当前位置:首页 » 存储配置 » 数据存储能力

数据存储能力

发布时间: 2022-05-10 19:32:13

❶ 为什么说数据存储技术已经比较完美

你好~

因为至少在纠错方面已经没什么需要改进了。
可靠的数据存储是IT行业的关键,也是现代生活的关键。虽然我们把这当成理所当然的事情,但是这其中存在什么样的谎言呢?数据视频专家,IT写手John Watkinson带你了解数据存储的相关细节,以及对未来存储技术发展的猜想。千万别烧糊大脑噢。
电脑之所以使用二进制,是因为数字简化为0和1后,由两股不同电压呈现出来时,最容易被区分开。
在闪存中,我们可以用一束绝缘电子保存这些电压。但是在其他存储设备中,则需要物理模型。
以磁带或硬盘为例,我们先看看小环境内磁化的方向,N-S或S-N。在光盘中,差异则以有没有小坑表现出来。
生物学里,DNA就是一种数据记录,这种记录以离散状态的化学物质为基础。“比特”的差别会导致变异,而变异则导致进化或是导致某种蛋白质的缺失而致病。数据记录对生命而言至关重要。

二进制的媒介并不在乎所呈现的数据是什么。一旦我们可以放心记录二进制数据,我们就会把音频,视频,图片,文本,CAD文件和电脑程序放到相同的媒介上,然后完整复制。
这些数据类型之间的唯一差别是其中的一些数据需要在一个特定时间内重复生成。
时机,可靠性,持续时长及成本
不同的存储媒介有不同的特点,没有哪种介质尽善尽美。硬盘在读取密集型应用上存储性能最佳,但是硬盘不能从驱动中移除。尽管硬盘的数据记录密度一直比光盘的大,但是你花个几秒钟就可以置换出光盘。而且,光盘的贴标成本也很低,所以适合大规模发行。
闪存可提供快速访问,而且体积很小,不过它的可持续写入周期存在局限。尽管闪存替代了以前的软磁盘,但是软磁盘技术并没消失。它还存在于航空公司,火车票,信用卡和酒店门房钥匙的磁条中。条形码就是个很好的例子。
在闪存中,存储密度是由单个电荷井的精细构造程度来决定。但是光盘技术的发展不仅可以保存越来越多的信息,而且可解析的数据也越来越小。

U盘中的芯片:没有活动部件,可直接使用
在旋转内存中,无论是磁盘还是光盘的,都存在两个问题:我们要尽可能收集多一点轨道,同时要尽可能多地把数据放到轨道中。
这些轨道极其狭窄,需要主动跟踪伺服系统使磁头可以持续被记录下来,而不受耐受力和温度改变的影响。为了减少磨损,用于收集的磁头和磁盘之间是不接触的。
光盘会盯着轨道,虽然是从微观角度,但却是由磁力驱动,磁头掠过磁盘上方几纳米处的气膜。自相矛盾的是,它是闪存,没有会带来磨损的活动部件。
编码
磁盘会扫描自己的轨道,然后按顺序收集数据。我们不能只是在磁盘轨道上写入原始数据,因为如果这些数据包含了相同的比特,那么就无法区分这些比特,读取器的同一性也会丢失。相反,数据是通过一个名为信道编码的进程来修改。信道编码的功能之一就是保障信号中的时钟内容,而不考虑真正的数据样式。
在光盘中,追踪和聚焦是过滤数据后,通过收集光圈查看数据追踪的对称性来执行。信道编码的第二个功能是去除数据追踪的DC和低频内容,使过滤更有效。圆形光点很难分辨轨道上距离太近的数据。

大众媒体

第一款量产的纠错应用存在于压缩盘中,1982年上市,这是在Reed和Solomon的论文发表22年之后。CD的光学技术是早期的镭射影碟,那么它的不足在哪里呢?
首先,数字音频光盘要实时播放。播放器不会把错误视为电脑本身的功能,所以必须得将其纠正。再者,如果CD使用的系统比Reed-Solomon编码更简单,那么这个系统将会更大--因此,将影响到便携式和汽车播放器市场。第三,Reed-Solomon纠错系统是复杂的,在LSI芯片上部署比较经济。
早在十年前,用于制作压缩光盘的所有技术早已出现,但是直到LSI Logic 公司的芯片性能跨过某个特定门槛,其性能才突然变得经济实用。
同理,之后也是在LSI技术可以用消费者可接受的价格执行实时MPEG解码时,我们才看到了DVD的流行。
综合
所有光盘用来客服这些问题的技术都被称为分组编码。比如,如果所有可能的14比特的结合体都被排序,且以波形描绘出来,就可以选择出最容易记录的。

分组编码如何限制记录的频率呢?在a) 表示的最高频率点,转换间隔了三个信道位。这样信道位的记录密度就成了三倍。注意h)是无效编码。最长的信道位运行于g),而i) 无效编码。
上图显示出,我们排除了改变太紧密的模式,因此记录的最高频率被减少了三分之一。
我们还排除了1和0之间存在较大差异的模式,因为那样带来的是我们不想要的直流偏移。267保留了我们许可的模式,比起要记录八个比特的256模式要好,剩下可同时使用的模式少之又少。
EFM
Kees Immink的数据编码技巧使用14个信道位的模式来记录八比特--因此,其名称就是EFM(eight to fourteen molation)。三种合并的比特被放在各组之间,防止边界出现混乱,所以17信道位被用于每个数据的记录。这样是违背直觉的,直到你意识到编码规则将信道位的记录密度提升三倍。所以,我们以3 x 8/17胜出,密度比率为1.41。
是信道编码机制本身增加了41%的播放时间。笔者认为在30年前能做到如此是非常不错的。
压缩光盘和MiniDisc使用的EFM技术借助了波长为780纳米的激光。DVD使用的是其变体,EFM+,激光波长减为了650纳米。
蓝光格式也使用分组编码,但不是EFM。而是信道模拟,称为信道调制,也称1.7PP调制。它的密度比率要稍逊一些,但由于使用了波长为405纳米的激光,所以存储密度有所增加。这种激光其实并不是蓝色的。
磁带记录器的磁头有两极,就好像微型马蹄铁,当磁头扫描轨道时,两极之间的有限距离会产生孔径效应。
下图显示出频率响应就像一个梳子状的过滤器,带有周期性的暗码。传统的磁带记录被限制在下面第一个暗码的波段部分,但是在第一和第二个暗码之间,则由部分响应技术来掌控,这样就把数据容量翻了一番。

所有磁性记录器都存在磁头间隙导致的回放信号a) 的暗码问题。在b) 显示的部分响应中,磁头感知不到奇数位的数据,于是会回放偶数位的数据。一个比特之后,两个偶数位数据就会被恢复。
如果数据太小,以至于其中一个数据(奇数位置)其实就在磁头间隙处,那么磁头的两极却只能识别两边偶数位置的数据,然后输出。这两种数据相加就成了第三级信号。磁头会交替重复生成交叉存取的奇数和偶数数据流。
使用两股数据流的合适信道编码,那么给定数据流的外部层级就可以轮流使用,这样就更具可预测性,而读取器也可以掌握这种预见性使数据更为可靠。这就是现如今让硬盘容量超乎想象之大的PRML编码。
纠错
在真实世界中,热活力或无线电干扰都是影响我们记录的因素。显然,用二进制记录是最难被干扰的。如果有一比特的数据被干扰,那么会引起整个数据的改变,因为1会变成0或者0会变成1。如此明显的改变会被纠错系统检测出来。在二进制中,如果有一个比特是错误的,那么只需把它设置为相反的那个数就可以了。因此,二进制的纠错是比较容易的,真正的难点在于找出有错的那个比特。
使用二进制以及具备有效纠错/数据整合系统的存储设备可以再次生成所记录的相同数据。换言之,数据的质量从本质上是透明的,因为从媒介质量那里,它就已经实现了去耦。
有了纠错系统,我们还能在任意类型的介质上做记录,包括没有经过优化的介质,如火车票。以条形码为例,只有当印有条形码的产品靠近读取器时,纠错系统才会执行任务:要确认已经发现条形码。
市场存在减少数据存储成本的压力,这就意味着要把更多数据放入给定空间内。
没有哪种介质是完美的,所有介质都存在物理缺陷。由于数据越来越小,这些缺陷就显得越来越大,所以缺陷导致数据出错的几率也在增加。
纠错需要在真实数据中加入检测数据,所以让人感觉记录效率会被降低,因为执行这些检测也要占用空间。事实上,少数额外的检测任务会让记录密度翻倍,所以这是存储容量的净增加。
一旦了解到这一点,就会明白纠错是很重要的一项技术。
第一个实用型的纠错代码是Richard Hamming 1950年开发的。Reed-Solomon编码则是1960年发布。纠错代码的发展史其实只有十年。
纠错要向真实信息添加检测数据,要优先于记录,从这些信息中进行计算。这些信息和检测数据一起形成了一种代码字,这表示它具备了一些可测试的特性,如通过特定的数学表达式来区分。播放器会对这些特性进行测试,如果发现数据有错,就不能获取可测试的特性。余数不会是零,而是被称为综合症的一种模式。通过分析这种综合症可以纠错。

在特定有限域上的Reed-Solomon 多项式代码
在Reed-Solomon代码中,有若干对不同的数学表达式,它们被用来计算校验符。一个错误会导致两种综合症。解出两个方程,就可能发现错误的位置以及导致综合症出现的错误模式。
错误被呈现并被纠正
如果没有可靠性和存储密度,那么我们现在所使用的这一切将不复存在。我们的数码照相机所拍的照片会被光点破坏,那样我们会更喜欢使用传统胶卷。

如果没有Reed-Solomon纠错系统,那么压缩光盘怎么会出现呢?
借助纠错系统,记录密度会持续增长,直到极限。每个比特使用一个电子的闪存;一个磁化分子代表一个比特的磁盘;使用超短波长的光盘。或许它会被冠以别的什么名称。在达到极值前,存储容量会呈平稳态势。
力臻完美
最先由Claude Shannon依照科学原理总结出的信息理论决定了纠错系统的理论局限性,就好像热动力学原理对热引擎效率的局限一样。
但,在真实世界里,没有机器会达到理论效率极值。Reed-Solomon纠错代码就是以信息理论设定的理论极值来操作。所以不会再有更强大的代码了。
纠错系统的纠错能力是显而易见的。笔者之所以对此表示怀疑,是因为纠错理论专业且神秘,以至于不懂的人根本不敢涉足,因而只能留给懂这些东西的人来处理。
尽管,纠错系统编码的局限性已经出现,但并不意味着不会再有新突破。纠错和信道编码都需要对信息进行编码和解码,而这就遵循摩尔定律。
因此,编码系统的成本和规模都会随着时间的发展而减小,或者其复杂性会增加,使得新应用成为可能。尽管如此,如果未来出现新的二进制数据存储设备,使用的是我们闻所未闻的介质,纠错系统将仍然是基于Reed-Solomon编码。

希望可以帮助到你~

❷ 海量数据存储有哪些方式与方法

杉岩海量对象存储MOS,针对海量非结构化数据存储的最优化解决方案,采用去中心化、分布式技术架构,支持百亿级文件及EB级容量存储,

具备高效的数据检索、智能化标签和分析能力,轻松应对大数据和云时代的存储挑战,为企业发展提供智能决策。

1、容量可线性扩展,单名字空间达EB级

SandStone MOS可在单一名字空间下实现海量数据存储,支持业务无感知的存储服务器横向扩容,为爆炸式增长的视频、音频、图片、文档等不同类型的非结构化数据提供完美的存储方案,规避传统NAS存储的单一目录或文件系统存储空间无法弹性扩展难题

2、海量小文件存储,百亿级文件高效访问

SandStone MOS基于完全分布式的数据和元数据存储架构,为海量小文件存储而生,将企业级NAS存储的千万文件量级提升至互联网规模的百亿级别,帮助企业从容应对几何级增长的海量小文件挑战。

3、中心灵活部署,容灾汇聚分发更便捷

SandStone MOS支持多数据中心灵活部署,为企业数据容灾、容灾自动切换、多分支机构、数据就近访问等场景提供可自定义的灵活解决方案,帮助企业实现跨地域多活容灾、数据流转、就近读写等,助力业务高速发展。

4、支持大数据和AI,统一数据存储和分析

SandStone MOS内置文件智能化处理引擎,实现包括语音识别、图片OCR识别、文件格式转换等批量处理功能,结合标签检索能力还可实现语音、证件照片检索,从而帮助企业更好地管理非结构化数据。同时,SandStone MOS还支持与Hadoop、Spark等大数据分析平台对接,一套存储即可满足企业数据存储、管理和挖掘的需求。

❸ 硬盘的存储 能力是多少

闪存(容量小)和传统硬盘(体积大)均无法满足市场需求。由超小型笔记本和数码相机领域发展过来的微硬盘,顺理成章地拿过了两个老前辈的接力棒。

微硬盘(Microdrive)最早是由IBM公司开发的一款超级迷你硬盘机产品。其最初的容量为340MB和512MB,而现在的产品容量有1GB、2GB以及4GB等。与以前相比,目前的微硬盘降低了转速(4200rpm降为3600rpm),从而降低了功耗,但增强了稳定性。

可以使用CF卡的大多数设备大都可以直接使用Microdrive,如数码相机、手持电脑、MP3播放器等。笔记本电脑则通过PCMCIA适配器转接,由于Microdrive比起CF卡略厚,所以需要设备符合CFII标准,大容量的Microdrive(4GB)要求设备支持FAT32文件系统。与CF相比,Microdrive的最大优势是单位存储容量的价格更低。Microdrive采用的是硬盘技术,具有低成本高容量的特点,可以成为采用固态存储技术存贮器的替代品。

目前柯达、三洋、富士通、爱普生等公司,已经开始设计支持Microdrive使用的数码相机产品。未来可以预见的是,包括数码相机或其它计算机外设产品,会陆续加入支持Microdrive的行列。

1、优点:

(1)超大容量:要知道,微硬盘的盘片面积只有1英寸,整体也不过电话卡1/3面积,主流容量却达到了1-4GB级水平,今年内更有15GB(1英寸)和60GB(1.8英寸)的产品面世,无论是用作相机拍摄,还是数据存储,都是绰绰有余。

(2)使用寿命长:采用比硬盘更高技术来制作,保证了它的使用寿命,可反复抹写30万次以上,通常能稳定工作五年。

(3)带有缓存:这不仅仅是出于避震的需要,而是提高数据传输率的重要保证,避震可以由外置的内存来完成,但没有缓存的话,微硬盘的速度会显得比较慢,一般产品都配有128KB容量数据缓存。

(4)无须外置电源:微硬盘的功耗极小,连接USB就可以用了,如果一个接口不够电,连接两个接口肯定OK,直接解决了硬盘盒外加电源的麻烦。所以未来的硬盘型MP3,有可能无须电池就可以接入电脑。

(5)高速传输:更省电、更细小的体积使人怀疑微硬盘的数据传输速度,但大家可以放心,现在的微硬盘都有3600-4200 RPM(Rotation Per Minute,转/分),最快的已经达到4500 RPM。。当然,由于盘片体积小,相同转速时,数据传输率比普通硬盘要低。虽说体积小散热不容易,但它们都拥有自动省电模式,能主动降低发热量,让高速可以更持久。

(6)接口广泛兼容性:微硬盘与普通硬盘一样,都兼容兼容工业标准的多种硬盘接口,这主要由控制芯片来决定,使其适用于多种手持装置。所以,我们会看到CF卡、PCMCIA、USB 2.0、ATA并口的微硬盘,未来可能还有ATA串口和SCSI的呢!

(7)USB 2.0高速外部传输:当你用这个大容量微型硬盘存储歌曲、图片、视频录象、应用软件和文件时,一定会和别人交换数据,这时,一个快速的传输通道必不可少。USB 2.0是现时兼容性最广的外部接口标准,能实现480Mbps的传输速度,约为60MB/秒的速度。虽然USB1.1也能够勉强使用,大家试想一下,如此大容量的数据存储,传输流量想必也会大,因此我们尽量选择那些USB 2.0的微硬盘MP3。

(8)高防震性:由于微硬盘的特殊设计,它的防震能力比一般笔记本硬盘强许多,其特殊的磁头载入载出技术,使抗冲击能力高达1500G(非工作状态)和175G(工作状态)。即使配合低端读取设备使用,读取器和硬盘的双重保护,也能避免硬盘内部受到撞击。不仅作为微硬盘MP3,还可以为数码相机、手提电脑、掌上电脑、GPS及其它便携式设备提供了可靠的存储性能。

2.使用过程中的注意:

首先要注意不要靠近磁性物质或强磁场;保存在-40℃以上或65℃以下的环境中存放和使用;谨防被水或其它液体浸湿(如不慎沾上水渍,应尽快擦干);防止被重物或外力挤压表面;小心不要从高处跌落地面;长时间不用时,应该放回塑料包装盒中。

而拿放微硬盘时也要注意,正确的是:要拿持微硬盘的两侧,不可用力捏持硬盘两表面,注意要轻拿轻放;用手拿持微硬盘前,注意要先在其它金属物体上释放掉手上的静电,避免静电对它的影响,尤其是现在的秋冬季节比较干燥,更加要注意静电。

另外,随着微硬盘的容量越来越大,选购4GB的微硬盘时必须注意产品(数码相机)是否提供FAT32文件系统支持。绝大多数现有数码相机在存储卡文件系统中采用FAT16,最大只能识别2GB容量。要想使用4GB的微硬盘,产品方面必须支持FAT32。

❹ 大数据量数据存储问题

杉岩数据专注数据存储解决方案,面对大数据,人工智能带来的海量数据存储挑战,杉岩海量对象存储MOS提供完美解决方案,
SandStone MOS是兼具企业级存储能力和智能检索处理能力的对象存储产品。新一代的存储引擎基于标准服务器构建一个可以线性扩展、几乎没有容量上限的跨地域存储架构,在提供高可靠和高可用服务能力的同时,集成了数据智能处理和分析能力,简化了海量数据处理所需的基础设施,以大幅提升数据处理的效率。

❺ 什么是数据存储

使用计算机和其他设备保留数据称为数据存储。数据的这种保留和分析是使用专门的技术完成的,这反过来又使其可供将来使用。根据存储产品和服务,数据存储可分为三类:

文件存储 – 这是一种廉价且简单的数据存储类型,其中数据存储在硬盘驱动器的文件和文件夹中。硬盘驱动器以与用户查看的相同配置存储数据。

块存储——这是一种更昂贵、更复杂的存储形式,适用于需要频繁访问和编辑的数据。这种存储方法的可扩展性较差,并且将数据存储在大小均匀的块中。

对象存储——对象可以与元数据和唯一标识符一起存储,从而降低这种存储类型的成本。它非常适合不需要编辑的数据。

❻ 用户如何提高存储性能有哪些解决方案

何提高网速 电脑运行速度显卡关内存关 杀毒软件突打
:数据存储备份存储管理源于世纪70代终端/主机计算模式由于数据集主机易管理海量存储设备——磁带库必备设备80代由于PC发展尤其90代应用广客户机/服务器模式普及及互联网迅猛发展使存储容量、存储模式存储要求都发根本性变化些新兴存储技术迅速崛起构建更安全信息代提供更选择
编者按何确保所数据能够靠备份及进行灾难恢复存储管理软件核任务外存储管理软件存些基本功能诸改进系统应用I/O性能及存储管理能力提高数据应用系统高用性减少由于各种原断数据存取或者应用系统宕机间实现技术级存储管理(HSM)、ClusterServer(集群服务器)等
首先能提供些识别析存储访问模式VolumeManager工具VolumeManager通复杂磁盘配置能均衡I/O负载影响应用同能够优化应用数据布局数据条形散放物理盘提高性能同具断应用情况识别消除性能瓶颈能力增强系统应用性能另外VolumeManager减少系统断间、增加数据完整性等面俗表现允许磁盘进行线管理更改配置减少系统产极影响停机间同利用冗余技术提高数据用性防止数据丢失破坏
其非重要快速恢复志式文件系统FileSystem能间断数据访问条件文件作线备份并系统重启或崩溃前允许访问数据并恢复文件提高用户管理员产效率FileSystem系统崩溃前能未完数据记录事件志利用恢复程序重现保持数据完整性
VolumeManagerFileSystem都工作操作系统级实现集群与故障恢复、自管理、备份与HSM及基于浏览器远程管理等两者机结合利用双特磁盘数据管理能力能给企业系统提供尽能高性能、用性及管理性
基础便整存储管理核任务——备份技术
数据存储备份技术般包含硬件技术及软件技术等硬件技术主要磁带机技术软件技术主要通用专用备份软件技术等我主要软件技术面加讨论备份软件技术整数据存储备份程具相重要性仅关系否支持磁带各种先进功能且程度决定着备份效率备份软件定操作系统所提供备份功能厂商都提供许专业备份软件专业备份软件能通优化数据传输率即自较高传输率进行数据传输仅能缩短备份间、提高数据存储备份速度且磁带机设备本身处另外专业备份软件支持新磁带机技术HPTapeAlert技术差所主流专业备份软件均提供支持
于存储模式说比较见DAS、NASSAN等DAS(DirectAttachedStorage-直接连接存储)指存储设备通SCSI接口或光纤通道直接连接台计算机服务器理比较散、难通远程连接进行互连直接连接存储比较解决案直接连接存储帮助企业继续保留已传输速率并高网络系统
网络主要信息处理模式需要存储数据量增加数据作取竞争优势战略性资产其重要性增加目前发展趋势NASSAN现响应点NAS网络连接存储即存储设备通标准网络拓扑结构(例太网)连接群计算机重点于帮助工作组部门级机构解决迅速增加存储容量需求种两面改善数据用性第即使相应应用服务器再工作仍读数据第二简易服务器本身崩溃避免引起服务器崩溃首要原即应用软件引起问题另外NAS产品真即插即用产品其设备物理位置非灵
SAN(存储区域网络)通光纤通道连接群计算机该网络提供主机连接并非通标准网络拓扑并且通同物理通道支持广泛使用SCSIIP协议结构允许任何服务器连接任何存储阵列管数据置放哪服务器都直接存取所需数据SAN解决案基本功能剥离存储功能所运行备份操作需考虑网络总体性能影响案使管理及集控制实现简化特别于全部存储设备都集群起候
集群通用于加强应用软件用性与扩展性某些集群架构技术加入单系统印象概念单点单系统式管理台计算机集群服务器支持达百台互相连接服务器结合松散结合单位执行作业保护彼应用软件免于故障由于集群服务器完全整合应用软件服务架构建置高效应用软件执行环境即使整系统现故障终端计算机都使用几乎所应用软件集群服务器软件包括引擎、编译器、负载计算器、代理、指令与图形化系统管理接口等组件集群化运算环境优势卓越数据处理能力原则任何类型重主机架构存储设备包括直接连接磁盘都用作集群数据存储设备求系统用性适合使用拥重主机存取路径容错或高用性存储系统
层管理式解决存储容量断增导致何效扩充容量问题情况更用于布式网络环境级其实意味着用同介质实现存储RAID系统、光存储设备、磁带等每种存储设备都其同物理特性同价格例要备份候备份文件般存储速度相比较慢、容量相比较、价格相比较低存储设备磁带做经济实用何实现级呢原理讲级存储线系统迁移数据种文件由HSM系统选择进行迁移拷贝HSM介质文件确拷贝原文件相同名字标志文件创建占用比原文件磁盘空间用户访问标志文件HSM系统能原始文件确介质恢复级存储同实施式HSM根据两级或三级体系态迁移/迁数据类实现级存储
存储应用深入必带整体解决案需求仅包括硬件包括相应软件及服务软硬件兼容融合应用环境势所趋比存储虚拟化提证明趋势利于提高存储利用率、简化管理降低本构建融合存储应用环境总随着网络技术发展、计算机能力断提高数据量断膨胀数据备份与恢复等存储技术面问题显越越重要存储管理技术发展必引起业界高度重视
相关链接:前主流存储介质
磁盘阵列、磁带库
磁盘阵列特点数据存取速度特别快其主要功能提高网络数据用性及存储容量并数据选择性布磁盘提高系统数据吞吐率另外磁盘阵列能够免除单块硬盘故障所带灾难通较容量硬盘连智能控制器增加存储容量磁盘阵列种高效、快速、易用网络存储备份设备
广义磁带库产品包括自加载磁带机磁带库自加载磁带机磁带库实际磁带磁带机机结合组自加载磁带机位于单机磁带驱器自磁带更换装置装盘磁带磁带匣拾取磁带并放入驱器或执行相反程自加载磁带机能够支持例行备份程自每备份工作装载新磁带拥工作组服务器公司或理处使用自加载磁带机自完备份工作
磁带库像自加载磁带机基于磁带备份系统能够提供同基本自备份数据恢复功能同具更先进技术特点存储容量达数百PB(1PB=100万GB)实现连续备份、自搜索磁带驱管理软件控制实现智能恢复、实监控统计整数据存储备份程完全摆脱工干涉磁带库仅数据存储量且备份效率工占用面拥比拟优势网络系统磁带库通SAN(存储局域网络)系统形网络存储系统企业存储提供力保障容易完远程数据访问、数据存储备份或通磁带镜像技术实现磁带库备份疑数据仓库、ERP等型网络应用良存储设备
光盘塔、光盘库光盘网络镜像服务器
光盘仅存储容量巨且本低、制作简单、体积更重要其信息保存100至300光盘塔由几台或十几台CD-ROM驱器并联构通软件控制某台光驱读写操作光盘塔同支持几十几百用户访问信息光盘库叫自换盘机利用机械手机柜选张光盘送驱器进行读写库容量极机柜放几十片甚至百片光盘光盘库特点:安装简单、使用便并支持几乎所见网络操作系统及各种用通信协议
光盘网络镜像服务器仅具型光盘库超存储容量且具与硬盘相同访问速度其单位存储本(摊每张光盘设备本)低于光盘库光盘塔光盘网络镜像服务器已始取代光盘库光盘塔逐渐光盘网络共享设备主流产品

❼ 设计系统时,到底需要多大数据存储能力和实时处理能力 segmentfault

2013年,北大人民医院CDR上有281万患者的6000多万医嘱和1.9亿条医疗文书,另有30多个T的影像数据,这些都是结构化好的有质量的数据,能否称为大数据?近日,一位以前在方正任职的业内专家认为,医院内目前的数据并不能称之大数据。 那么到底医院的数据能否称为大数据?还是人们习惯性的使用了“大数据”这个词,于是问题的答案就不同了。下面是大数据以及医院内大数据的一些思考! 首先,我不同意北京人民医院xx关于“医院内没有大数据”的论断(虽然我不确定这是刘帆的观点),为什么没有?小到一只蚂蚁、一个病毒的信息,都可以是一个大数据(例如:蚂蚁的DNA信息、群体社会信息,个体识别信息等。病毒感染信息、传播信息、变异信息等),而每天人山人海拥挤得水泄不通的人民医院却没有大数据,这显然不对。所以,这句话可以也许理解为“人民医院内目前没有大数据应用”或者“人民医院目前收集的信息不能称为大数据”。文字上的歧义反映出的得是行业本身对大数据理解的混乱。 其次,“北大人民医院CDR上的数据称不上大数据”!导致这个结论的依据也许是来自“这些都是结构化好的有质量的数据”这个判断,言外之意就是说,大数据代表的是结构混乱、质量低下的数据,人民医院CDR中的有质量的数据不是大数据。 那么,什么才是结构化好的有质量的数据呢?比如我做一个LIS系统,我在内部显然要考虑我存储的数据结构清晰有效,同时也会考虑数据存储的质量(长期存储和再利用等)。如果我这个LIS接入到人民医院CDR中,LIS中的数和存储在CDR中的LIS数据是相同的结构吗?是相同的质量吗?由于结构变化等因素必然导致CDR中数据质量(至少在完整性上)低于原始数据。因此,CDR数据相对于原始数据有质量只能体现在它与其他数据的关系上,例如LIS与电子病历、与住院病案或RIS等的相互参照引用上。按照这个观点,实现CDR时,如果我们将进入的数据进行必要的处理,按照精心设计的数据结构存储、维护好数据间的逻辑关系,我们管理的数据无论多大,也是传统数据处理的范畴,与大数据无关。 对于以上问题的以及推演出的结论,与我个人对医疗大数据的思考存在一些差异,借着对这些问题的探讨,将个人观点表述出来,共大家参考。 首先,我认为数据质量和格式并不是区分是否大数据的标准。面对一组数据,数据质量的好坏相对于应用、工具以及分析方法是有不同评判标准的。例如,假设我们存储在CDR中的数据是XML格式,不管我们将该格式定义得多完美、存储的数据多万善,采用传统BI工具的开发人员都会认为这些数据是垃圾(真实场景),所谓吾之蜜糖、汝之毒药也。 其次,为什么要区分大数据或者非大数据呢?我们保存数据是因为这些数据存在对今后有再利用的价值。传统上,我们设计的信息系统时,在考虑存储信息的同时也会将利用信息的方式考虑进来,作为信息系统的一部分,这样实现的系统会对存储的内容提出各种要求,让存储符合应用需要。而符合某一系统需要的数据却很难符合其他应用的需要,这就导致所谓数据质量的低下。于是有人提出用CDR将各个系统数据抽取到CDR中,经过清洗、标准化等方式处理后,统一存储并加以利用,人民医院CDR也许就是这种思想的产物。如果对于这种CDR中存储的数据,我们不再有任何其他利用的需求,那么,我可以接受它不是大数据这个观点。然而,只要数据在这里,会不再利用吗?会没有新的、颠覆性的应用需要吗?今天我们习以为常的东西在昨天还不曾出现,明天的数据分析方式会受制于你今天设计的所谓优秀的数据结构吗?是不是大数据,与数据无关、与系统无关、与数据的生成方式无关。区分大数据和非大数据其实反映的是利用数据能力与方法。 大数据作为一个名词代表的内容及其丰富广泛,它既包含宏观层面的趋势、政策等内容,同时也包含具体的技术、方法以及观念的创新。行业内的讨论多集中在趋势、政策和对未来应用模式的憧憬上,很少就具体技术、实现、方法进行有深度的探讨,对业内有影响的案例缺乏又深度的分析,例如,围绕人民医院数据中心实现,在技术上有哪些成功的创造性方法?有哪些不足可以改进?甚至具体技术细节、遇到的问题等等。

❽ 海量空间数据存储

(一)空间数据存储技术

随着地理信息系统的发展,空间数据库技术也得到了很大的发展,并出现了很多新的空间数据库技术(黄钊等,2003),其中应用最广的就是用关系数据库管理系统(RDBMS)来管理空间数据。

用关系数据库管理系统来管理空间数据,主要解决存储在关系数据库中的空间数据与应用程序之间的数据接口问题,即空间数据库引擎(SpatialDatabase Engine)(熊丽华等,2004)。更确切地说,空间数据库技术是解决空间数据对象中几何属性在关系数据库中的存取问题,其主要任务是:

(1)用关系数据库存储管理空间数据;

(2)从数据库中读取空间数据,并转换为GIS应用程序能够接收和使用的格式;

(3)将GIS应用程序中的空间数据导入数据库,交给关系数据库管理。

空间数据库中数据存储主要有三种模式:拓扑关系数据存储模式、Oracle Spatial模式和ArcSDE模式。拓扑关系数据存储模式将空间数据存在文件中,而将属性数据存在数据库系统中,二者以一个关键字相连。这样分离存储的方式由于存在数据的管理和维护困难、数据访问速度慢、多用户数据并发共享冲突等问题而不适用于大型空间数据库的建设。而OracleSpatial实际上只是在原来的数据库模型上进行了空间数据模型的扩展,实现的是“点、线、面”等简单要素的存储和检索,所以它并不能存储数据之间复杂的拓扑关系,也不能建立一个空间几何网络。ArcSDE解决了这些问题,并利用空间索引机制来提高查询速度,利用长事务和版本机制来实现多用户同时操纵同一类型数据,利用特殊的表结构来实现空间数据和属性数据的无缝集成等(熊丽华等,2004)。

ArcSDE是ESRI公司开发的一个中间件产品,所谓中间件是一个软件,它允许应用元素通过网络连接进行互操作,屏蔽其下的通讯协议、系统结构、操作系统、数据库和其他应用服务。中间件位于客户机/服务器的操作系统之上,管理计算资源和网络通讯,并营造出一个相对稳定的高层应用环境,使开发人员可以集中精力于系统的上层开发,而不用过多考虑系统分布式环境下的移植性和通讯能力。因此,中间件能无缝地连入应用开发环境中,应用程序可以很容易地定位和共享中间件提供的应用逻辑和数据,易于系统集成。在分布式的网络环境下,客户端的应用程序如果要访问网络上某个服务器的信息,而服务器可能运行在不同于客户端的操作系统和数据库系统中。此时,客户机的应用程序中负责寻找数据的部分只需要访问一个数据访问中间件,由该中间件完成网络中数据或服务的查找,然后将查找的信息返回给客户端(万定生等,2003)。因此,本系统实现空间数据库存储的基本思想就是利用ArcSDE实现各类空间数据的存储。

目前,空间数据存储技术已比较成熟,出现了许多类似ArcSDE功能的中间件产品,这些软件基本上都能实现空间数据的数据库存储与管理,但对于海量空间数据的存储,各种软件性能差别较大。随着数据量的增长,计算机在分析处理上会产生很多问题,比如数据不可能一次完全被读入计算机的内存中进行处理。单纯依赖于硬件技术,并不能满足持续增长的数据的处理要求。因此需要在软件上找到处理海量数据的策略,并最终通过软硬件的结合完成对海量数据的处理。在海量数据存储问题上,许多专家从不同侧面进行过研究,Lindstrom在地形简化中使用了外存模型(Out-of-core)技术;钟正采用了基于数据分块、动态调用的策略;汪国平等人在研究使用高速网络进行三维海量地形数据的实时交互浏览中,采用了分块、多分辨率模板建立模型等方法。这些技术、方法已经在各自系统上进行了研究和实现。本系统采用的ArcSDE软件基本上也是采用分块模型的方法,具体存储和操作不需要用户过多了解,已经由ArcSDE软件实现。因此,对海量数据的存储管理,更需要从数据的组织方式等方面进行设计。塔里木河流域生态环境动态监测系统采集了大量的遥感影像、正射影像等栅格结构的数据,这些数据具有很大的数据量,为适应流域空间基础设施的管理需要,采取一种新的方式来管理、分发这些海量数据以适应各部门的快速浏览和管理需要。

(二)影像金字塔结构

影像数据库的组织是影像数据库效率的关键,为了获得高效率的存取速度,在数据的组织上使用了金字塔数据结构和网格分块数据结构。该技术主导思想如下:

(1)将数据库中使用到的纹理处理成为大小一致的纹理块;

(2)为每块纹理生成5个细节等级的纹理,分别为0、1、2、3、4,其中1级纹理通过0级纹理1/4压缩得到,2级纹理通过1级纹理1/4压缩得到,…,以此类推;

(3)在显示每个块数据之前,根据显示比例的大小,并以此决定该使用那一级的纹理;

(4)在内存中建立纹理缓冲池,使用LRU算法进行纹理块的调度,确保使用频率高的纹理调度次数尽可能少。

(三)影像数据压缩

影像数据压缩有无损压缩和有损压缩两个方法,具体采取哪种压缩方法需根据具体情况确定。对于像元值很重要的数据,如分类数据、分析数据等采用无损压缩(即LZ77算法),否则采用有损压缩(即JPEG算法)。通过对影像数据的压缩,一方面可以节约存储空间,另一方面可以加快影像的读取和显示速度。影像数据的压缩一般与构建金字塔同时进行,在构建影像金字塔过程中自动完成数据的压缩。

❾ 数据存储的三类简介

一、DAS(Direct Attached Storage)直接附加存储,DAS这种存储方式与我们普通的PC存储架构一样,外部存储设备都是直接挂接在服务器内部总线上,数据存储设备是整个服务器结构的一部分。
DAS存储方式主要适用以下环境:
(1)小型网络
因为网络规模较小,数据存储量小,且也不是很复杂,采用这种存储方式对服务器的影响不会很大。并且这种存储方式也十分经济,适合拥有小型网络的企业用户。
(2)地理位置分散的网络
虽然企业总体网络规模较大,但在地理分布上很分散,通过SAN或NAS在它们之间进行互联非常困难,此时各分支机构的服务器也可采用DAS存储方式,这样可以降低成本。
(3)特殊应用服务器
在一些特殊应用服务器上,如微软的集群服务器或某些数据库使用的原始分区,均要求存储设备直接连接到应用服务器。
(4)提高DAS存储性能
在服务器与存储的各种连接方式中,DAS曾被认为是一种低效率的结构,而且也不方便进行数据保护。直连存储无法共享,因此经常出现的情况是某台服务器的存储空间不足,而其他一些服务器却有大量的存储空间处于闲置状态却无法利用。如果存储不能共享,也就谈不上容量分配与使用需求之间的平衡。
DAS结构下的数据保护流程相对复杂,如果做网络备份,那么每台服务器都必须单独进行备份,而且所有的数据流都要通过网络传输。如果不做网络备份,那么就要为每台服务器都配一套备份软件和磁带设备,所以说备份流程的复杂度会大大增加。
想要拥有高可用性的DAS存储,就要首先能够降低解决方案的成本,例如:LSI的12Gb/s SAS,在它有DAS直联存储,通过DAS能够很好的为大型数据中心提供支持。对于大型的数据中心、云计算、存储和大数据,所有这一切都对DAS存储性能提出了更高的要求,云和企业数据中心数据的爆炸性增长也推动了市场对于可支持更高速数据访问的高性能存储接口的需求,因而LSI 12Gb/s SAS正好是能够满足这种性能增长的要求,它可以提供更高的IOPS和更高的吞吐能力,12Gb/s SAS提高了更高的写入的性能,并且提高了RAID的整个综合性能。
与直连存储架构相比,共享式的存储架构,比如SAN(storage-area network)或者NAS(network-attached storage)都可以较好的解决以上问题。于是乎我们看到DAS被淘汰的进程越来越快了。可是到2012年为止,DAS仍然是服务器与存储连接的一种常用的模式。事实上,DAS不但没有被淘汰,近几年似乎还有回潮的趋势。 二、NAS(Network Attached Storage)数据存储方式
NAS(网络附加存储)方式则全面改进了以前低效的DAS存储方式。它采用独立于服务器,单独为网络数据存储而开发的一种文件服务器来连接所存储设备,自形成一个网络。这样数据存储就不再是服务器的附属,而是作为独立网络节点而存在于网络之中,可由所有的网络用户共享。
NAS的优点:
(1)真正的即插即用
NAS是独立的存储节点存在于网络之中,与用户的操作系统平台无关,真正的即插即用。
(2)存储部署简单
NAS不依赖通用的操作系统,而是采用一个面向用户设计的,专门用于数据存储的简化操作系统,内置了与网络连接所需要的协议,因此使整个系统的管理和设置较为简单。
(3)存储设备位置非常灵活
(4)管理容易且成本低
NAS数据存储方式是基于现有的企业Ethernet而设计的,按照TCP/IP协议进行通信,以文件的I/O方式进行数据传输。
NAS的缺点:
(1)存储性能较低(2)可靠度不高 三、SAN(Storage Area Network)存储方式
1991年,IBM公司在S/390服务器中推出了ESCON(Enterprise System Connection)技术。它是基于光纤介质,最大传输速率达17MB/s的服务器访问存储器的一种连接方式。在此基础上,进一步推出了功能更强的ESCON Director(FC SWitch),构建了一套最原始的SAN系统。
SAN存储方式创造了存储的网络化。存储网络化顺应了计算机服务器体系结构网络化的趋势。SAN的支撑技术是光纤通道(FC Fiber Channel)技术。它是ANSI为网络和通道I/O接口建立的一个标准集成。FC技术支持HIPPI、IPI、SCSI、IP、ATM等多种高级协议,其最大特性是将网络和设备的通信协议与传输物理介质隔离开,这样多种协议可在同一个物理连接上同时传送。
SAN的硬件基础设施是光纤通道,用光纤通道构建的SAN由以下三个部分组成:
(1)存储和备份设备:包括磁带、磁盘和光盘库等。
(2)光纤通道网络连接部件:包括主机总线适配卡、驱动程序、光缆、集线器、交换机、光纤通道和SCSI间的桥接器
(3)应用和管理软件:包括备份软件、存储资源管理软件和存储设备管理软件。
SAN的优势:
(1)网络部署容易;
(2)高速存储性能。因为SAN采用了光纤通道技术,所以它具有更高的存储带宽,存储性能明显提高。SAn的光纤通道使用全双工串行通信原理传输数据,传输速率高达1062.5Mb/s。
(3)良好的扩展能力。由于SAN采用了网络结构,扩展能力更强。光纤接口提供了10公里的连接距离,这使得实现物理上分离,不在本地机房的存储变得非常容易。 DAS、NAS和SAN三种存储方式比较
存储应用最大的特点是没有标准的体系结构,这三种存储方式共存,互相补充,已经很好满足企业信息化应用。
从连接方式上对比,DAS采用了存储设备直接连接应用服务器,具有一定的灵活性和限制性;NAS通过网络(TCP/IP,ATM,FDDI)技术连接存储设备和应用服务器,存储设备位置灵活,随着万兆网的出现,传输速率有了很大的提高;SAN则是通过光纤通道(Fibre Channel)技术连接存储设备和应用服务器,具有很好的传输速率和扩展性能。三种存储方式各有优势,相互共存,占到了磁盘存储市场的70%以上。SAN和NAS产品的价格仍然远远高于DAS.许多用户出于价格因素考虑选择了低效率的直连存储而不是高效率的共享存储。
客观的说,SAN和NAS系统已经可以利用类似自动精简配置(thin provisioning)这样的技术来弥补早期存储分配不灵活的短板。然而,之前它们消耗了太多的时间来解决存储分配的问题,以至于给DAS留有足够的时间在数据中心领域站稳脚跟。此外,SAN和NAS依然问题多多,至今无法解决。

热点内容
c语言中的unsignedchar 发布:2024-09-22 13:11:12 浏览:167
最好的加密移动硬盘 发布:2024-09-22 12:35:58 浏览:156
c语言编程贪吃蛇 发布:2024-09-22 12:34:21 浏览:745
青椒云电脑什么配置 发布:2024-09-22 12:24:50 浏览:279
pythongbkunicode 发布:2024-09-22 12:24:06 浏览:992
空调压缩机保险在哪里 发布:2024-09-22 12:18:01 浏览:364
笔记本配置看哪些 发布:2024-09-22 12:06:41 浏览:857
魔兽地图脚本制作 发布:2024-09-22 12:04:48 浏览:800
算法衰减 发布:2024-09-22 11:58:42 浏览:50
抖音安卓机客服中心在哪里 发布:2024-09-22 11:58:40 浏览:358