红黑树存储
‘壹’ epoll为什么这么快,epoll的实现原理
以一个生活中的例子来解释. 假设你在大学中读书,要等待一个朋友来访,而这个朋友只知道你在A号楼,但是不知道你具体住在哪里,于是你们约好了在A号楼门口见面. 如果你使用的阻塞IO模型来处理这个问题,那么你就只能一直守候在A号楼门口等待朋友的到来,在这段时间里你不能做别的事情,不难知道,这种方式的效率是低下的. 进一步解释select和epoll模型的差异. select版大妈做的是如下的事情:比如同学甲的朋友来了,select版大妈比较笨,她带着朋友挨个房间进行查询谁是同学甲,你等的朋友来了,于是在实际的代码中,select版大妈做的是以下的事情: int n = select(&readset,NULL,NULL,100); for (int i = 0; n > 0; ++i) { if (FD_ISSET(fdarray[i], &readset)) { do_something(fdarray[i]); --n; } }epoll版大妈就比较先进了,她记下了同学甲的信息,比如说他的房间号,那么等同学甲的朋友到来时,只需要告诉该朋友同学甲在哪个房间即可,不用自己亲自带着人满大楼的找人了.于是epoll版大妈做的事情可以用如下的代码表示: n = epoll_wait(epfd,events,20,500); for(i=0;i<n;++i) { do_something(events[n]); } 在epoll中,关键的数据结构epoll_event定义如下: typedef union epoll_data { void *ptr; int fd; __uint32_t u32; __uint64_t u64; } epoll_data_t; struct epoll_event { __uint32_t events; /* Epoll events */ epoll_data_t data; /* User data variable */ }; 可以看到,epoll_data是一个union结构体,它就是epoll版大妈用于保存同学信息的结构体,它可以保存很多类型的信息:fd,指针,等等.有了这个结构体,epoll大妈可以不用吹灰之力就可以定位到同学甲. 别小看了这些效率的提高,在一个大规模并发的服务器中,轮询IO是最耗时间的操作之一.再回到那个例子中,如果每到来一个朋友楼管大妈都要全楼的查询同学,那么处理的效率必然就低下了,过不久楼底就有不少的人了. 对比最早给出的阻塞IO的处理模型, 可以看到采用了多路复用IO之后, 程序可以自由的进行自己除了IO操作之外的工作, 只有到IO状态发生变化的时候由多路复用IO进行通知, 然后再采取相应的操作, 而不用一直阻塞等待IO状态发生变化了. 从上面的分析也可以看出,epoll比select的提高实际上是一个用空间换时间思想的具体应用. 二、深入理解epoll的实现原理:开发高性能网络程序时,windows开发者们言必称iocp,linux开发者们则言必称epoll。大家都明白epoll是一种IO多路复用技术,可以非常高效的处理数以百万计的socket句柄,比起以前的select和poll效率高大发了。我们用起epoll来都感觉挺爽,确实快,那么,它到底为什么可以高速处理这么多并发连接呢? 先简单回顾下如何使用C库封装的3个epoll系统调用吧。int epoll_create(int size); int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event); int epoll_wait(int epfd, struct epoll_event *events,int maxevents, int timeout); 使用起来很清晰,首先要调用epoll_create建立一个epoll对象。参数size是内核保证能够正确处理的最大句柄数,多于这个最大数时内核可不保证效果。 epoll_ctl可以操作上面建立的epoll,例如,将刚建立的socket加入到epoll中让其监控,或者把 epoll正在监控的某个socket句柄移出epoll,不再监控它等等。 epoll_wait在调用时,在给定的timeout时间内,当在监控的所有句柄中有事件发生时,就返回用户态的进程。 从上面的调用方式就可以看到epoll比select/poll的优越之处:因为后者每次调用时都要传递你所要监控的所有socket给select/poll系统调用,这意味着需要将用户态的socket列表到内核态,如果以万计的句柄会导致每次都要几十几百KB的内存到内核态,非常低效。而我们调用epoll_wait时就相当于以往调用select/poll,但是这时却不用传递socket句柄给内核,因为内核已经在epoll_ctl中拿到了要监控的句柄列表。 所以,实际上在你调用epoll_create后,内核就已经在内核态开始准备帮你存储要监控的句柄了,每次调用epoll_ctl只是在往内核的数据结构里塞入新的socket句柄。 在内核里,一切皆文件。所以,epoll向内核注册了一个文件系统,用于存储上述的被监控socket。当你调用epoll_create时,就会在这个虚拟的epoll文件系统里创建一个file结点。当然这个file不是普通文件,它只服务于epoll。epoll在被内核初始化时(操作系统启动),同时会开辟出epoll自己的内核高速cache区,用于安置每一个我们想监控的socket,这些socket会以红黑树的形式保存在内核cache里,以支持快速的查找、插入、删除。这个内核高速cache区,就是建立连续的物理内存页,然后在之上建立slab层,简单的说,就是物理上分配好你想要的size的内存对象,每次使用时都是使用空闲的已分配好的对象。static int __init eventpoll_init(void) { ... ... /* Allocates slab cache used to allocate "struct epitem" items */ epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 0, SLAB_HWCACHE_ALIGN|EPI_SLAB_DEBUG|SLAB_PANIC, NULL, NULL); /* Allocates slab cache used to allocate "struct eppoll_entry" */ pwq_cache = kmem_cache_create("eventpoll_pwq", sizeof(struct eppoll_entry), 0, EPI_SLAB_DEBUG|SLAB_PANIC, NULL, NULL); ... ... epoll的高效就在于,当我们调用epoll_ctl往里塞入百万个句柄时,epoll_wait仍然可以飞快的返回,并有效的将发生事件的句柄给我们用户。这是由于我们在调用epoll_create时,内核除了帮我们在epoll文件系统里建了个file结点,在内核cache里建了个红黑树用于存储以后epoll_ctl传来的socket外,还会再建立一个list链表,用于存储准备就绪的事件,当epoll_wait调用时,仅仅观察这个list链表里有没有数据即可。有数据就返回,没有数据就sleep,等到timeout时间到后即使链表没数据也返回。所以,epoll_wait非常高效。 那么,这个准备就绪list链表是怎么维护的呢?当我们执行epoll_ctl时,除了把socket放到epoll文件系统里file对象对应的红黑树上之外,还会给内核中断处理程序注册一个回调函数,告诉内核,如果这个句柄的中断到了,就把它放到准备就绪list链表里。所以,当一个socket上有数据到了,内核在把网卡上的数据到内核中后就来把socket插入到准备就绪链表里了。 如此,一颗红黑树,一张准备就绪句柄链表,少量的内核cache,就帮我们解决了大并发下的socket处理问题。执行epoll_create时,创建了红黑树和就绪链表,执行epoll_ctl时,如果增加socket句柄,则检查在红黑树中是否存在,存在立即返回,不存在则添加到树干上,然后向内核注册回调函数,用于当中断事件来临时向准备就绪链表中插入数据。执行epoll_wait时立刻返回准备就绪链表里的数据即可。 最后看看epoll独有的两种模式LT和ET。无论是LT和ET模式,都适用于以上所说的流程。区别是,LT模式下,只要一个句柄上的事件一次没有处理完,会在以后调用epoll_wait时次次返回这个句柄,而ET模式仅在第一次返回。 这件事怎么做到的呢?当一个socket句柄上有事件时,内核会把该句柄插入上面所说的准备就绪list链表,这时我们调用epoll_wait,会把准备就绪的socket拷贝到用户态内存,然后清空准备就绪list链表,最后,epoll_wait干了件事,就是检查这些socket,如果不是ET模式(就是LT模式的句柄了),并且这些socket上确实有未处理的事件时,又把该句柄放回到刚刚清空的准备就绪链表了。所以,非ET的句柄,只要它上面还有事件,epoll_wait每次都会返回。而ET模式的句柄,除非有新中断到,即使socket上的事件没有处理完,也是不会次次从epoll_wait返回的。三、扩展阅读(epoll与之前其他相关技术的比较): Linux提供了select、poll、epoll接口来实现IO复用,三者的原型如下所示,本文从参数、实现、性能等方面对三者进行对比。 int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout); int poll(struct pollfd *fds, nfds_t nfds, int timeout); int epoll_wait(int epfd, struct epoll_event *events, int maxevents, int timeout); select、poll、epoll_wait参数及实现对比 1. select的第一个参数nfds为fdset集合中最大描述符值加1,fdset是一个位数组,其大小限制为__FD_SETSIZE(1024),位数组的每一位代表其对应的描述符是否需要被检查。 select的第二三四个参数表示需要关注读、写、错误事件的文件描述符位数组,这些参数既是输入参数也是输出参数,可能会被内核修改用于标示哪些描述符上发生了关注的事件。所以每次调用select前都需要重新初始化fdset。 timeout参数为超时时间,该结构会被内核修改,其值为超时剩余的时间。 select对应于内核中的sys_select调用,sys_select首先将第二三四个参数指向的fd_set拷贝到内核,然后对每个被SET的描述符调用进行poll,并记录在临时结果中(fdset),如果有事件发生,select会将临时结果写到用户空间并返回;当轮询一遍后没有任何事件发生时,如果指定了超时时间,则select会睡眠到超时,睡眠结束后再进行一次轮询,并将临时结果写到用户空间,然后返回。 select返回后,需要逐一检查关注的描述符是否被SET(事件是否发生)。 2. poll与select不同,通过一个pollfd数组向内核传递需要关注的事件,故没有描述符个数的限制,pollfd中的events字段和revents分别用于标示关注的事件和发生的事件,故pollfd数组只需要被初始化一次。 poll的实现机制与select类似,其对应内核中的sys_poll,只不过poll向内核传递pollfd数组,然后对pollfd中的每个描述符进行poll,相比处理fdset来说,poll效率更高。 poll返回后,需要对pollfd中的每个元素检查其revents值,来得指事件是否发生。 3. epoll通过epoll_create创建一个用于epoll轮询的描述符,通过epoll_ctl添加/修改/删除事件,通过epoll_wait检查事件,epoll_wait的第二个参数用于存放结果。 epoll与select、poll不同,首先,其不用每次调用都向内核拷贝事件描述信息,在第一次调用后,事件信息就会与对应的epoll描述符关联起来。另外epoll不是通过轮询,而是通过在等待的描述符上注册回调函数,当事件发生时,回调函数负责把发生的事件存储在就绪事件链表中,最后写到用户空间。
‘贰’ 红黑树的术语
红黑树是一种特定类型的二叉树,它是在计算机科学中用来组织数据比如数字的块的一种结构。所有数据块都存储在节点中。这些节点中的某一个节点总是担当起始位置的功能,它不是任何节点的儿子,我们称之为根节点或根。它有最多两个儿子,都是它连接到的其他节点。所有这些儿子都可以有自己的儿子,以此类推。这样根节点就有了把它连接到在树中任何其他节点的路径。
如果一个节点没有儿子,我们称之为叶子节点,因为在直觉上它是在树的边缘上。子树是从特定节点可以延伸到的树的某一部分,其自身被当作一个树。在红黑树中,叶子被假定为 null 或空。
由于红黑树也是二叉查找树,它们当中每一个节点的比较值都必须大于或等于在它的左子树中的所有节点,并且小于或等于在它的右子树中的所有节点。这确保红黑树运作时能够快速的在树中查找给定的值。
‘叁’ 红黑树和平衡二叉树 区别
红黑树和平衡二叉树的主要区别如下:
平衡二叉树(AVL)树是严格的平衡二叉树,平衡条件必须满足(所有节点的左右子树高度差不超过1)。不管我们是执行插入还是删除操作,只要不满足上面的条件,就要通过旋转来保持平衡,而的英文旋转非常耗时的。所以平衡二叉树(AVL)适合用于插入与删除次数比较少,但查找多的情况。
红黑树在二叉查找树的基础上增加了着色和相关的性质使得红黑树相对平衡,从而保证了红黑树的查找、插入、删除的时间复杂度最坏为O(log
n)。所以红黑树适用于搜索,插入,删除操作较多的情况。
(3)红黑树存储扩展阅读:
平衡二叉树在Windows
NT内核中广泛存在。
红黑树的应用:
1、在C
++的STL中,地图和集都是用红黑树实现的;
2、着名的Linux的的进程调度完全公平调度程序,用红黑树管理进程控制块,进程的虚拟内存区域都存储在一颗红黑树上,每个虚拟地址区域都对应红黑树的一个节点,左指针指向相邻的地址虚拟存储区域,右指针指向相邻的高地址虚拟地址空间;
3、IO多路复用的epoll的的的实现采用红黑树组织管理的sockfd,以支持快速的增删改查;
4、Nginx的的的中用红黑树管理定时器,因为红黑树是有序的,可以很快的得到距离当前最小的定时器;
5、java中的TreeMap中的实现。
参考资料:
网络-平衡二叉树
网络-红黑树
‘肆’ 红黑树的用途
红黑树用在关联数组、字典的实现上。需要的空间比散列表小。 任何键值对应,需要随机存储和键有序的情况都可以用。
‘伍’ STL的map为什么用红黑树而不是哈希
用红黑树虽然速度可能会略逊于哈希,但是整体来说,应该更节省内存。
速度我们不说,肯定慢很多.
省内存,我们来分析一下.
一个红黑树的节点,有左右节点指针,和父节点指针,这就是三个指针的大小+value_type的大小;
unordered_map呢,开放地址法,就value_type,如果是开链法,那就是prev指针和next指针,俩指针+value_type
也就是说,当你的value_type越小,红黑树越浪费内存.
而hash table呢,主要是填充因子,比如0.5的填充因子,那么那些桶是要浪费一些内存的.
‘陆’ hash table 和 red black tree有什么不同点
hash table就是哈希表
一般的线性表、树中,记录在结构中的相对位置是随机的即和记录的关键字之间不存在确定的关系,在结构中查找记录时需进行一系列和关键字的比较。这一类查找方法建立在“比较”的基础上,查找的效率与比较次数密切相关。理想的情况是能直接找到需要的记录,因此必须在记录的存储位置和它的关键字之间建立一确定的对应关系f,使每个关键字和结构中一个唯一的存储位置相对应。因而查找时,只需根据这个对应关系f找到给定值K的像f(K)。若结构中存在关键字和K相等的记录,则必定在f(K)的存储位置上,由此不需要进行比较便可直接取得所查记录。在此,称这个对应关系f为哈希函数,按这个思想建立的表为哈希表(又称为杂凑法或散列表)。
http://ke..com/view/329976.htm
red black tree就是红黑树
红黑树是一种自平衡二叉查找树,是在计算机科学中用到的一种数据结构,典型的用途是实现关联数组。它是在1972年由Rudolf Bayer发明的,他称之为"对称二叉B树",它现代的名字是在 Leo J. Guibas 和 Robert Sedgewick 于1978年写的一篇论文中获得的。它是复杂的,但它的操作有着良好的最坏情况运行时间,并且在实践中是高效的: 它可以在O(log n)时间内做查找,插入和删除,这里的n 是树中元素的数目。
红黑树是一种很有意思的平衡检索树。它的统计性能要好于平衡二叉树(有些书籍根据作者姓名,Adelson-Velskii和Landis,将其称为AVL-树),因此,红黑树在很多地方都有应用。在C++ STL中,很多部分(目前包括set, multiset, map, multimap)应用了红黑树的变体(SGI STL中的红黑树有一些变化,这些修改提供了更好的性能,以及对set操作的支持)。
http://ke..com/view/133754.htm
‘柒’ 为什么像map,set都用红黑树来实现
STL中List,Vector,Map,Set的理解2009年07月11日 星期六 21:27List封装了链表,Vector封装了数组, list和vector得最主要的区别在于vector使用连续内存存储的,他支持[]运算符,而list是以链表形式实现的,不支持[]。Vector对于随机访问的速度很快,但是对于插入尤其是在头部插入元素速度很慢,在尾部插入速度很快。List对于随机访问速度慢得多,因为可能要遍历整个链表才能做到,但是对于插入就快的多了,不需要拷贝和移动数据,只需要改变指针的指向就可以了。另外对于新添加的元素,Vector有一套算法,而List可以任意加入。Map,Set属于标准关联容器,使用了非常高效的平衡检索二叉树:红黑树,他的插入删除效率比其他序列容器高是因为不需要做内存拷贝和内存移动,而直接替换指向节点的指针即可。Set和Vector的区别在于Set不包含重复的数据。Set和Map的区别在于Set只含有Key,而Map有一个Key和Key所对应的Value两个元素。Map和Hash_Map的区别是Hash_Map使用了Hash算法来加快查找过程,但是需要更多的内存来存放这些Hash桶元素,因此可以算得上是采用空间来换取时间策略。
‘捌’ java中哪些数据结构使用了红黑树
参考资料的网页上有比较的代码,你可以仔细看下~~~
java中HashMap,LinkedHashMap,TreeMap,HashTable的区别
java为数据结构中的映射定义了一个接口java.util.Map;它有四个实现类,分别是HashMap Hashtable LinkedHashMap 和TreeMap
Map主要用于存储健值对,根据键得到值,因此不允许键重复(重复了覆盖了),但允许值重复。
Hashmap 是一个最常用的Map,它根据键的HashCode 值存储数据,根据键可以直接获取它的值,具有很快的访问速度,遍历时,取得数据的顺序是完全随机的。HashMap最多只允许一条记录的键为Null;允许多条记录的值为 Null;HashMap不支持线程的同步,即任一时刻可以有多个线程同时写HashMap;可能会导致数据的不一致。如果需要同步,可以用 Collections的synchronizedMap方法使HashMap具有同步的能力,或者使用ConcurrentHashMap。
Hashtable与 HashMap类似,它继承自Dictionary类,不同的是:它不允许记录的键或者值为空;它支持线程的同步,即任一时刻只有一个线程能写Hashtable,因此也导致了 Hashtable在写入时会比较慢。
LinkedHashMap保存了记录的插入顺序,在用Iterator遍历LinkedHashMap时,先得到的记录肯定是先插入的.也可以在构造时用带参数,按照应用次数排序。在遍历的时候会比HashMap慢,不过有种情况例外,当HashMap容量很大,实际数据较少时,遍历起来可能会比LinkedHashMap慢,因为LinkedHashMap的遍历速度只和实际数据有关,和容量无关,而HashMap的遍历速度和他的容量有关。
TreeMap实现SortMap接口,能够把它保存的记录根据键排序,默认是按键值的升序排序,也可以指定排序的比较器,当用Iterator 遍历TreeMap时,得到的记录是排过序的。
一般情况下,我们用的最多的是HashMap,HashMap里面存入的键值对在取出的时候是随机的,它根据键的HashCode值存储数据,根据键可以直接获取它的值,具有很快的访问速度。在Map 中插入、删除和定位元素,HashMap 是最好的选择。
TreeMap取出来的是排序后的键值对。但如果您要按自然顺序或自定义顺序遍历键,那么TreeMap会更好。
LinkedHashMap 是HashMap的一个子类,如果需要输出的顺序和输入的相同,那么用LinkedHashMap可以实现,它还可以按读取顺序来排列,像连接池中可以应用。
‘玖’ 红黑树,b+树分别用于什么场景,为什么
红黑树属于“黑平衡”的二叉树,虽然牺牲了一定的平衡性,但是add、remove操作要由优于AVL树也就是说RB-Tree的“统计性能”更佳!Java中TreeSet,TreeMap的底层都是基于RedBlackTree红黑树的;
B+树主要用在文件系统以及数据库做索引。比如磁盘存储、文件系统、MySQL数据库