图片 发布:2025-01-18 20:22:17 浏览:474
key文件加密 发布:2025-01-18 20:12:07 浏览:736
etl服务器怎么用 发布:2025-01-18 20:08:18 浏览:281
硫酸镁算法 发布:2025-01-18 19:53:00 浏览:670
华为什么时候做安卓 发布:2025-01-18 19:44:23 浏览:713
电脑超凡先锋选则不了服务器 发布:2025-01-18 19:23:46 浏览:961