线程局部存储作用
❶ 线程特有数据(Thread Specific Data)
在单线程程序中,我们经常要使用 全局变量 来实现多个函数间共享数据。在多线程环境下,由于数据空间是共享的,因此全局变量也为所有线程所共有。但有时在应用程序设计中有必要提供 线程私有 的全局变量,仅在某个线程中有效,但可以跨多个函数访问,这样每个线程访问它自己独立的数据空间,而不用担心和其它线程的同步访问。
这样在一个线程内部的各个函数都能访问、但其它线程不能访问的变量,我们就需要使用 线程局部静态变量 (Static memory local to a thread) 同时也可称之为 线程特有数据 (Thread-Specific Data 或 TSD),或者 线程局部存储 (Thread-Local Storage 或 TLS)。
POSIX 线程库提供了如下 API 来管理线程特有数据(TSD):
第一参数 key 指向 pthread_key_t 的对象的指针。请 注意 这里 pthread_key_t 的对象占用的空间是用户事先分配好的, pthread_key_create 不会动态生成 pthread_key_t 对象。
第二参数 desctructor ,如果这个参数不为空,那么当每个线程结束时,系统将调用这个函数来释放绑定在这个键上的内存块。
有时我们在线程里初始化时,需要避免重复初始化。我们希望一个线程里只调用 pthread_key_create 一次,这时就要使用 pthread_once 与它配合。
第一个参数 once_control 指向一个 pthread_once_t 对象,这个对象必须是常量 PTHREAD_ONCE_INIT ,否则 pthread_once 函数会出现不可预料的结果。
第二个参数 init_routine ,是调用的初始化函数,不能有参数,不能有返回值。
如果成功则返回0,失败返回非0值。
创建完键后,必须将其与线程数据关联起来。关联后也可以获得某一键对应的线程数据。关联键和数据使用的函数为:
第一参数 key 指向键。
第二参数 value 是欲关联的数据。
函数成功则返回0,失败返回非0值。
注意: 用 pthread_setspecific 为一个键指定新的线程数据时,并不会主动调用析构函数释放之前的内存,所以调用线程必须自己释放原有的线程数据以回收内存。
获取与某一个键关联的数据使用函数的函数为:
参数 key 指向键。
如果有与此键对应的数据,则函数返回该数据,否则返回NULL。
删除一个键使用的函数为:
参数 key 为要删除的键。
成功则返回0,失败返回非0值。
注意: 该函数将键设置为可用,以供下一次调用 pthread_key_create() 使用。它并不检查当前是否有线程正在使用该键对应的线程数据,所以它并不会触发函数 pthread_key_create 中定义的 destructor 函数,也就不会释放该键关联的线程数据所占用的内存资源,而且在将 key 设置为可用后,在线程退出时也不会再调用析构函数。所以在将 key 设置为可用之前,必须要确定:
在 linux 中每个进程有一个全局的数组 __pthread_keys ,数组中存放着 称为 key 的结构体,定义类似如下:
在 key 结构中 seq 为一个序列号,用来作为使用标志指示这个结构在数组中是否正在使用,初始化时被设为0,即表示 不在使用 。 destructor 用来存放一个析构函数指针。
pthread_create_key 会从数组中找到一个还未使用的 key 元素,将其序列号 seq 加1,并记录析构函数地址,并将 key 在数组 __pthread_keys 中的 下标 作为返回值返回。那么如何判断一个 key 正在使用呢?
如果 key 的序列号 seq 为偶数则表示未分配,分配时将 seq 加1变成奇数,即表示正在使用。这个操作过程采用原子 CAS 来完成,以保证线程安全。在 pthread_key_delete() 时也将序列号 seq 加1,表示可以再被使用,通过序列号机制来保证回收的 key 不会被复用(复用 key 可能会导致线程在退出时可能会调用错误的析构函数)。但是一直加1会导致序列号回绕,还是会复用 key ,所以调用 pthread_create_key 获取可用的 key 时会检查是否有回绕风险,如果有则创建失败。
除了进程范围内的 key 结构数组外,系统还在进程中维护关于每个线程的控制块 TCB(用于管理寄存器,线程栈等),里面有一个 pthread_key_data 类型的数组。这个数组中的元素数量和进程中的 key 数组数量相等。 pthread_key_data 的定义类似如下:
根据 pthread_key_create() 返回的可用的 key 在 __pthread_keys 数组中的下标, pthread_setspecific() 在 pthread_key_data 的数组 中定位相同下标的一个元素 pthread_key_data ,并设置其序号 seq 设置为对应的 key 的序列号,数据指针 data 指向设置线程特有数据(TSD)的值。
pthread_getspecific() 用于将 pthread_setspecific() 设置的 data 取出。
线程退出时, pthread_key_data 中的序号 seq 用于判断该 key 是否仍在使用中(即与在 __pthread_keys 中的同一个下标对应的 key 的序列号 seq 是否相同),若是则将 pthread_key_data 中 data(即 线程特有数据 TSD)作为参数调用析构函数。
由于系统在每个进程中 pthread_key_t 类型的数量是有限的,所有在进程中并不能获取无限个 pthread_key_t 类型。Linux 中可以通过 PTHREAD_KEY_MAX(定义于 limits.h 文件中)或者系统调用 sysconf(_SC_THREAD_KEYS_MAX) 来确定当前系统最多支持多少个 key 。 Linux 中默认是 1024 个 key,这对大多数程序来书已经够了。如果一个线程中有多个线程局部存储变量(TLS),通常可以将这些变量封装到一个数据结构中,然后使用封装后的数据结构和一个线程局部变量相关联,这样就能减少对键值的使用。
https://blog.csdn.net/hustraiet/article/details/9857919
https://blog.csdn.net/hustraiet/article/details/9857919
https://blog.csdn.net/caigen1988/article/details/7901248
http://www.bitools.com/?p=2443
https://spockwangs.github.io/blog/2017/12/01/thread-local-storage/
https://www.jianshu.com/p/71c2f80d7bd1
https://blog.csdn.net/cywosp/article/details/26469435
http://www.embeddedlinux.org.cn/emblinuxappdev/117.htm
❷ 线程局部存储的简介
在一个线程修改的内存内容,对所有线程都生效。这是一个优点也是一个缺点。说它是优点,线程的数据交换变得非常快捷。说它是缺点,一个线程死掉了,其它线程也性命不保; 多个线程访问共享数据,需要昂贵的同步开销,也容易造成同步相关的BUG。
如果需要在一个线程内部的各个函数调用都能访问、但其它线程不能访问的变量(被称为static memory local to a thread 线程局部静态变量),就需要新的机制来实现。这就是TLS。
线程局部存储在不同的平台有不同的实现,可移植性不太好。幸好要实现线程局部存储并不难,最简单的办法就是建立一个全局表,通过当前线程ID去查询相应的数据,因为各个线程的ID不同,查到的数据自然也不同了。但Windows系统采用了每个线程建线程专享的索引表,表的条目为线程局部存储的地址。在线程执行的任何代码处,都可以查询本线程的这个索引表获得要访问的线程局部存储的地址。
大多数平台都提供了线程局部存储的方法,无需要我们自己去实现:
❸ threadlocal使用场景和原理是什么
ThreadLocal主要应用于那些每个线程需要拥有独立的、不会被其他线程共享的数据存储场景。当一个变量需要在多个方法中使用,但又不需要跨线程共享时,ThreadLocal就派上用场。它的核心原理在于为每个线程创建一个独立的变量副本,从而避免了多线程环境下的同步和并发问题。
相反,线程同步的主要目标是解决多线程中对共享变量的并发访问。它确保每个线程都能准确获取到变量的最新值,防止数据竞争。比如在多个线程同时写入同一个变量时,为了防止数据不一致,通常需要使用锁等同步机制来控制访问。
ThreadLocal的设计思想是为每个线程提供一个线程局部存储空间,这样就无需在整个线程中进行同步,简化了并发控制,提高了效率。在Spring框架中,ThreadLocal被广泛用于需要线程隔离的场景,如保存用户的会话信息等,以避免跨线程操作带来的复杂性。