当前位置:首页 » 存储配置 » 数据存储技术的发展

数据存储技术的发展

发布时间: 2025-03-31 14:28:45

Ⅰ 信息存储技术的发展过程

人类记录信息、存储信息方法经历了以下几大技术:
1,结绳记事;
2,文字纸张;
3,磁记录方式(磁鼓,磁带,磁盘等) 当前比较成熟,
4,半导体电记录(电路,电量或电容):ROM,RAM等;随着半导体技术的提升而不断提升、改进
5,光记录(光盘,光运算器件) 光计算和光存储也许会在不久的将来大力发展

Ⅱ 大数据爆发性增长 存储技术面临难题

大数据爆发性增长 存储技术面临难题

随着大数据应用的爆发性增长,大数据已经衍生出了自己独特的架构,而且也直接推动了存储、网络以及计算技术的发展。毕竟处理大数据这种特殊的需求是一个新的挑战。硬件的发展最终还是由软件需求推动的。大数据本身意味着非常多需要使用标准存储技术来处理的数据。大数据可能由TB级(或者甚至PB级)信息组成,既包括结构化数据(数据库、日志、SQL等)以及非结构化数据(社交媒体帖子、传感器、多媒体数据)。此外,大部分这些数据缺乏索引或者其他组织结构,可能由很多不同文件类型组成。从目前技术发展的情况来看,大数据存储技术的发展正面临着以下几个难题:

1、容量问题

这里所说的“大容量”通常可达到PB级的数据规模,因此,海量数据存储系统也一定要有相应等级的扩展能力。与此同时,存储系统的扩展一定要简便,可以通过增加模块或磁盘柜来增加容量,甚至不需要停机。

“大数据”应用除了数据规模巨大之外,还意味着拥有庞大的文件数量。因此如何管理文件系统层累积的元数据是一个难题,处理不当的话会影响到系统的扩展能力和性能,而传统的NAS系统就存在这一瓶颈。所幸的是,基于对象的存储架构就不存在这个问题,它可以在一个系统中管理十亿级别的文件数量,而且还不会像传统存储一样遭遇元数据管理的困扰。基于对象的存储系统还具有广域扩展能力,可以在多个不同的地点部署并组成一个跨区域的大型存储基础架构。

2、延迟问题

“大数据”应用还存在实时性的问题。有很多“大数据”应用环境需要较高的IOPS性能,比如HPC高性能计算。此外,服务器虚拟化的普及也导致了对高IOPS的需求,正如它改变了传统IT环境一样。为了迎接这些挑战,各种模式的固态存储设备应运而生,小到简单的在服务器内部做高速缓存,大到全固态介质的可扩展存储系统等等都在蓬勃发展。

3、并发访问

一旦企业认识到大数据分析应用的潜在价值,他们就会将更多的数据集纳入系统进行比较,同时让更多的人分享并使用这些数据。为了创造更多的商业价值,企业往往会综合分析那些来自不同平台下的多种数据对象。包括全局文件系统在内的存储基础设施就能够帮助用户解决数据访问的问题,全局文件系统允许多个主机上的多个用户并发访问文件数据,而这些数据则可能存储在多个地点的多种不同类型的存储设备上。

4、安全问题

某些特殊行业的应用,比如金融数据、医疗信息以及政府情报等都有自己的安全标准和保密性需求。虽然对于IT管理者来说这些并没有什么不同,而且都是必须遵从的,但是,大数据分析往往需要多类数据相互参考,而在过去并不会有这种数据混合访问的情况,因此大数据应用也催生出一些新的、需要考虑的安全性问题。

5、成本问题

成本问题“大”,也可能意味着代价不菲。而对于那些正在使用大数据环境的企业来说,成本控制是关键的问题。想控制成本,就意味着我们要让每一台设备都实现更高的“效率”,同时还要减少那些昂贵的部件。

对成本控制影响最大的因素是那些商业化的硬件设备。因此,很多初次进入这一领域的用户以及那些应用规模最大的用户都会定制他们自己的“硬件平台”而不是用现成的商业产品,这一举措可以用来平衡他们在业务扩展过程中的成本控制战略。为了适应这一需求,现在越来越多的存储产品都提供纯软件的形式,可以直接安装在用户已有的、通用的或者现成的硬件设备上。此外,很多存储软件公司还在销售以软件产品为核心的软硬一体化装置,或者与硬件厂商结盟,推出合作型产品。

6、数据的积累

许多大数据应用都会涉及到法规遵从问题,这些法规通常要求数据要保存几年或者几十年。比如医疗信息通常是为了保证患者的生命安全,而财务信息通常要保存7年。而有些使用大数据存储的用户却希望数据能够保存更长的时间,因为任何数据都是历史记录的一部分,而且数据的分析大都是基于时间段进行的。要实现长期的数据保存,就要求存储厂商开发出能够持续进行数据一致性检测的功能以及其他保证长期高可用的特性。同时还要实现数据直接在原位更新的功能需求。

7、数据的灵活性

大数据存储系统的基础设施规模通常都很大,因此必须经过仔细设计,才能保证存储系统的灵活性,使其能够随着应用分析软件一起扩容及扩展。在大数据存储环境中,已经没有必要再做数据迁移了,因为数据会同时保存在多个部署站点。一个大型的数据存储基础设施一旦开始投入使用,就很难再调整了,因此它必须能够适应各种不同的应用类型和数据场景。

存储介质正在改变,云计算倍受青睐

存储之于安防的地位,其已经不仅是一个设备而已,而是已经升华到了一个解决方案平台的地步。作为图像数据和报警事件记录的载体,存储的重要性是不言而喻的。

安防监控应用对存储的需求是什么?首先,海量存储的需求。其次,性能的要求。第三,价格的敏感度。第四,集中管理的要求。第五,网络化要求。安防监控技术发展到今天经历了三个阶段,即:模拟化、数字化、网络化。与之相适应,监控数据存储也经历了多个阶段,即:VCR模拟数据存储、DVR数字数据存储,到现在的集中网络存储,以及发展到云存储阶段,正是在一步步迎合这种市场需求。在未来,安防监控随着高清化,网络化,智能化的不断发展,将对现有存储方案带来不断挑战,包括容量、带宽的扩展问题和管理问题。那么,基于大数据战略的海量存储系统--云存储就倍受青睐了。

基于大数据战略的安防存储优势明显

当前社会对于数据的依赖是前所未有的,数据已变成与硬资产和人同等重要的重要资料。如何存好、保护好、使用好这些海量的大数据,是安防行业面临的重要问题之一。那么基于大数据战略的安防存储其优势何在?

目前的存储市场上,原有的视频监控方案容量、带宽难以扩展。客户往往需要采购更多更高端的设备来扩充容量,提高性能,随之带来的是成本的急剧增长以及系统复杂性的激增。同时,传统的存储模式很难在完全没有业务停顿的情况下进行升级,扩容会对业务带来巨大影响。其次,传统的视频监控方案难于管理。由于视频监控系统一般规模较大,分布特征明显,大多独立管理,这样就把整个系统分割成了多个管理孤岛,相互之间通信困难,难以协调工作,以提高整体性能。除此之外,绿色、安全等也是传统视频监控方案所面临的突出问题。

基于大数据战略的云存储技术与生俱来的高扩展、易管理、高安全等特性为传统存储面临的问题带来了解决的契机。利用云存储,用户可以方便的进行容量、带宽扩展,而不必停止业务,或改变系统架构。同时,云存储还具有高安全、低成本、绿色节能等特点。基于云存储的视频监控解决方案是客户应对挑战很好的选择。王宇说,进入二十一世纪,云存储作为一种新的存储架构,已逐步走入应用阶段,云存储不仅轻松突破了SAN的性能瓶颈,而且可以实现性能与容量的线性扩展,这对于拥有大量数据的安防监控用户来说是一个新选择。

以英特尔推出的Hadoop分布式文件系统(HDFS)为例,其提供了一个高度容错性和高吞吐量的海量数据存储解决方案。目前已经在各种大型在线服务和大型存储系统中得到广泛应用,已经成为海量数据存储的事实标准。

随着信息系统的快速发展,海量的信息需要可靠存储的同时,还能被大量的使用者快速地访问。传统的存储方案已经从构架上越来越难以适应近几年来的信息系统业务的飞速发展,成为了业务发展的瓶颈和障碍。HDFS通过一个高效的分布式算法,将数据的访问和存储分布在大量服务器之中,在可靠地多备份存储的同时还能将访问分布在集群中的各个服务器之上,是传统存储构架的一个颠覆性的发展。最重要的是,其可以满足以下特性:可自我修复的分布式文件存储系统,高可扩展性,无需停机动态扩容,高可靠性,数据自动检测和复制,高吞吐量访问,消除访问瓶颈,使用低成本存储和服务器构建。

以上是小编为大家分享的关于大数据爆发性增长 存储技术面临难题的相关内容,更多信息可以关注环球青藤分享更多干货

Ⅲ 数据存储技术论文3000字

数据库存储技术的出现,对于传统的纸质存储技术来说,具有革命性的作用,下面是我为大家精心推荐的数据存储技术论文3000字,希望能够对您有所帮助。

数据存储技术论文3000字篇一

数据库编程与数据库存储技术分析

【摘要】随着信息技术的发展,以及人类社会文明进步,在与计算机相关的技术发展中,关于数据方面的处理工作,如今也越来越受到重视,在不同的发展时期,根据不同的计算机类型以及在实际应用的不同,数据库的编程与数据库存相储技术方面的要求也有所差异,所以就要根据实际情况进行具体分析.本文就结合相关技术进行分析。

【关键词】数据库;编程;存储;技术;分析

引言

在计算机的发展过程中,根据数据进行程序编辑,以及在计算机内部储存程序的编辑都是非常重要的方面,虽然会根据所操作的计算机不同,而在具体操作过程中而出现有所区别,但是要针对相关的技术进行具体分析后就能够发现,在数据存储方面只要编辑好数据库对应的程序,要取得好的工作成绩不不难,所以研究好关于数据库编程和数据库存储相关的技术,就能够代替真实人的工作,取得良好的工作效果,促进计算机行业的发展.

随着计算机的普及应用,计算机应用软件得到了快速的发展,从某种意义上来说,计算机之所以能够在各个领域中得到应用,很大程度上就是因为相应的应用软件,根据各个行业的特点,软件公司都开发了针对性的应用软件,通过这些软件的使用,能够给实际的工作带来方便,提升工作的效率,例如在工业自动化中,现在的计算机技术已经具有一定的智能性,可以代替人来进行操作,这种方式出现错误的几率很低,而且计算机不需要休息,生产效率得到了大幅提高,在计算机软件中,尤其是一些大型的软件,数据库是软件的核心内容,因此在计算机软件编写过程中,数据库编程和存储技术,也是一个核心内容,受到我国特殊历史原因影响,我国的软件行业发展较慢,因此数据库编程和存储技术的核心都掌握在西方发达国家手中。

1、数据库存储技术简述

1.1数据库存储技术的概念

数据库的发展很大程度上依赖于计算机性能的提升,在计算机出现的早期,并没有数据库的概念,当时计算机的性能很低,只能进行一些简单的数字运算,体积也非常庞大,还没有数据存储的概念,随着晶体管和集成电路应用在计算机制造中,计算机的性能得到了大幅的提升,开始在各个领域中进行应用,当计算机被用于数据管理时,尤其是一些复杂的数据,传统的存储方式已经无法满足人们的需要,在这种背景下,DSMS诞生了,这种数据库管理系统在当时看来,是数据库管理技术的一次革命,随着计算机性能的提升,逐渐出现了SQL、Oracle等,在传统的数据库编程中,由于数据库编写的时期不同,使用的编写语言也有一定的差异,目前常使用的软件有VB、JAVA、VC、C++等,利用这些编程软件,都可以编写一个指定的数据库,由于每个软件自身都有一定的特点,因此不同领域的数据编程中,所选择的编程软件业有一定的差异。

1.2数据库存储技术的发展

数据库的概念最早可以追溯到20世纪50年代,但是当时数据库的管理,还处于传统人工的方式,并没有形成软件的形式,因此并不能算数据库存储技术的起源,在20世纪60年代中期,随着计算机存储设备的出现,使得计算机能够存储数据,在这种背景下,数据管理软件诞生了,但是受到当时技术条件的限制,只能以文件为单位,将数据存储在外部存储设备中,人们开发了带有界面的操作系统,以便对存储的数据进行管理,随着计算机的普及应用,计算机能够存储的数据越来越多,人们对数据库存储技术有了更高的要求,尤其是企业用户的增加,希望数据库存储技术能够具有很高的共享能力,数据存储技术在这一时期,得到了很大的发展,现在的数据库存储技术,很大程度上也是按照这一时期的标准,来进行相应的开发,随着数据库自身的发展,出现了很多新的数据库存储技术,如数据流、Web数据管理等。

1.3数据库存储技术的作用

数据库存储技术的出现,对于传统的纸质存储技术来说,具有革命性的作用,由于纸质存储数据的方式,很容易受到水、火等灾害,而造成数据的损失,人类文明从有文字开始,就记录了大量的历史信息,但是随着时间的推移,很多数据资料都损毁了,给人类文明造成了严重的损失,而数据库存储技术就能够很好的避免这个问题,在数据库的环境下,信息都会转化成电子的方式,存储在计算机的硬盘中,对于硬盘的保存,要比纸质的书籍等简单的多,需要的环境比较低,最新的一些服务器存储器,甚至具有防火的性能,而且数据库中的数据,可以利用计算机很简单的进行复制,目前很多企业数据库,为了最大程度上保证数据的安全性,都会建立一个映像数据库,定期的对数据库中的信息进行备份,如果工作的数据库出现了问题,就可以通过还原的方式,恢复原来的数据。

2、数据库编程与数据库存储技术的关系

2.1数据库编程决定数据库存储的类型

通过对计算机软件的特点进行分析可以知道,任何软件要想具有相关的功能,都需要在编程过程中来实现,对于数据库程序来说也是一样,在数据库编程的过程中,能够决定数据库存储的类型,根据应用领域的不同,数据库存储技术也有一定的差异,如在电力、交通控制等领域中,应用的大多是实时数据库,而网上的视频网站等,大多采用关系数据库,其次还有商业数据库、自由数据库、微型数据库等,每种数据库的出现,都是为了满足实际应用的需要,虽然在不同历史时期,一种数据库成为主流,但是对于数据库程序的编写者来说,这些数据库的编写;并没有太大的差异,虽然不同的程序编写人员,由于所受教育和习惯的不同,在实际编写的过程中,使用的程序编写软件不同,但无论是VB、VF还是C++等,都可以实现每种数据库类型的编写,从某种意义上来说,数据库类型的确定,通常是在软件需求分析阶段中进行设计,然后在数据编程阶段来实现,

2.2数据库存储技术是数据库编程的核心

对于数据库程序来说,最重要的功能就是存储数据,通常情况在,一个数据库程序会分成几个模块,其中核心模块就是数据库存储技术。

结语

在目前国内经济发展形势下,针对于计算机的软件行业的形式,也在大力推动下,成为一个焦点行业,随着行业的发展,相关促进简便工作的程序也得到了相应的研究和发明中,就算是一些不具备计算机专业知识的普通使用着,不管在使用还是研发程序上也是介可以的,只是针对于数据库编程和数据库存储技术方面进行分析,但是作为系统的核心区域,所以相关的技术也是非常重要的,所以要想提升工作效率,缓解工作压力,就要结合使用情况,在所能应用的范围内,选择最具有优势的相应软件处理技术,以此为研发中心,开发出所需要的软件类型,进行所有的数据整理工作,对于办公室工作极大范围内的促进,对于数据库编程于数据存储方面的技术是非常重要的。

参考文献

[1]董慧群,王福明.基于LabWindows/CVI的数据库编程[J].山西电子技术,2011(04):55-56.

[2]吴敏宁,高楠.Delphi数据库编程开发[J].电脑知识与技术,2009(11):2882-2883.

[3]郑刚,唐红梅.面向对象数据库中数据模型及存储结构的研究[J].计算机工程,2002(03):65-67.

点击下页还有更多>>>数据存储技术论文3000字

Ⅳ 攀登比珠穆朗玛更高的山峰,数据存储技术的突破之路

文: 科技 商业 于洪涛


在物理世界,山峰是自然力量的象征;而在数字世界里,数据则是智慧力量的来源。

或许正是因为如此,华为将其聚焦在数据基础技术的科研大奖命名为Olympus Mons,即奥林帕斯大奖,专门用于重奖那些在数据存储领域实现技术突破的科研工作者。

设立奖项只是一种形式。在奥林帕斯大奖的背后,是华为通过汇聚产学研各方能力,来推动数据技术实现突破性发展的雄心,从而为数字经济发展提供更好的数据基础设施。

随着数字化时代的到来,数据的价值越来越突出,正在日益成为国家、企业、甚至个人的核心资产。

与传统经济相比,数字经济的本质就是数据的流通,数据也成为智能 社会 的主要生产要素。IDC的调研显示,2020年全球共创造了59ZB的数据,到2025年则将达到163ZB。

如此巨量的数据资产,需要经过数据采集、数据存储、数据分析等流程才能产生价值,其中数据存储无疑是基础。在数据中心里,存储也与计算和网络一道,成为关键基础设施,为整个数字化进程提供支持。

在数据量高速成长的同时,数据的形态也日益多样化,视频、图片、音频等非结构化数据已经成为数据的主体。这些复杂的数据要想充分发挥价值,就需要更加高效的数据存储和数据管理。

有统计显示,如今只有2%的数据被保存,保存下来的数据也只有10%得到分析利用。华为数据存储与机器视觉产品线总裁周跃峰介绍说,数据在企业数字化转型中扮演着越来越重要的角色,然而企业却面临海量数据存不下、流不动、管不好的问题。

为了满足客户日益增长的数据存储需求, 华为主张构建端到端的数据能力,包括计算、存储、利用和AI等能力,让数据在全生命周期内实现每比特价值最大,每比特成本最优。

华为的努力,已经收到了成效,如今越来越多的政企使用华为的数据存储解决方案,来实现对数据资产的管理。

甘肃敦煌研究院,正在利用华为的海量存储解决方案,通过 计算机技术和数字图像技术,实现敦煌石窟文物的永久保存、永续利用。

然而,整个敦煌莫高窟拥有735个洞窟、4.5万平方米壁画、2415尊泥质彩塑,要把这么多文物数字化,达成构建数字敦煌博物馆的目标,意味着需要大量的投资和海量的存储设备。 显然,要想解决这一问题,仅靠华为自身的努力还不够,而需要各个方面的共同参与,通过打造产业技术生态,来实现存储技术的新突破。这也正是华为设立“奥林帕斯奖”的初衷。

据了解,华为“奥林帕斯奖”,每年都聚焦于数据领域的两个主要技术难题来寻求解决方案。在去年底的全球数据存储教授论坛上,第二届的“2021年奥林帕斯悬红”两大难题已经确定:一是构建每比特极致性价比的数据存储,二是实现下一代存储产业根技术突破。对于每个难题,华为都给出了高达100万元的悬红,

华为希望通过“奥林帕斯奖”的设立,与学术界在 Cloud-Oriented多云存储服务、Data-Centric新型数据应用存储系统、AI-Driven存储软件架构、创新体系架构等技术方向共同攻坚,构筑更好的数据存储系统。

我们都知道,妨碍电动 汽车 推广普及的主要制约因素是电池的能量密度,其决定了电动 汽车 的可用性。在数据中心里,数据的存储密度则将成为未来的核心挑战,决定着我们智能 社会 的成色。

科学家们已经明确了下一步的发展目标:在有限的资源下实现100x性能密度和100x容量密度的数据存储。要实现存储能力的提升,压缩算法是核心技术之一,可以降低 数据的存储成本,帮助用户缓解数据规模爆炸性增长带来的成本压力。

然而,作为存储技术中的重磅难题,压缩算法多年来未有突出成果。

为了突破压缩算法面临的瓶颈,激发数据压缩领域的活力,自2020年起,华为与莫斯科国立大学合作,举办全球数据压缩大赛,以促进数据压缩根技术的研究。

今年的第二届全球数据压缩大赛,邀请了压缩领域享有盛誉的技术专家担任评委;使用电子显微镜、遥感等高性能计算数据,更贴近前沿、更贴近实际场景。大赛设计了五种类型的数据集(赛事项目):定量数据压缩、定性数据压缩、混合数据压缩、小块数据压缩和熵编码优化。

同时,大赛还增设了面向高校学生、难度相对较小的编码算法优化项目,以吸引更多校园算法高手参与比赛。在奖项设置方面,进一步体现多维激励,增设领先奖、特等奖和学生参与奖。

本届数据压缩大赛,已于6月15日正式开赛,接收参赛作品截止到11月底,将于12月底公布获奖结果。截至7月中旬,开赛仅1个月大赛组委会就已经收到了来自全球近80个报名申请。


伴随着奥林帕斯大奖和全球数据压缩大赛相继进入第二届,“奥林帕斯”已经成为华为数据存储正在着力打造的新品牌,专门用来加强产学研合作,联合学界一起推动数据存储产业的进步。

从第一届奥林帕斯大奖得主那里,我们已经看到科研界在数据技术创新领域的突破。

获得 百万悬红大奖的清华大学舒继武老师团队的“持久性内存存储系统构建与关键技术”, 创新地提出了持久性内存文件系统与键值存储的设计方法和分布式持久性共享内存框架,攻克了其数据结构、内存管理、一致性与安全等方面的一系列难题,解决了基于新型内存介质的高效数据存储问题。

此外,上海交通大学的陈榕团队的 “基于新型异构硬件的高效数据处理系统”, 华中 科技 大学的冯丹团队的 “NVM(新型非易失存储)高效可靠技术”,也具有较高的创新性和先进性, 具备产业价值和应用前景。

同样,在第一届 全球数据压缩大赛上,也涌现出了很多令人瞩目的成果。

比如获奖选手Peter Thamm设计的pglz算法在压缩率和性能上,打破了快速压缩算法的一般认知,指引了压缩算法优化方向;Konstantinos Agiannis的参赛算法,在文本场景测试中的压缩率和压缩性能,均超过业界公认的标杆算法;Andreas Debski的快速图像压缩算法,达到了业界公认标杆算法120%的压缩率,展现了深厚的图像压缩算法功底。

过去一年的成功,也让我们对今年的 “奥林帕斯”有了更高的期待。对这个太阳系最高峰的攀登,意味着整个数据存储技术领域的参与者,首次能够团结一致,共同牵引基础理论研究方向,突破关键技术难题,加速科研成果产业化,实现产学研合作共赢。

在此进程中,华为一方面发挥了产业引领者的角色,大力推动产学研的合作进程;另一方面也积极投身其中,通过 Data Fabric、智能存储、内存型存储、数据缩减、视频存储等五大创新实验室,通过4000多名研发工程师的协同努力,围绕下一代存储的介质、网络、架构和管理等进行系统化创新。

我们也有理由相信,通过全球、全领域的协同创新,我们一定能够迎来数据存储技术的突破,通过技术重构实现更好的数据存储效能,让全世界共享数字技术红利,进而推动千行百业的智能化升级。

热点内容
c二维码源码 发布:2025-04-04 12:47:31 浏览:635
地铁加密线是什么意思 发布:2025-04-04 12:32:00 浏览:120
linux下载解压 发布:2025-04-04 12:23:45 浏览:790
怎么在服务器里设材质包 发布:2025-04-04 12:10:08 浏览:630
php学习路线 发布:2025-04-04 12:05:13 浏览:754
压缩文件视频 发布:2025-04-04 12:00:48 浏览:319
17php 发布:2025-04-04 11:54:33 浏览:213
仿链家源码 发布:2025-04-04 11:48:46 浏览:423
篮球训练视频文字脚本 发布:2025-04-04 11:47:18 浏览:839
两麦分离算法 发布:2025-04-04 11:23:45 浏览:431