当前位置:首页 » 存储配置 » 数据存储服务设计

数据存储服务设计

发布时间: 2022-04-29 12:58:27

A. 云计算环境中的数据挖掘存储管理设计

云计算环境中的数据挖掘存储管理设计
1.引言
Hadoop提供了一个基于HDFs的简单数据库HBase,它的设计思想和数据模型都与Google开发的模型简化的大规模分布式数据库BigTabIe极为相似。HBase不支持完全的关系数据模型,只为用户提供了简单的数据模型,让客户来动态控制数据的分布和格式。从数据模型角度看,HBase是一个稀疏的、长期存储的(存在硬盘上)、多维度的、排序的映射表。这张表的索引是行关键字、列关键字和时间戳。每个值是一个不解释的字符数组,用户需要自己解释存储的字串的类型和含义。这种模型具有很大的灵活性,通过仔细选择数据表示,用户可以控制数据的局部化。但是这种灵活性的代价就是不支持完全的关系数据模型,这导致传统的数据存储格式无法应用于HBase。Google自身的GFS是为网页搜索功能量身定做的,采用BigTable的简单数据模型可以以字符串形式灵活存储网页的URL、时间戳等信息。HDFS的设计完全借鉴了GFS的思想,因此从目前的版本来看,HDFS对网页搜索具有较好的支持,但是对于使用传统的关系数据模型的产品来说,HDFS并不是一个很好的选择,因为它不能提供传统的关系数据库的相关功能。如上所述,以Hadoop为例,目前的开源解决方案并不完全适用于某公司的新产品需求,因此我们需要参照现有解决方案,设计符合自身需要的新方案。
2.DDF的数据划分策略
面对大量的异构的用户数据,我们有必要对数据进行划分,以期得到更好的查询性能。
数据划分策略可分为垂直数据划分(Horizontal panition)和水平数据划分(VerticaI partition),在DDF中同时采用了这两种划分策略。垂直数据划分是按照功能划分:
(1)首先把对象数据、查询数据和其他数据划分到不同的数据表中(数据库的表)。
(2)对于对象数据,由于是按对象类型(Object type)访问的,那么我们可以进一步按照对象类型进行垂直划分,把不同类型的对象数据划分到相应的数据表中。
(3)对于查询数据,在目前的研究阶段,也将其按照对象类型进行垂直划分,存储到相应的数据表中。
另外,采用对象的全局标识(UID)的哈希值(Hash)进行水平划分,从而将对象数据划分到不同的数据节点(Datanode)的策略,需要面对数据迁移的问题,即当增加新的数据节点时,如何确保原有数据节点上的数据不进行或者尽量少进行迁移。
3.DDF的数据存储策略
DDF借鉴了HDFS的设计思想,在架构中引入了数据节点的概念,整个数据存储策略的设计理念如下。
(1)每个数据划分只可能存放在同一个数据库中,不允许一个数据划分分裂存放在多个数据库的情况出现。但是,具有相同数据对象类型的不同划分可以存放在不同的数据库中。
(2)允许不同类型的数据(如对象数据和查询数据)采用不同的划分策略。
(3)概念层次上的划分和存储层次上的数据库是一个多对多的关系,也就是说,我们甚至可以将所有的划分存放在同一个数据库内。这种极端情况同样是被允许的。
(4)当我们将一个划分指定给一个数据库时,它们的对应关系应被记录,这样在查询数据时可以定位到正确的数据库。
4.DDF的节点划分策略
DDF的节点划分策略是建立在数据划分和数据存储策略的基础之上的,节点划分策略从应用层面上描述了DDF各节点的功能。
对于收到的远程更新和查询操作的请求,调度节点必须进行分析,以判断这些操作的作用域。如果操作与当前位置的数据无关,那么这些更新和查询操作会被拒绝。数据节点则应具有以下功能:
(1)存储数据。
(2)处理索引相关的请求。
(3)处理查询请求。
(4)负责部分对查询结果进行分页的功能。
(5)创建并管理集合对象(对缓存的查询)。
(6)负责对过期数据进行处理,这包括删除与过期数据相关的对象和索引。
数据节点本身并不关心数据的位置问题,调度节点应该关心数据所处的位置。数据对象的全局标识符决定了它应该位于哪个位置。

B. 怎样的架构设计才是真正的数据仓库架构

一直想整理一下这块内容,既然是漫谈,就想起什么说什么吧。我一直是在互联网行业,就以互联网行业来说。
先大概列一下互联网行业数据仓库、数据平台的用途:

  • 整合公司所有业务数据,建立统一的数据中心;

  • 提供各种报表,有给高层的,有给各个业务的;

  • 为网站运营提供运营上的数据支持,就是通过数据,让运营及时了解网站和产品的运营效果;

  • 为各个业务提供线上或线下的数据支持,成为公司统一的数据交换与提供平台;

  • 分析用户行为数据,通过数据挖掘来降低投入成本,提高投入效果;比如广告定向精准投放、用户个性化推荐等;

  • 开发数据产品,直接或间接为公司盈利;

  • 建设开放数据平台,开放公司数据;

  • 。。。。。。


  • 上面列出的内容看上去和传统行业数据仓库用途差不多,并且都要求数据仓库/数据平台有很好的稳定性、可靠性;但在互联网行业,除了数据量大之外,越来越多的业务要求时效性,甚至很多是要求实时的 ,另外,互联网行业的业务变化非常快,不可能像传统行业一样,可以使用自顶向下的方法建立数据仓库,一劳永逸,它要求新的业务很快能融入数据仓库中来,老的下线的业务,能很方便的从现有的数据仓库中下线;

  • 其实,互联网行业的数据仓库就是所谓的敏捷数据仓库,不但要求能快速的响应数据,也要求能快速的响应业务;

  • 建设敏捷数据仓库,除了对架构技术上的要求之外,还有一个很重要的方面,就是数据建模,如果一上来就想着建立一套能兼容所有数据和业务的数据模型,那就又回到传统数据仓库的建设上了,很难满足对业务变化的快速响应。应对这种情况,一般是先将核心的持久化的业务进行深度建模(比如:基于网站日志建立的网站统计分析模型和用户浏览轨迹模型;基于公司核心用户数据建立的用户模型),其它的业务一般都采用维度+宽表的方式来建立数据模型。这块是后话。

  • 整体架构下面的图是我们目前使用的数据平台架构图,其实大多公司应该都差不多:

  • 逻辑上,一般都有数据采集层、数据存储与分析层、数据共享层、数据应用层。可能叫法有所不同,本质上的角色都大同小异。

  • 我们从下往上看:

  • 数据采集数据采集层的任务就是把数据从各种数据源中采集和存储到数据存储上,期间有可能会做一些简单的清洗。


  • 数据源的种类比较多:

  • 网站日志:


  • 作为互联网行业,网站日志占的份额最大,网站日志存储在多台网站日志服务器上,

  • 一般是在每台网站日志服务器上部署flume agent,实时的收集网站日志并存储到HDFS上;

  • 业务数据库:


  • 业务数据库的种类也是多种多样,有Mysql、Oracle、SqlServer等,这时候,我们迫切的需要一种能从各种数据库中将数据同步到HDFS上的工具,Sqoop是一种,但是Sqoop太过繁重,而且不管数据量大小,都需要启动MapRece来执行,而且需要Hadoop集群的每台机器都能访问业务数据库;应对此场景,淘宝开源的DataX,是一个很好的解决方案(可参考文章 《异构数据源海量数据交换工具-Taobao DataX 下载和使用》),有资源的话,可以基于DataX之上做二次开发,就能非常好的解决,我们目前使用的DataHub也是。

  • 当然,Flume通过配置与开发,也可以实时的从数据库中同步数据到HDFS。

  • 来自于Ftp/Http的数据源:


  • 有可能一些合作伙伴提供的数据,需要通过Ftp/Http等定时获取,DataX也可以满足该需求;

  • 其他数据源:


  • 比如一些手工录入的数据,只需要提供一个接口或小程序,即可完成;


  • 数据存储与分析毋庸置疑,HDFS是大数据环境下数据仓库/数据平台最完美的数据存储解决方案。


  • 离线数据分析与计算,也就是对实时性要求不高的部分,在我看来,Hive还是首当其冲的选择,丰富的数据类型、内置函数;压缩比非常高的ORC文件存储格式;非常方便的SQL支持,使得Hive在基于结构化数据上的统计分析远远比MapRece要高效的多,一句SQL可以完成的需求,开发MR可能需要上百行代码;

  • 当然,使用Hadoop框架自然而然也提供了MapRece接口,如果真的很乐意开发Java,或者对SQL不熟,那么也可以使用MapRece来做分析与计算;Spark是这两年非常火的,经过实践,它的性能的确比MapRece要好很多,而且和Hive、Yarn结合的越来越好,因此,必须支持使用Spark和SparkSQL来做分析和计算。因为已经有Hadoop Yarn,使用Spark其实是非常容易的,不用单独部署Spark集群,关于Spark On Yarn的相关文章,可参考:《Spark On Yarn系列文章》

  • 实时计算部分,后面单独说。

  • 数据共享这里的数据共享,其实指的是前面数据分析与计算后的结果存放的地方,其实就是关系型数据库和NOSQL数据库;


  • 前面使用Hive、MR、Spark、SparkSQL分析和计算的结果,还是在HDFS上,但大多业务和应用不可能直接从HDFS上获取数据,那么就需要一个数据共享的地方,使得各业务和产品能方便的获取数据;和数据采集层到HDFS刚好相反,这里需要一个从HDFS将数据同步至其他目标数据源的工具,同样,DataX也可以满足。

  • 另外,一些实时计算的结果数据可能由实时计算模块直接写入数据共享。


  • 数据应用
  • 业务产品


  • 业务产品所使用的数据,已经存在于数据共享层,他们直接从数据共享层访问即可;

  • 报表


  • 同业务产品,报表所使用的数据,一般也是已经统计汇总好的,存放于数据共享层;

  • 即席查询


  • 即席查询的用户有很多,有可能是数据开发人员、网站和产品运营人员、数据分析人员、甚至是部门老大,他们都有即席查询数据的需求;

  • 这种即席查询通常是现有的报表和数据共享层的数据并不能满足他们的需求,需要从数据存储层直接查询。

  • 即席查询一般是通过SQL完成,最大的难度在于响应速度上,使用Hive有点慢,目前我的解决方案是SparkSQL,它的响应速度较Hive快很多,而且能很好的与Hive兼容。

  • 当然,你也可以使用Impala,如果不在乎平台中再多一个框架的话。

  • OLAP


  • 目前,很多的OLAP工具不能很好的支持从HDFS上直接获取数据,都是通过将需要的数据同步到关系型数据库中做OLAP,但如果数据量巨大的话,关系型数据库显然不行;

  • 这时候,需要做相应的开发,从HDFS或者HBase中获取数据,完成OLAP的功能;

  • 比如:根据用户在界面上选择的不定的维度和指标,通过开发接口,从HBase中获取数据来展示。

  • 其它数据接口


  • 这种接口有通用的,有定制的。比如:一个从Redis中获取用户属性的接口是通用的,所有的业务都可以调用这个接口来获取用户属性。


  • 实时计算现在业务对数据仓库实时性的需求越来越多,比如:实时的了解网站的整体流量;实时的获取一个广告的曝光和点击;在海量数据下,依靠传统数据库和传统实现方法基本完成不了,需要的是一种分布式的、高吞吐量的、延时低的、高可靠的实时计算框架;Storm在这块是比较成熟了,但我选择Spark Streaming,原因很简单,不想多引入一个框架到平台中,另外,Spark Streaming比Storm延时性高那么一点点,那对于我们的需要可以忽略。

  • 我们目前使用Spark Streaming实现了实时的网站流量统计、实时的广告效果统计两块功能。

  • 做法也很简单,由Flume在前端日志服务器上收集网站日志和广告日志,实时的发送给Spark Streaming,由Spark Streaming完成统计,将数据存储至Redis,业务通过访问Redis实时获取。

  • 任务调度与监控在数据仓库/数据平台中,有各种各样非常多的程序和任务,比如:数据采集任务、数据同步任务、数据分析任务等;


  • 这些任务除了定时调度,还存在非常复杂的任务依赖关系,比如:数据分析任务必须等相应的数据采集任务完成后才能开始;数据同步任务需要等数据分析任务完成后才能开始;这就需要一个非常完善的任务调度与监控系统,它作为数据仓库/数据平台的中枢,负责调度和监控所有任务的分配与运行。

  • 前面有写过文章,《大数据平台中的任务调度与监控》,这里不再累赘。

  • 总结在我看来架构并不是技术越多越新越好,而是在可以满足需求的情况下,越简单越稳定越好。目前在我们的数据平台中,开发更多的是关注业务,而不是技术,他们把业务和需求搞清楚了,基本上只需要做简单的SQL开发,然后配置到调度系统就可以了,如果任务异常,会收到告警。这样,可以使更多的资源专注于业务之上。

C. 怎样设计医院数据存储备份方案

医院数据存储备份建议都采用提供NAS功能的存储设备,因为医院的数据大量需要被多个系统共享的,而且医院基本一个业务系统一台服务器,不可能多台服务器同时挂载一个存储空间,因此用NAS是最好的方式,数据库之类以用光缆直连就行了,预算充足的话可以ORACLE RAC做个负载和容灾。建议存储空间尽量满足3年需求,且存储能挂接其他不同品牌存储的磁盘空间(一般高端存储才有这功能,IBM的v7000的话性能不是很好用在医院这个读写频繁的地方恐怕会性能瓶颈)
存储最好带数据自动分层和归档功能,当然这个是增值附加功能,不是必须的
备份的话建议用另一台存储直接进行数据复制,同步异步都行,同一个机房的话就同步吧,其他可以考虑虚拟带库,离线带库之类的配合备份软件进行数据备份

D. 数据存储设计 数据访问设计怎么写

这个主要要着重写几个方面,你一定要多写,写的详细一点。 1,管理系统的数据库需求【这个算是概况】 2,数据库对象模型设计 【设计核心部分】 3,数据库的创建以及表间关系,存储过程,视图,触发器的设计和定义。【标准定义部分】 4,数据库的...

E. 简述数据库应用系统的设计步骤

数据库设计的基本步骤:

1、系统需求分析与设计。

2、概念结构分析与设计。

3、逻辑结构分析与设计。

4、物理结构分析与设计。

5、系统实施。

6、系统维护。

(5)数据存储服务设计扩展阅读:

数据库设计技巧:

1、原始文件与实体的关系

它可以是一对一,一对多,多对多的关系。一般来说,它们是一对一的关系:一个原始文档只对应于一个实体。在特殊情况下,它们可以是一对多或多对一关系,即一个原始文档对应于多个实体,或者多个原始文档对应于一个实体。

这里的实体可以理解为基本表。在对应关系明确后,对输入接口的设计非常有利。

2、主键和外键

一般来说,实体不能既没有主键也没有外键。在E-R图中,叶中的实体可以定义主键或不定义主键(因为它没有子代),但它必须有外键(因为它有父项)。

主键和外键的设计在全局数据库的设计中起着重要的作用。当全球数据库的设计完成后,一位美国数据库设计专家说:“钥匙无处不在,只有钥匙。”。这是他数据库设计的经验,也体现了他对信息系统核心(数据模型)高度抽象的理念。

因为:主键是一个高度抽象的实体。主键和外键的配对表示实体之间的连接。

3、基本表的属性

基本表不同于中间表和临时表,因为它具有以下四个特点:

原子性。基本表中的字段不可分解。

原始主义。基本表中的记录是原始数据(基本数据)的记录。

演绎的。所有输出数据都可以从基本表和代码表中的数据导出。

稳定。基本表的结构比较稳定,表中的记录要长期保存。

在了解基本表的性质之后,在设计数据库时,可以将基本表与中间表和临时表区分开来。

F. 数据库服务器怎么设计

我理解你问的是硬件,一般思路: 1.选平台:windows,linux还是unix 2.挑主机:哪个厂商,什么样的性能要求(TPCC,TPCH),什么样的RAS要求,什么特殊要求如分区、虚拟化等 3.搭架构:这个和你自身的应用以及选的数据库有关,比如oracle数据库,是单机单实例还是RAC或者其他方式 4.配存储:I/.O常常是数据库的瓶颈,要配合适的存储才能发挥服务器性能 当然理论设计还要看实际预算,暂时想到的,供你参考 蓝屏

G. 大数据下的地质资料信息存储架构设计

颉贵琴 胡晓琴

(甘肃省国土资源信息中心)

摘要 为推进我国地质资料信息服务集群化产业化工作,更大更好地发挥地质资料信息的价值,本文针对我国现有的地质资料信息集群化共享服务平台存在的缺陷和问题,基于现有系统的存储架构,设计了一种大数据下的地质资料信息存储架构,以便于我国地质资料信息服务集群化产业化工作能够适应大数据时代的数据存储。

关键词 大数据 地质资料 存储 NoSQL 双数据库

0 引言

新中国成立60多年来,我国形成了海量的地质资料信息,为国民经济和社会发展提供了重要支撑。但在地质资料管理方面长期存在资料信息分散、综合研究不够、数字化信息化程度不高、服务渠道不畅、服务能力不强等问题,使地质资料信息的巨大潜在价值未能得到充分发挥。为进一步提高地质工作服务国民经济和社会发展的能力,充分发挥地质资料信息的服务功能,扩大服务领域,国土资源部根据国内外地质工作的先进经验,做出了全面推进地质资料信息服务集群化产业化工作的部署。

目前,全国各省地质资料馆都在有条不紊地对本省成果、原始和实物地质资料进行清理,并对其中重要地质资料进行数字化和存储工作。然而,由于我国地质资源丰富,经过几十年的积累,已经形成了海量的地质资料,数据量早已经超过了几百太字节(TB)。在进行地质资料信息服务集群化工作中,随着共享数据量的不断增大,传统的数据存储方式和管理系统必然会展现出存储和检索方面的不足以及系统管理方面的缺陷。为了解决该问题,需要设计更加先进的数据存储架构来实现海量地质资料的存储。

而大数据(Big Data)作为近年来在云计算领域中出现的一种新型数据,科技工作者在不断的研究中,设计了适合大数据存储管理的非关系型数据库NoSQL进行大数据的存储和管理。本文将针对我国现有的地质资料信息集群化共享服务平台存在的缺陷和问题,利用大数据存储管理模式的思想,提出一种海量地质资料存储架构,改进现有系统存储架构,以便于我国全面推进地质资料信息服务集群化产业化工作。

1 工作现状

1.1 国内外地质资料信息的存储现状

在美国,主要有两大地质资料公共服务平台,分别是地球科学信息中心(ESIC)、地球资源观测和科学中心(EROS),其目的是通过为社会和政府提供更加便利、快速的地质信息服务。20世纪90年代初,澳大利亚出台了国家地球科学填图协议,采用先进的科学方法和技术进行数据存储,从而形成了第二代澳大利亚陆地地质图。

目前,我国地质资料信息服务集群化产业化工作刚刚起步,虽然国土资源部信息中心已经开发了地质资料信息集群化共享服务平台,并倡导各地方用户使用该系统。但由于各个地方早期的工作背景不一致,因此各地方所使用的存储系统也不尽相同,主要有Access、SQL Server、Oracle、MySQL等系统。本文以国土资源部信息中心开发的地质资料信息集群化共享服务平台的存储系统MySQL为例说明。该系统是基于关系数据库管理系统MySQL的一套分布式存储检索系统。该系统的部署使得我国地质资料信息服务集群化产业化工作取得了重大进展,同时也为我国建立标准统一的地质资料信息共享服务平台和互联互通的网络服务体系奠定了坚实的基础。然而,该系统的研发并没有考虑到地质资料信息进一步集群化以及在未来地质资料信息进入大数据时代的信息共享和存储管理问题,也没有给出明确的解决方案。

1.2 大数据的存储架构介绍

大数据是近年在云计算领域中出现的一种新型数据,具有数据量大、数据结构不固定、类型多样、查询分析复杂等特点。传统关系型数据库管理系统在数据存储规模、检索效率等方面已不再适合大数据存储。NoSQL(Not Only SQL)是与关系数据库相对的一类数据库的总称。这些数据库放弃了对关系数据库的支持,转而采用灵活的、分布式的数据存储方式管理数据,从而可以满足大数据存储和处理的需求。NoSQL基于非关系型数据存储的设计理念,以键值对进行存储,采用的数据字的结构不固定,每一个元组可以有不一样的字段,且每个元组可以根据自己的需要增加一些自己的键值对,可以减少一些检索时间和存储空间。目前,应用广泛的 NoSQL 数据库有 Google BigTable、HBase、MongoDB、Neo4 j、Infinite Graph等。

2 大数据下的地质资料信息存储架构设计

根据国土资源部做出的全面推进地质资料信息服务集群化产业化工作的部署,国土资源部倡导全国地质资料馆使用国土资源部信息中心开发的地质资料信息集群化共享服务平台,实现地质资料信息的存储和共享。该系统采用了数据库管理系统MySQL作为数据存储系统。

为了与现有系统和现有的工作进行对接,并为将来地质资料进入大数据时代后的存储工作做准备,本文设计了一种能用于海量地质资料信息存储并且兼容MySQL的分布式的数据存储架构(图1)。

整个系统可以根据不同的用户等级分为不同的用户管理层,由于图幅限制,在图1 中仅仅展示了3级:国家级管理层(即共享服务平台用户层)、省级管理层以及市级管理层(可根据实际需要延伸至县级)。

每级管理层的每个用户可以单独管理一个服务器。如国土资源部信息中心可以单独管理一个服务器;甘肃省国土资源信息中心可以单独管理一个服务器,陕西省国土资源信息中心可以单独管理一个服务器;甘肃的若干个市级国土资源局可以根据需要分别管理各自的服务器。

在服务器上分别安装两套数据库管理系统,一套是原有的MySQL数据库管理系统,另一套是为大数据存储而配备的NoSQL型数据库管理系统。在服务器上还专门开发一个数据库管理器中间件,用于进行用户层和数据库的通信以及两套数据库之间的通信。

由于各个管理层都各自维护自己的数据库和数据。当用户需要进行数据存储时,他所影响的数据库仅仅是本地数据库,存储效率较高;当用户需要从多个数据库读取数据时,顶层的共享服务平台会根据用户需求进行任务分解,将任务分发给下层的管理层进行数据库读取,由于各个数据库并行读取,从而提高了数据库读取效率。

图1 大数据下的地质资料信息存储架构框图

2.1 用户管理层

用户管理层根据权限范围,分为多层(本文以3层为例)。

位于顶层的国家级管理层(共享服务平台用户层)负责用户访问权限的分配、与其直接关联的数据库的访问、下级管理层任务的分配等工作。

用户访问权限的分配是指为访问本共享服务平台的个人用户和单位用户分配数据的使用权限、安全性的设计等。

与其直接关联的数据库访问是指直接存储在其本地数据库上的数据的访问。在该数据库中不仅要存储所需要的地质资料,还要存储注册用户信息等数据。

下级管理层任务分配是指如果用户需要访问多个下层数据库,用户只需要输入查询这几个下层数据库的命令,而如何查找下层数据库则由该功能来完成。例如某用户要查找甘肃、陕西、上海、北京的铁矿分布图,则用户只需要输入这几个地方及铁矿等查询条件,系统将自动把各个省的数据库查询任务分派到下级管理层。

同理,位于下层的省级管理层和市级管理层除了没有用户访问权限功能外,其余功能与国家级管理层是相同的。各层之间的数据库通过互联网相互连接成分布式的数据库系统。

2.2 MySQL和NoSQL的融合

MySQL是关系型数据库,它支持SQL查询语言,而NoSQL是非关系型数据库,它不支持SQL查询语言。用户要想透明地访问这两套数据库,必须要设计数据库管理器中间件,作为用户访问数据库的统一入口和两套数据库管理系统的通信平台。本文所设计的数据库管理器简单模型如图2所示。

图2 数据库管理器模型

服务器管理器通过用户程序接口与应用程序进行通讯,通过MySQL数据库接口与MySQL服务器通讯,通过NoSQL数据库接口与NoSQL数据库接口通讯。当应用程序接口接收到一条数据库访问命令之后,交由数据库访问命令解析器进行命令解析,从而形成MySQL访问命令或者NoSQL访问命令,通过相应的数据库接口访问数据库;数据库返回访问结果后经过汇总,由应用程序接口返回给应用程序。

两套数据库可以通过双数据库通信协议进行相互的通信和互访。此通信协议的建立便于地质工作人员将已经存入MySQL数据库的不适合结构化存储的数据转存到NoSQL数据库中,从而便于系统的升级和优化。

2.3 系统的存储和检索模式

在本存储框架设计中,系统采用分布式网络存储模式,即采用可扩展的存储结构,利用分散在全国各地的多台独立的服务器进行数据存储。这种方式不仅分担了服务器的存储压力,提高了系统的可靠性和可用性,还易于进行系统扩展。另外,由于地质资料信息存储的特殊性,各地方用户的数据存储工作基本都是在本地服务器进行,很少通过网络进行远程存储,所以数据存储效率较高。

在一台数据库服务器上安装有MySQL和NoSQL型两套数据库管理系统,分别用于存储地质资料信息中的结构化数据和非结构化数据。其中,NoSQL型数据库作为主数据库,用于存储一部分结构化数据和全部的非结构化数据;而MySQL数据库作为辅助数据库,用于存储一部分结构化的数据,以及旧系统中已经存储的数据。使用两套数据库不仅可以存储结构化数据而且还可以适用于大数据时代地质资料信息的存储,因此系统具有很好的适应性和灵活性。

2.4 安全性设计

地质资料信息是国家的机密,地质工作人员必须要保证它的安全。地质资料信息进入数字化时代之后,地质资料常常在计算机以及网络上进行传输,地质资料信息的安全传输和保存更是地质工作人员必须关注和解决的问题。在本存储架构的设计中设计的安全问题主要有数据库存储安全、数据传输安全、数据访问安全等问题。

数据库设计时采用多边安全模型和多级安全模型阻止数据库中信息和数据的泄露来提高数据库的安全性能,以保障地质信息在数据库中的存储安全;当用户登录系统访问数据库时,必须进行用户甄别和实名认证,这主要是对用户的身份进行有效的识别,防止非法用户访问数据库;在对地质资料进行网络传输时,应该首先将数据进行加密,然后再进行网络传输,以防止地质信息在传输过程中被窃取。

3 结语

提高地质资料数字化信息化水平,是国外地质工作强国的普遍做法。为推进我国地质资料信息服务集群化产业化工作,本文针对我国现有的地质资料信息集群化共享服务平台存在的缺陷和问题,利用大数据存储管理模式的思想,基于现有系统的存储架构,设计了一种大数据下的地质资料信息存储架构,以便于我国地质资料信息服务集群化产业化工作能够适应大数据时代的数据存储。该存储架构的设计只涉及了简单模型的构建,具体详细复杂的功能设计和软件实现还需要在进一步的研究工作中完成。

参考文献

[1]吴金朋.一种大数据存储模型的研究与应用[D].北京:北京邮电大学计算机学院,2012.

[2]吴广君,王树鹏,陈明,等.海量结构化数据存储检索系统[J].计算机研究与发展,2012,49(Suppl):1~5.

[3]黄

,易晓东,李姗姗,等.面向高性能计算机的海量数据处理平台实现与评测[J].计算机研究与发展,2012,49(Suppl):357~361.

H. 如何设计存储海量数据的存储系统

从数据存储的模式来看,海量存储技术可以分为DAS(Direct Attached Storage,直接附加存储)和网络存储两种,其中网络存储又可以分为NAS(Network Attached storage,网络附加存储)和SAN(Storage Area Net、Work,存储区域网络

I. 无论基于哪一种数据管理方法,数据持久存储服务的设计都包括定义

基础120题,都搞懂了就差不多。
(1) 下面叙述正确的是______。(C)
A. 算法的执行效率与数据的存储结构无关
B. 算法的空间复杂度是指算法程序中指令(或语句)的条数
C. 算法的有穷性是指算法必须能在执行有限个步骤之后终止
D. 以上三种描述都不对
(2) 以下数据结构中不属于线性数据结构的是______。(C)
A. 队列
B. 线性表
C. 二叉树
D. 栈
(3) 在一棵二叉树上第5层的结点数最多是______。(B)
A. 8
B. 16
C. 32
D. 15
(4) 下面描述中,符合结构化程序设计风格的是______。(A)
A. 使用顺序、选择和重复(循环)三种基本控制结构表示程序的控制逻辑
B. 模块只有一个入口,可以有多个出口
C. 注重提高程序的执行效率
D. 不使用goto语句
(5) 下面概念中,不属于面向对象方法的是______。(D)
A. 对象
B. 继承
C. 类
D. 过程调用

热点内容
hp存储扩容 发布:2024-11-17 23:29:16 浏览:569
在ftp中put表示什么 发布:2024-11-17 23:29:12 浏览:383
mvc多文件上传 发布:2024-11-17 23:13:56 浏览:155
玩游戏硬盘缓存32m 发布:2024-11-17 23:03:42 浏览:525
蓝光存储系统 发布:2024-11-17 23:03:41 浏览:436
地平线4提示配置低于最低怎么办 发布:2024-11-17 22:54:38 浏览:610
注册银行卡账户密码填什么 发布:2024-11-17 22:54:35 浏览:537
java压缩上传图片 发布:2024-11-17 22:26:59 浏览:627
plc编程课件 发布:2024-11-17 22:18:23 浏览:469
我的世界服务器信号一直在检测 发布:2024-11-17 22:09:52 浏览:547