海量数据存储解决方案
Ⅰ 海量数据存储有哪些方式与方法
1、容量可线性扩展,单名字空间达EB级,2、海量小文件存储,百亿级文件高效访问,3、中心灵活部署,容灾汇聚分发更便捷,4、支持大数据和AI,统一数据存储和分析,你可以问下瑞驰信息技术,做数据存储很专 业,技术很牛的。希望我的回答能解决到你的问题
Ⅱ 有冷数据存储海量数据存储解决方案吗
目前市场上主流的海量数据存储解决方案当然是云存储解决方案啦!我知道一家公司瑞驰信息技术很专业,你可以咨询下看有没有适合你的方案
Ⅲ 使用比较多的大数据分析解决方案有哪些
极其流行,同样也是竞争力极其大的一种商业模式。虽然国内软件开发公司都发展壮大起来了,但是各地软件开发公司的实力及资质仍然参差不齐。下面为大家介绍下近期国内软件开发公司的排名汇总。
1:华盛恒辉科技有限公司
上榜理由:华盛恒辉是一家专注于高端软件定制开发服务和高端建设的服务机构,致力于为企业提供全面、系统的开发制作方案。在开发、建设到运营推广领域拥有丰富经验,我们通过建立对目标客户和用户行为的分析,整合高质量设计和极其新技术,为您打造创意十足、有价值的企业品牌。
在军工领域,合作客户包括:中央军委联合参谋(原总参)、中央军委后勤保障部(原总后)、中央军委装备发展部(原总装)、装备研究所、战略支援、军事科学院、研究所、航天科工集团、中国航天科技集团、中国船舶工业集团、中国船舶重工集团、第一研究所、训练器材所、装备技术研究所等单位。
在民用领域,公司大力拓展民用市场,目前合作的客户包括中国中铁电气化局集团、中国铁道科学研究院、济南机务段、东莞轨道交通公司、京港地铁、中国国电集团、电力科学研究院、水利部、国家发改委、中信银行、华为公司等大型客户。
2:五木恒润科技有限公司
上榜理由:五木恒润拥有员工300多人,技术人员占90%以上,是一家专业的军工信息化建设服务单位,为军工单位提供完整的信息化解决方案。公司设有股东会、董事会、监事会、工会等上层机构,同时设置总经理职位,由总经理管理公司的具体事务。公司下设有研发部、质量部、市场部、财务部、人事部等机构。公司下辖成都研发中心、西安研发中心、沈阳办事处、天津办事处等分支机构。
3、浪潮
浪潮集团有限公司是国家首批认定的规划布局内的重点软件企业,中国着名的企业管理软件、分行业ERP及服务供应商,在咨询服务、IT规划、软件及解决方案等方面具有强大的优势,形成了以浪潮ERP系列产品PS、GS、GSP三大主要产品。是目前中国高端企业管理软件领跑者、中国企业管理软件技术领先者、中国最大的行业ERP与集团管理软件供应商、国内服务满意度最高的管理软件企业。
4、德格Dagle
德格智能SaaS软件管理系统自德国工业4.0,并且结合国内工厂行业现状而打造的一款工厂智能化信息平台管理软件,具备工厂ERP管理、SCRM客户关系管理、BPM业务流程管理、
OMS订单管理等四大企业业务信息系统,不仅满足企业对生产进行简易管理的需求,并突破局域网应用的局限性,同时使数据管理延伸到互联网与移动商务,不论是内部的管理应用还是外部的移动应用,都可以在智能SaaS软件管理系统中进行业务流程的管控。
5、Manage
高亚的产品 (8Manage) 是美国经验中国研发的企业管理软件,整个系统架构基于移动互联网和一体化管理设计而成,其源代码编写采用的是最为广泛应用的
Java / J2EE 开发语言,这样的技术优势使 8Manage
可灵活地按需进行客制化,并且非常适用于移动互联网的业务直通式处理,让用户可以随时随地通过手机apps进行实时沟通与交易。
Ⅳ 海量数据存储有哪些方式与方法
杉岩海量对象存储MOS,针对海量非结构化数据存储的最优化解决方案,采用去中心化、分布式技术架构,支持百亿级文件及EB级容量存储,
具备高效的数据检索、智能化标签和分析能力,轻松应对大数据和云时代的存储挑战,为企业发展提供智能决策。
1、容量可线性扩展,单名字空间达EB级
SandStone MOS可在单一名字空间下实现海量数据存储,支持业务无感知的存储服务器横向扩容,为爆炸式增长的视频、音频、图片、文档等不同类型的非结构化数据提供完美的存储方案,规避传统NAS存储的单一目录或文件系统存储空间无法弹性扩展难题
2、海量小文件存储,百亿级文件高效访问
SandStone MOS基于完全分布式的数据和元数据存储架构,为海量小文件存储而生,将企业级NAS存储的千万文件量级提升至互联网规模的百亿级别,帮助企业从容应对几何级增长的海量小文件挑战。
3、中心灵活部署,容灾汇聚分发更便捷
SandStone MOS支持多数据中心灵活部署,为企业数据容灾、容灾自动切换、多分支机构、数据就近访问等场景提供可自定义的灵活解决方案,帮助企业实现跨地域多活容灾、数据流转、就近读写等,助力业务高速发展。
4、支持大数据和AI,统一数据存储和分析
SandStone MOS内置文件智能化处理引擎,实现包括语音识别、图片OCR识别、文件格式转换等批量处理功能,结合标签检索能力还可实现语音、证件照片检索,从而帮助企业更好地管理非结构化数据。同时,SandStone MOS还支持与Hadoop、Spark等大数据分析平台对接,一套存储即可满足企业数据存储、管理和挖掘的需求。
Ⅳ 海量空间数据存储
(一)空间数据存储技术
随着地理信息系统的发展,空间数据库技术也得到了很大的发展,并出现了很多新的空间数据库技术(黄钊等,2003),其中应用最广的就是用关系数据库管理系统(RDBMS)来管理空间数据。
用关系数据库管理系统来管理空间数据,主要解决存储在关系数据库中的空间数据与应用程序之间的数据接口问题,即空间数据库引擎(SpatialDatabase Engine)(熊丽华等,2004)。更确切地说,空间数据库技术是解决空间数据对象中几何属性在关系数据库中的存取问题,其主要任务是:
(1)用关系数据库存储管理空间数据;
(2)从数据库中读取空间数据,并转换为GIS应用程序能够接收和使用的格式;
(3)将GIS应用程序中的空间数据导入数据库,交给关系数据库管理。
空间数据库中数据存储主要有三种模式:拓扑关系数据存储模式、Oracle Spatial模式和ArcSDE模式。拓扑关系数据存储模式将空间数据存在文件中,而将属性数据存在数据库系统中,二者以一个关键字相连。这样分离存储的方式由于存在数据的管理和维护困难、数据访问速度慢、多用户数据并发共享冲突等问题而不适用于大型空间数据库的建设。而OracleSpatial实际上只是在原来的数据库模型上进行了空间数据模型的扩展,实现的是“点、线、面”等简单要素的存储和检索,所以它并不能存储数据之间复杂的拓扑关系,也不能建立一个空间几何网络。ArcSDE解决了这些问题,并利用空间索引机制来提高查询速度,利用长事务和版本机制来实现多用户同时操纵同一类型数据,利用特殊的表结构来实现空间数据和属性数据的无缝集成等(熊丽华等,2004)。
ArcSDE是ESRI公司开发的一个中间件产品,所谓中间件是一个软件,它允许应用元素通过网络连接进行互操作,屏蔽其下的通讯协议、系统结构、操作系统、数据库和其他应用服务。中间件位于客户机/服务器的操作系统之上,管理计算资源和网络通讯,并营造出一个相对稳定的高层应用环境,使开发人员可以集中精力于系统的上层开发,而不用过多考虑系统分布式环境下的移植性和通讯能力。因此,中间件能无缝地连入应用开发环境中,应用程序可以很容易地定位和共享中间件提供的应用逻辑和数据,易于系统集成。在分布式的网络环境下,客户端的应用程序如果要访问网络上某个服务器的信息,而服务器可能运行在不同于客户端的操作系统和数据库系统中。此时,客户机的应用程序中负责寻找数据的部分只需要访问一个数据访问中间件,由该中间件完成网络中数据或服务的查找,然后将查找的信息返回给客户端(万定生等,2003)。因此,本系统实现空间数据库存储的基本思想就是利用ArcSDE实现各类空间数据的存储。
目前,空间数据存储技术已比较成熟,出现了许多类似ArcSDE功能的中间件产品,这些软件基本上都能实现空间数据的数据库存储与管理,但对于海量空间数据的存储,各种软件性能差别较大。随着数据量的增长,计算机在分析处理上会产生很多问题,比如数据不可能一次完全被读入计算机的内存中进行处理。单纯依赖于硬件技术,并不能满足持续增长的数据的处理要求。因此需要在软件上找到处理海量数据的策略,并最终通过软硬件的结合完成对海量数据的处理。在海量数据存储问题上,许多专家从不同侧面进行过研究,Lindstrom在地形简化中使用了外存模型(Out-of-core)技术;钟正采用了基于数据分块、动态调用的策略;汪国平等人在研究使用高速网络进行三维海量地形数据的实时交互浏览中,采用了分块、多分辨率模板建立模型等方法。这些技术、方法已经在各自系统上进行了研究和实现。本系统采用的ArcSDE软件基本上也是采用分块模型的方法,具体存储和操作不需要用户过多了解,已经由ArcSDE软件实现。因此,对海量数据的存储管理,更需要从数据的组织方式等方面进行设计。塔里木河流域生态环境动态监测系统采集了大量的遥感影像、正射影像等栅格结构的数据,这些数据具有很大的数据量,为适应流域空间基础设施的管理需要,采取一种新的方式来管理、分发这些海量数据以适应各部门的快速浏览和管理需要。
(二)影像金字塔结构
影像数据库的组织是影像数据库效率的关键,为了获得高效率的存取速度,在数据的组织上使用了金字塔数据结构和网格分块数据结构。该技术主导思想如下:
(1)将数据库中使用到的纹理处理成为大小一致的纹理块;
(2)为每块纹理生成5个细节等级的纹理,分别为0、1、2、3、4,其中1级纹理通过0级纹理1/4压缩得到,2级纹理通过1级纹理1/4压缩得到,…,以此类推;
(3)在显示每个块数据之前,根据显示比例的大小,并以此决定该使用那一级的纹理;
(4)在内存中建立纹理缓冲池,使用LRU算法进行纹理块的调度,确保使用频率高的纹理调度次数尽可能少。
(三)影像数据压缩
影像数据压缩有无损压缩和有损压缩两个方法,具体采取哪种压缩方法需根据具体情况确定。对于像元值很重要的数据,如分类数据、分析数据等采用无损压缩(即LZ77算法),否则采用有损压缩(即JPEG算法)。通过对影像数据的压缩,一方面可以节约存储空间,另一方面可以加快影像的读取和显示速度。影像数据的压缩一般与构建金字塔同时进行,在构建影像金字塔过程中自动完成数据的压缩。
Ⅵ 数据存储,海量数据存储解决方案
目前市场上主流的海量数据存储解决方案当然是云存储解决方案啦! 南京云创存储科技有限公司的cStor云存储系统可以帮你解决海量存储的问题! 你可以到云创存储的官网上了解一下产品的详细信息! 希望我的回答会对你有所帮助咯!
Ⅶ 80T的海量资料,如何永久保存,移动硬盘成本高,且超过10年后,基本上就有毛病了,有没其它办法
对于海量图片数据的存储问题,杉岩海量对象存储(SandStone MOS)解决方案采用去中心化分布式架构,同时利用软件定义的方式实现了单一名字空间条件下数百PB级规模的容量扩展,业务可以随时随地访问而不受数据存储位置的限制。
在提升海量小文件访问性能方面,SandStone MOS利用哈希计算实现了数亿级文件的高效访问。针对文件检索困难,SandStone MOS支持标签功能,文件存储时会自动设置标签,从而更好地与业务结合,满足高效检索。
此外,SandStone MOS在易用性与可维护性方面也超越了同级别产品,其采用“x86通用服务器+存储软件”的分布式解耦架构,将底层存储空间与上层业务逻辑空间进行分离,软硬件的升级不会影响到整个系统的正常运行。
即使系统有再多应用更新,也不会影响存储空间的使用。值得一提的是,SandStone MOS首创的分布式存储数据盘漫游功能,可以帮助企业用户渐进式的进行老旧硬件设备更换,不影响业务的正常运行。
Ⅷ 海量数据存储结构和算法
下面的存储过程不仅含有分页方案,还会根据页面传来的参数来确定是否进行数据总数统计。
-- 获取指定页的数据
CREATE PROCEDURE pagination3
@tblName varchar(255), -- 表名
@strGetFields varchar(1000) = '*', -- 需要返回的列
@fldName varchar(255)='', -- 排序的字段名
@PageSize int = 10, -- 页尺寸
@PageIndex int = 1, -- 页码
@doCount bit = 0, -- 返回记录总数, 非 0 值则返回
@OrderType bit = 0, -- 设置排序类型, 非 0 值则降序
@strWhere varchar(1500) = '' -- 查询条件 (注意: 不要加 where)
AS
declare @strSQL varchar(5000) -- 主语句
declare @strTmp varchar(110) -- 临时变量
declare @strOrder varchar(400) -- 排序类型
if @doCount != 0
begin
if @strWhere !=''
set @strSQL = "select count(*) as Total from [" + @tblName + "] where "+@strWhere
else
set @strSQL = "select count(*) as Total from [" + @tblName + "]"
end
--以上代码的意思是如果@doCount传递过来的不是0,就执行总数统计。以下的所有代码都是@doCount为0的情况
else
begin
if @OrderType != 0
begin
set @strTmp = "<(select min"
set @strOrder = " order by [" + @fldName +"] desc"
--如果@OrderType不是0,就执行降序,这句很重要!
end
else
begin
set @strTmp = ">(select max"
set @strOrder = " order by [" + @fldName +"] asc"
end
if @PageIndex = 1
begin
if @strWhere != ''
set @strSQL = "select top " + str(@PageSize) +" "+@strGetFields+ " from [" + @tblName + "] where " + @strWhere + " " + @strOrder
else
set @strSQL = "select top " + str(@PageSize) +" "+@strGetFields+ " from ["+ @tblName + "] "+ @strOrder
--如果是第一页就执行以上代码,这样会加快执行速度
end
else
begin
--以下代码赋予了@strSQL以真正执行的SQL代码
set @strSQL = "select top " + str(@PageSize) +" "+@strGetFields+ " from ["
+ @tblName + "] where [" + @fldName + "]" + @strTmp + "(["+ @fldName + "]) from (select top " + str((@PageIndex-1)*@PageSize) + " ["+ @fldName + "] from [" + @tblName + "]" + @strOrder + ") as tblTmp)"+ @strOrder
if @strWhere != ''
set @strSQL = "select top " + str(@PageSize) +" "+@strGetFields+ " from ["
+ @tblName + "] where [" + @fldName + "]" + @strTmp + "(["
+ @fldName + "]) from (select top " + str((@PageIndex-1)*@PageSize) + " ["
+ @fldName + "] from [" + @tblName + "] where " + @strWhere + " "
+ @strOrder + ") as tblTmp) and " + @strWhere + " " + @strOrder
end
end
exec (@strSQL)
GO
上面的这个存储过程是一个通用的存储过程,其注释已写在其中了。
Ⅸ 海量数据存储与管理
正如上述,在国土资源遥感综合调查信息中,既包含有多源、多时相、多尺度、多分辨率、多类型的遥感图像数据和基础地理数据,也包括在项目开展过程中衍生的许多观测和分析资料,数据量十分庞大。因此,根据数据共享的要求,在数据生产、管理、应用服务以及更新和维护过程中,如何组织和管理好这些海量数据,如何快速、全面有效地访问和获得所需数据,成为面临的突出问题。在这里,采用何种方式利用现有的大型商业化关系数据库系统高效地存储与管理这些数据,成为能否发挥系统最大性能的关键所在。
传统的GIS系统对空间数据(与空间位置、空间关系有关的数据)的存储与管理大多采用这些商业软件特定的文件方式,如:ArcInfo的Coverage、MapInfo的Tab、MAPGIS的WL等。如果数据量越多,这些文件就会越大,数据的处理就会越复杂,其存储、检索、管理也就越困难,而且其最大的缺点还在于不能进行多用户并发操作。由此可见,用以往传统的存储机制去管理像遥感综合调查这样的海量数据,显然难以满足要求。而近年来发展起来的空间数据库引擎技术则是解决海量数据存储管理的途径之一。
本系统建设过程中,采用了空间数据库引擎ArcSDE+大型关系数据库Oracle组合技术,较理想地实现了遥感综合调查海量数据的存储、检索、查询、处理。众所周知,Oracle提供了大型数据库环境,能够很好地处理海量数据,而ArcSDE可将具有地理特征的空间数据和非空间数据统一加载到Oracle中去,因此,通过ArcSDE空间数据库引擎,可将Oracle海量数据管理功能加载到GIS系统中,并可利用Oracle的强大管理机制进行高效率的事务处理、记录锁定、并发控制等服务操作。