当前位置:首页 » 存储配置 » 磁性随机存储器的优点

磁性随机存储器的优点

发布时间: 2022-05-01 07:04:43

存储器分类及各自特点有哪些

存储器分类依据不同的特性有多种分类方法。
(1)按工作性质/存取方式分类
•随机存取存储器 (RAM) -每个单元读写时间一样,且与各单元所在位置无关。如:内存。
•顺序存取存储器 (SAM) -数据按顺序从存储载体的始端读出或写入,因而存取时间的长短与信息所在位置有关。例如:磁带。
•直接存取存储器 (DAM) -直接定位到读写数据块,在读写数据块时按顺序进行。如磁盘。
•相联存储器 -按内容检索到存储位置进行读写。例如:快表。
(2)按存储介质分类
半导体存储器:双极型,静态MOS型,动态MOS型
磁表面存储器:磁盘、磁带
光存储器:CD,CD-ROM,DVD
(3)按信息的可更改性分类
读写存储器:可读可写
只读存储器:只能读不能写
(4)按断电后信息的可保存性分类
非易失(不挥发)性存储器:信息可一直保留, 不需电源维持。
易失(挥发)性存储器
(5)按功能/容量/速度/所在位置分类
•寄存器 -封装在CPU内,用于存放当前正在执行的指令和使用的数据 -用触发器实现,速度快,容量小(几~几十个)
•高速缓存-位于CPU内部或附近,用来存放当前要执行的局部程序段和数据 -用SRAM实现,速度可与CPU匹配,容量小(几MB)
•内存储器 -位于CPU之外,用来存放已被启动的程序及所用的数据 -用DRAM实现,速度较快,容量较大(几GB)
•外存储器-位于主机之外,用来存放暂不运行的程序、数据或存档文件 -用磁表面或光存储器实现,容量大而速度慢

Ⅱ 我的s1精英版rom变成了128Mram也是128M

晕,没必要,mram也是内存的一种!这种内存的质量很好!比一般的RAM好!下面是MRAM的一些介绍:
MRAM
MRAM(Magnetic Random Access Memory) 是一种非挥发性的磁性随机存储器。它拥有静态随机存储器(SRAM)的高速读取写入能力,以及动态随机存储器(DRAM)的高集成度,而且基本上可以无限次地重复写入。
MRAM用TMR磁性体单元存储数据
趋势要点:随着材料学的不断进步, 一种新的磁阻内存(MRAM)正在吸引人们的目光。尽管还只是在实验室存在,但是这种高速内存技术已经被视为DRAM内存的接班人,将会把“等待”这个词彻底从电脑用户的词典中去掉。
DRAM的局限性
你是否很久以来都认为开机之后看着Windows进度条一次次滚过,尔后登录、打开桌面这样的过程是理所当然?
之所以每次开机时操作系统都需要重新做一遍内存初始化的操作,是因为现在普遍使用的内存都采用的是动态随机存取技术(DRAM)的内存,像SDRAM、DDR和DDR II都属于这种内存。使用了DRAM技术的内存的一个重要特点就是它们属于挥发性内存(volatile memory),也就是说一旦断电,它里面的数据就会消失。换句话说,DRAM内存里面的数据之所以能够存在,实际上是依靠不断供电来刷新才得以保持的。
所以,操作系统在每次开机的时刻,总需要把一系列系统本身要使用的数据再次写入内存,这就是开机等待时间里操作系统完成的工作。对于DRAM内存来说,如果要免除这个过程,供内存刷新的电力是不能断的。所谓的休眠(sleep),实际上计算机还在继续耗电,只不过是比正常运行时少一些罢了。
然而,东芝集团近日在美国佛罗里达州的坦帕市(Tampa)却向公众展示了一种新型内存——磁阻内存(Magnetoresistive Random Access Memory,MRAM),它的出现将使得这种情况成为过去。
磁阻内存和DRAM内存采用了完全不同的原理。DRAM内存用以表示"0"和"1"的方式是判断电容器中的电量多少来进行的,它不仅需要保持通电,还需要周期性地给电容充电才能保证内容不丢。而磁阻内存的存储原理则完全不使用电容,它采用两块纳米级铁磁体,在界面上用一个非磁金属层或绝缘层来夹持一个金属导体的结构。通过改变两块铁磁体的方向,下面的导体的磁致电阻(magnetoresistance)就会发生变化。电阻一旦变大,通过它的电流就会变小,反之亦然。
因此,只需用一个三极管来判断加电时的电流数值就能够判断铁磁体磁场方向的两种不同状态来区分"0"和"1"了。由于铁磁体的磁性几乎是永远不消失的,因此磁阻内存几乎可以无限次地重写。而铁磁体的磁性也不会由于掉电而消失,所以它并不像一般的内存一样具有挥发性,而是能够在掉电以后继续保持其内容的。
磁阻内存的前世今生
磁阻内存的概念几乎是和磁盘记录技术同时被提出来的。但是众所周知,内存读写的速度需要达到磁盘读写的速度的100万倍,所以不能直接使用磁盘记录技术来生产内存。磁阻内存的设计看起来并不复杂,但是对材料的要求比较高。
磁致电阻现象虽然150年前就由英国科学家威廉?汤姆森(Williams Thomson)发现,但是对于一般的材料而言,它是比较微弱的一种效应。也就是说,由于磁场变化带来的电阻变化并不显着,在电阻变化小于40%的时候,用三极管很难判断出来本来就很微小的电流变化。
不过,最近的材料和工艺的进步使得该技术有了突破性的进展,1995年摩托罗拉公司(后来芯片部门独立成为菲思卡尔半导体)演示了第一个MRAM芯片,并生产出了1MB的芯片原型。
2007年,磁记录产业巨头IBM公司和TDK公司合作开发新一代MRAM,使用了一种称为自旋扭矩转换(spin-torque-transfer , STT)的新型技术,利用放大了的隧道效应(tunnel effect),使得磁致电阻的变化达到了1倍左右。而此次东芝展出的芯片也正是利用了STT技术,只是进一步地降低了芯片面积,在一枚邮票见方的芯片上做出了1GB内存,这也使得世界看到了磁阻内存的威力——它的记录密度是DRAM的成百上千倍,速度却所有现有的内存技术都要快。大密度、快访问、极省电、可复用和不易失是磁阻内存的五大优点,这使它在各个方面都大大超过了现有的甚至正在研发的存储技术——闪存太慢、SRAM和DRAM易挥发、铁电存储可重写次数有限、晶相存储不易控制温度……MRAM可以说是集各个技术的优点于一身的高质量产品。
目前,MRAM已经在通信、军事、数码产品上有了一定的应用。2008年,日本的SpriteSat卫星就宣布使用菲思卡尔半导体公司生产的MRAM替换其所有的闪存元件。预计在今后的一、两年里,它就能够实现量产,我们在打开计算机时,也就不再需要等待了。

Ⅲ 飞思卡尔mc9s12x中的RAM,FLASH,EEPROM的作用分别是什么

flash用于存放程序代码,eeprom的功能差不多,就是存储机制不一样而已,速度稍快,易擦写,多用于存放掉电不丢失的数据,ram数据掉电丢失,但是速度很快,用于存放程序运行时候的变量等,希望可以帮到你哦

Ⅳ 随机存储器的作用

随机存储器是与CPU直接交换数据的内部存储器,也叫主存(内存)。它可以随时读写,而且速度很快,通常作为操作系统或其他正在运行中的程序的临时数据存储媒介。

存储单元的内容可按需随意取出或存入,且存取的速度与存储单元的位置无关的存储器。这种存储器在断电时将丢失其存储内容,故主要用于存储短时间使用的程序。 

Ⅳ 什么是磁电子随机储存器

在当今电子和信息高新技术迅速发展的时代,各种磁电子管和电子计算机(电脑)的发展和应用是十分重要的。虽然有的磁电子管技术还处于探索研究和未来设想阶段,但从电控电子管晶体管到磁控电子管晶体管,从某种意义上说也是开辟了一个新的思路和新的领域。

从电子计算机发展的历程来看,也有相类似的情况。从20世纪40年代电子计算机出现和应用以来,电子计算机的研发工作已经有了很快很大的进步,先后经历了电子管计算机、晶体管计算机、集成电路计算机、大规模集成电路计算机及超大规模集成电路计算机等几代的发展,各方面都有了很多变化。例如,在数据和信息的存储方面,磁鼓、磁带和磁盘等磁记录设备一直是外存储装置。当然其磁记录介质和磁头材料、磁记录方式(如纵向记录和垂直记录)等都经历了多次的改进。内存储装置(也称随机存储器)也经历了多次改进,例如从磁芯存储器、磁膜存储器到半导体集成电路存储器,再到半导体大规模集成电路、半导体超大规模集成电路存储器,到今天的磁电子随机存储器的研发等。

什么是磁电子随机存储器?它具有什么特点呢?

磁电子随机存储器是目前尚处于初步探索研究的一类利用巨磁电阻效应的随机存储器。电阻式随机存储器是一个全新的概念,目前国际上的相关研究处于起步阶段,中国的研究工作也在逐步展开。目前提出的有多层膜型巨磁电阻随机存储器和磁隧穿型巨磁电阻随机存储器。数字信息的“1”或“0”是用巨磁电阻的高或低来表示的,而巨磁电阻的高低则由这巨磁电阻输出电压的高低来测量。

首先我们来认识多层膜型巨磁电阻存储器的一个存储单元。它由一个多层膜巨磁电阻单元及输入数字信息的写入线(层)和输出数字信息的读出线(层)构成。数字信息“1”或“0”是由存储单元的高电阻态或低电阻态来表现的,也就是由钉扎铁磁层与自由铁磁层中原子磁矩是互相反平行或平行状态所决定,而读出线(层)所读出的脉冲电压的高或低就表示“1”或“0”的数字信息。当然这不过是多层膜型巨磁电阻随机存储器一个存储单元的情况,由大量存储单元构成的随机存储器就更为复杂。

其次来认识磁隧穿型巨磁电阻的随机存储器的一个存储单元。它是由一个磁隧穿型巨磁电阻单元及输入数字信息的电流写入线和输出数字信息的读出线构成的。同多层膜型巨磁电阻存储单元的工作情况相似,数字信息“1”或“0”也是由存储单元的高电阻态或低电阻态来表示的,也是由绝缘层两边的铁磁层中原子磁矩是互相反平行或平行状态所决定,读出线(层)的输出电压的高或低就表示“1”或“0”的数字信息。它同多层膜型巨磁电阻存储单元的主要差别是两铁磁层之间的弱磁层是绝缘层,因而每个单元具有较高的电阻、较高的输出电压、较低的输出电流和较短的存取信息时间即较快的存取速度,存储信息密度则同多层膜型巨磁电阻随机存储器相似,但弱磁绝缘层的厚度极薄,存在均匀性和工作可靠性问题。这些优缺点是需要在未来的研究和应用中加以特别注意的。

初步实验结果表明,这种由巨磁电阻材料研制的磁电子随机存储器的结构较简单,成本较低廉,存储密度较高,存取数据时间较短,在工作电源去掉后仍能保持其所存储的数字信息(称为非易失性),抗强电磁辐射、抗粒子辐照和抗宇宙射线的能力都较强,因而具有许多优点。但是要使磁电子随机存储器从研究进入实际应用,也还有不少的问题需要解决,这也正是未来磁电子学面临的一个重大问题。

从以上的介绍可以看出,磁电子学虽仅是磁学中一个新诞生的部分,研究时间尚短,但是它所蕴含的内容却很丰富,已取得的应用也很多很重要,而研究和应用的前景更是十分广阔的。

Ⅵ 存储器有几种,分别有什么优点与缺点

软盘存储器,硬盘存储器,磁带存储器,光盘存储器,还有闪盘储存器

Ⅶ 只读存储器和随机存储器的主要特点

只读存储器的特点是用户只能读出不能随意写入信息,在主板上的ROM里面固化了一个基本输入/输出系统,称为BIOS(基本输入输出系统)。其主要作用是完成对系统的加电自检、系统中各功能模块的初始化、系统的基本输入/输出的驱动程序及引导操作系统。

随机储存器的特点是在储存器的数据被读取和斜入式,所需要的时间与这段信息所在的位置或所写入的位置无关。但随机储存器具有易失性,当电源关闭时RAM不能保留数据。

而且随机存储器对环境的静电荷极其的铭感,静电会干扰储存器内电容器的电荷,导致数据丢失,甚至是烧坏电路。随机存储器几乎是所有访问设备写入和读取速度最快的,并且现代的随机存取存储器以来电容器去存储数据。

(7)磁性随机存储器的优点扩展阅读:

只读存储器工作原理

地址译码器根据输入地址选择某条输出(称字线),由它再去驱动该字线的各位线,以便读出字线上各存储单元所储存的代码。

随机存储器的组成

RAM电路由地址译码器、存储矩阵和读写控制电路三部分组成。

存储矩阵由触发器排列而成,每个触发器能存储一位数据(0或1)。通常将每一组存储单元编为一个地址,存放一个“字”。

每个字的位数等于这一组单元的数目。存储器的容量以“字数×位数”表示。地址译码器将每个输入的地址代码译成高(或低)电平信号,从存储矩阵中选中一组单元,使之与读写控制电路接通。在读写控制信号的配合下,将数据读出或写入。

只读存储器种类

编程只读存储器

可编程只读存储器(英文:Programmable ROM,简称:PROM)一般可编程一次。PROM存储器出厂时各个存储单元皆为1,或皆为0。

用户使用时,再使用编程的方法使PROM存储所需要的数据。 PROM需要用电和光照的方法来编写与存放的程序和信息。但仅仅只能编写一次,第一次写入的信息就被永久性地保存起来。

ROM

只读内存(Read-Only Memory)是一种只能读取资料的内存。

在制造过程中,将资料以一特制光罩(mask)烧录于线路中,其资料内容在写入后就不能更改,所以有时又称为“光罩式只读内存”(mask ROM)。此内存的制造成本较低,常用于电脑中的开机启动。

Ⅷ 常见的非易失性存储器有哪几种

常见的非易失性存储器有以下几种:

一、可编程只读内存:PROM(Programmable read-only memory)

其内部有行列式的镕丝,可依用户(厂商)的需要,利用电流将其烧断,以写入所需的数据及程序,镕丝一经烧断便无法再恢复,亦即数据无法再更改。

二、电可擦可编程只读内存:EEPROM(Electrically erasable programmable read only memory)

电子抹除式可复写只读存储器(Electrically Erasable Programmable Read Only Memory,EEPROM)之运作原理类似EPROM,但是抹除的方式是使用高电场来完成,因此不需要透明窗。

三、可擦可编程只读内存:EPROM(Erasable programmable read only memory)

可利用高电压将数据编程写入,但抹除时需将线路曝光于紫外线下一段时间,数据始可被清空,再供重复使用。因此,在封装外壳上会预留一个石英玻璃所制的透明窗以便进行紫外线曝光。

四、电可改写只读内存:EAROM(Electrically alterable read only memory)

内部所用的芯片与写入原理同EPROM,但是为了节省成本,封装上不设置透明窗,因此编程写入之后就不能再抹除改写。

五、闪存:Flash memory

是一种电子式可清除程序化只读存储器的形式,允许在操作中被多次擦或写的存储器。这种科技主要用于一般性数据存储,以及在电脑与其他数字产品间交换传输数据,如储存卡与U盘。闪存是一种特殊的、以宏块抹写的EEPROM。早期的闪存进行一次抹除,就会清除掉整颗芯片上的数据。

Ⅸ 半导体存储器有几类,分别有什么特点

1、随机存储器

对于任意一个地址,以相同速度高速地、随机地读出和写入数据的存储器(写入速度和读出速度可以不同)。存储单元的内部结构一般是组成二维方矩阵形式,即一位一个地址的形式(如64k×1位)。但有时也有编排成便于多位输出的形式(如8k×8位)。

特点:这种存储器的特点是单元器件数量少,集成度高,应用最为广泛(见金属-氧化物-半导体动态随机存储器)。

2、只读存储器

用来存储长期固定的数据或信息,如各种函数表、字符和固定程序等。其单元只有一个二极管或三极管。一般规定,当器件接通时为“1”,断开时为“0”,反之亦可。若在设计只读存储器掩模版时,就将数据编写在掩模版图形中,光刻时便转移到硅芯片上。

特点:其优点是适合于大量生产。但是,整机在调试阶段,往往需要修改只读存储器的内容,比较费时、费事,很不灵活(见半导体只读存储器)。

3、串行存储器

它的单元排列成一维结构,犹如磁带。首尾部分的读取时间相隔很长,因为要按顺序通过整条磁带。半导体串行存储器中单元也是一维排列,数据按每列顺序读取,如移位寄存器和电荷耦合存储器等。

特点:砷化镓半导体存储器如1024位静态随机存储器的读取时间已达2毫秒,预计在超高速领域将有所发展。

(9)磁性随机存储器的优点扩展阅读:

半导体存储器优点

1、存储单元阵列和主要外围逻辑电路制作在同一个硅芯片上,输出和输入电平可以做到同片外的电路兼容和匹配。这可使计算机的运算和控制与存储两大部分之间的接口大为简化。

2、数据的存入和读取速度比磁性存储器约快三个数量级,可大大提高计算机运算速度。

3、利用大容量半导体存储器使存储体的体积和成本大大缩小和下降。

Ⅹ 存储器的分类及其各自的特点

存储器(Memory)是现代信息技术中用于保存信息的记忆设备。其概念很广,有很多层次,在数字系统中,只要能保存二进制数据的都可以是存储器;在集成电路中,一个没有实物形式的具有存储功能的电路也叫存储器,如RAM、FIFO等;在系统中,具有实物形式的存储设备也叫存储器,如内存条、TF卡等。计算机中全部信息,包括输入的原始数据、计算机程序、中间运行结果和最终运行结果都保存在存储器中。它根据控制器指定的位置存入和取出信息。有了存储器,计算机才有记忆功能,才能保证正常工作。计算机中的存储器按用途存储器可分为主存储器(内存)和辅助存储器(外存),也有分为外部存储器和内部存储器的分类方法。外存通常是磁性介质或光盘等,能长期保存信息。内存指主板上的存储部件,用来存放当前正在执行的数据和程序,但仅用于暂时存放程序和数据,关闭电源或断电,数据会丢失。
存储器的分类特点及其应用
在嵌入式系统中最常用的存储器类型分为三类:
1.随机存取的RAM;
2.只读的ROM;
3.介于两者之间的混合存储器
1.随机存储器(Random Access Memory,RAM)
RAM能够随时在任一地址读出或写入内容。 RAM的优点是读/写方便、使用灵活;
RAM的缺点是不能长期保存信息,一旦停电,所存信息就会丢失。 RAM用于二进制信息的临时存储或缓冲存储
2.只读存储器(Read-Only Memory,ROM)
ROM中存储的数据可以被任意读取,断电后,ROM中的数据仍保持不变,但不可以写入数据。
ROM在嵌入式系统中非常有用,常常用来存放系统软件(如ROM BIOS)、应用程序等不随时间改变的代码或数据。
ROM存储器按发展顺序可分为:掩膜ROM、可编程ROM(PROM)和可擦写可编程ROM(EPROM)。
3. 混合存储器
混合存储器既可以随意读写,又可以在断电后保持设备中的数据不变。混合存储设备可分为三种:
EEPROM NVRAM FLASH
(1)EEPROM
EEPROM是电可擦写可编程存储设备,与EPROM不同的是EEPROM是用电来实现数据的清除,而不是通过紫外线照射实现的。
EEPROM允许用户以字节为单位多次用电擦除和改写内容,而且可以直接在机内进行,不需要专用设备,方便灵活,常用作对数据、参数等经常修改又有掉电保护要求的数据存储器。
(2) NVRAM
NVRAM通常就是带有后备电池的SRAM。当电源接通的时候,NVRAM就像任何其他SRAM一样,但是当电源切断的时候,NVRAM从电池中获取足够的电力以保持其中现存的内容。
NVRAM在嵌入式系统中使用十分普遍,它最大的缺点是价格昂贵,因此,它的应用被限制于存储仅仅几百字节的系统关键信息。
(3)Flash
Flash(闪速存储器,简称闪存)是不需要Vpp电压信号的EEPROM,一个扇区的字节可以在瞬间(与单时钟周期比较是一个非常短的时间)擦除。
Flash比EEPROM优越的方面是,可以同时擦除许多字节,节省了每次写数据前擦除的时间,但一旦一个扇区被擦除,必须逐个字节地写进去,其写入时间很长。
存储器工作原理
这里只介绍动态存储器(DRAM)的工作原理。

工作原理
动态存储器每片只有一条输入数据线,而地址引脚只有8条。为了形成64K地址,必须在系统地址总线和芯片地址引线之间专门设计一个地址形成电路。使系统地址总线信号能分时地加到8个地址的引脚上,借助芯片内部的行锁存器、列锁存器和译码电路选定芯片内的存储单元,锁存信号也靠着外部地址电路产生。
当要从DRAM芯片中读出数据时,CPU首先将行地址加在A0-A7上,而后送出RAS锁存信号,该信号的下降沿将地址锁存在芯片内部。接着将列地址加到芯片的A0-A7上,再送CAS锁存信号,也是在信号的下降沿将列地址锁存在芯片内部。然后保持WE=1,则在CAS有效期间数据输出并保持。
当需要把数据写入芯片时,行列地址先后将RAS和CAS锁存在芯片内部,然后,WE有效,加上要写入的数据,则将该数据写入选中的存贮单元。

存储器芯片
由于电容不可能长期保持电荷不变,必须定时对动态存储电路的各存储单元执行重读操作,以保持电荷稳定,这个过程称为动态存储器刷新。PC/XT机中DRAM的刷新是利用DMA实现的。首先应用可编程定时器8253的计数器1,每隔1⒌12μs产生一次DMA请求,该请求加在DMA控制器的0通道上。当DMA控制器0通道的请求得到响应时,DMA控制器送出到刷新地址信号,对动态存储器执行读操作,每读一次刷新一行。

热点内容
如何做一个文件压缩包 发布:2025-01-21 10:17:45 浏览:184
压缩草坐垫 发布:2025-01-21 10:01:33 浏览:399
编译选项g 发布:2025-01-21 09:59:23 浏览:534
谷歌平板电脑无法登陆服务器 发布:2025-01-21 09:43:55 浏览:108
刀剑乱舞脚本ios 发布:2025-01-21 09:41:06 浏览:521
2编程 发布:2025-01-21 09:36:50 浏览:776
把我的世界的ice服务器炸了 发布:2025-01-21 09:31:01 浏览:681
sql数据库导入数据 发布:2025-01-21 09:25:21 浏览:420
zynqsdk修改编译选项 发布:2025-01-21 09:22:30 浏览:875
存储器部件教学实验 发布:2025-01-21 09:14:06 浏览:179