树图的存储
‘壹’ 线索二叉树是一种什么结构
物理结构。包括线性存储和非线性存储其中,线性存储结构有顺序、链接、索引和散列4种结构。非线性存储结构有:树形存储结构、图形存储结构。
n个结点的二叉链表中含有n+1(2n-(n-1)=n+1)个空指针域。利用二叉链表中的空指针域,存放指向结点在某种遍历次序下的前驱和后继结点的指针。
这种加上了线索的二叉链表称为线索链表,相应的二叉树称为线索二叉树(Threaded BinaryTree)。根据线索性质的不同,线索二叉树可分为前序线索二叉树、中序线索二叉树和后序线索二叉树三种。
(1)树图的存储扩展阅读:
二叉树的遍历本质上是将一个复杂的非线性结构转换为线性结构,使每个结点都有了唯一前驱和后继(第一个结点无前驱,最后一个结点无后继)。对于二叉树的一个结点,查找其左右子女是方便的,其前驱后继只有在遍历中得到。
为了容易找到前驱和后继,有两种方法。一是在结点结构中增加向前和向后的指针fwd和bkd,这种方法增加了存储开销,不可取;二是利用二叉树的空链指针。
建立线索二叉树,或者说对二叉树线索化,实质上就是遍历一棵二叉树。在遍历过程中,访问结点的操作是检查当前的左,右指针域是否为空,将它们改为指向前驱结点或后续结点的线索。为实现这一过程,设指针pre始终指向刚刚访问的结点,即若指针p指向当前结点,则pre指向它的前驱,以便设线索。
‘贰’ 怎样将一棵二叉树的存储结构转化为一个无向图的存储结构,谁能说说编程思想啊
图的存储机构一般用邻接矩阵或邻接表,二叉树一般是链表结构,就是把链表变成临近矩阵了,用中序形势对链表节点进行编号和访问并做为临近矩阵的顺序,用中序访问,对当前节点和后继节点判断,然后置对应的矩阵为1,(a[当前],[后继]=1 ,a[后继],[当前]=1 ) ,中序访问完就可以了
‘叁’ 二叉树的存储结构是怎样的有哪些类型的存储结构对应的c语言描述是
楼上回答的是树的存储,不是二叉树的存储,主要如下:
1、顺序存储:适用于完全二叉树,如果根从1开始编号,则第i结点的左孩子编号为2i,右孩子为2i+1,双亲编号为(i/2)下取整,空间紧密
2、二叉链表:适用于普通二叉树,每个结点除了数据外,还有分别指向左右孩子结点的指针,存储n个结点有n+1个空指针域,存储密度小于顺序存储,但是适用范围广,缺陷是正常遍历只能从双亲向孩子,退回来一般需要借助栈(或者用递归,其实也是栈)
3、三叉链表:同样适用于普通二叉树,结点除了数据外,还有左右孩子与双亲的指针,存储密度低于二叉链表,但是可以非常方便地在二叉树中遍历,不需要其他辅助工具
‘肆’ 顺序存储表示法为什么不是树的存储形式
顺序存储表示法是树的存储形式的原因:顺序存储方式不仅能用于存储线性结构,还可以用来存放非线性结构,例如完全二叉树是属于非线性结构,但其最佳存储方式是顺序存储方式。
对于一般的家谱树(一般的多叉树)来说,我们可以很清楚的看出层次关系,树的层数表示代数(一共多少代人),树的最后一层表示最后一代人,由于多叉链表法表示的不方便,因此被迫无奈采用孩子兄弟表示法(二叉链表法)。
结构
二叉树的顺序存储就是用一组连续的存储单元存放二又树中的结点元素,一般按照二叉树结点自上向下、自左向右的顺序存储。使用此存储方式,结点的前驱和后继不一定是它们在逻辑上的邻接关系,非常适用于满二又树和完全二又树。根据完全二叉树和满二叉树的特性,假设将图1中的完全二又树存放在一维数组bree中,将发现结点的编号正好与数组元素的下标对应。
‘伍’ 图的定义与存储
图状结构是一种比树形结构更复杂的非线性结构。在树形结构中,结点间具有分支层次关系,每一层上的结点只能和上一层的至多一个结点相关,但可能和下一层的多个结点相关。而在图状结构中,任意两个结点之间都可能相关,即结点之间的邻接关系可以是任意的。因此,图是 比树更一般、更复杂的非线性结构,常被用于描述各种复杂的数据对象,在自然科学、社会科学和人文科学等许多领域有着非常广泛的应用。
图(Graph)是由非空的顶点集合和一个描述顶点之间的关系——边(或者弧)的集合组成的,其形式化定义为:G=(V,E)、V={v1|v1包含data object}、E={(v1,vj)|(vi,vj 包含V^P(vj,vj)。其中,G表示一个图,V是图G中顶点的集合,E是图G中边的集合,集合E中P(vi,vj)表示顶点vi和顶点vj之间有一条直接连线,即偶对(v1,vj)表示一条边。如:G2=(V2,E2)、V2={v1,v2,v3,v4}、E2={<v1,v2>,<v1,v3>,<v3,v4>,<v4,v1>}。
1、无向图:在一个图中,如果任意两个顶点构成的偶对(vi,vj)包含E是无序的,即顶点之间的连线是没有方向的,则称该图为无向图。
2、有向图:在一个图中,如果任意两个顶点构成的偶对<vj,vj>包含E是有序的(有序对常常用尖括号“<>”表示),即顶点之间的连线是有方向的,则称该图为有向图。
6、顶点的度、入度、出度:顶点的度(Degree)是指依附于某顶点v的边数,通常记为TD(v)。顶点v的入度是指以顶点v为终点的弧的数目,记为ID(V);出度是指以顶点v为始点的弧的数目,记为OD(V)。有TD(V)=ID(v)+OD(v)。
7、边的权、网:与边有关的数据信息称为权(Weight)。在实际应用中,权值可以有某种含义。例如,在一个反映城市交通线路的图中,边上的权值可以表示该条线路的长度或等级;对于一个电子线路图,边上的权值可以表示两个端点之间的电阻、电流或电压值;对于反映工程进度的图而言,边上的权值可以表示从前一个工程到后一个工程所需要的时间或其他代价等。边上带权的图称为网或网络(network)。
8、路径、路径长度:顶点vp到顶点vq之间的路径(path)是指顶点序列vp、vi1、vi2、···、vim、vq。其中,(vp,vi1)、(vi1,vi2)、···、(vim,vq)分别为图中的边。路径上边的数目称为路径长度。
9、简单路径、回路、简单回路:序列中顶点不重复出现的路径称为简单路径。路径中第一个顶点与最后一个顶点相同的 路径称为回路或环(Cycle)。除第一个顶点与最后一个顶点之外,其他顶点不重复出现的回路称为简单回路,或者简单环。
10、子图:对于图G=(V,E),G'=(V',E'),若存在 V'是V的子集, E'是E的子集,则称图 G'是G的的一个子图。
11、连通、连通图、连通分量:在无向图中,如果从一个顶点vi到另一个顶点vj(i=!j)存在路径,则称顶点vi和vj是连通的。如果图中任意两个顶点都是连通的,则称该图是连通图。无向图的极大连通子图称为连通分量,极大连通子图是指在保证连通与子图的条件下,包含原图中所有的顶点与边。 如下图:
12、强连通图、强连通分量:对于有向图来说,若图中任意一对顶点vi和vj(i=!j)均存在从一个顶点vi到另一个顶点vj和从vj到vi的路径,则称该有向图是强连通图。有向图的极大强连通子图称为强连通分量,极大强连通子图的含义同上。
13、生成树:所谓连通图G的生成树,是G的包含其全部n个顶点的一个极小连通子图,所谓极小连通子图是指在包含所有顶点且保证连通的前提下尽可能少地包含原图中的边。生成树必定包含且仅包含连通图G的n-1条边。在生成树中添加任意一条属于原图中的边必定会产生回路,因为新添加的边使其所依附的两个顶点之间有了第二条路径。若生成树中减少任意一条边,则必然成为非连通的。
14、生成森林:在非连通图中,由每个连通分量都可得到一个极小连通子图,即一棵生成树。这些连通分量的生成树就组成了一个非连通图的生成森林。
将上图存储到计算机中,请设计一个数据结构并将其合理存储起来?
所谓邻接矩阵(Adjacency Matrix)的存储结构,就是用一维数组存储图中的顶点信息,用矩阵表示图中各顶点的信息,用矩阵表示图中各顶点的信息,用矩阵表示图中各顶点之间的邻接关系。假设图G=(V,E)有n个确定的顶点,即V ={v0,v1,···,vn-1},则表示G中各顶点相邻关系的矩阵为一个n×n的矩阵,矩阵的元素为:
A[i][j]={1,若(vi,vj)或<vi,vj>是E(G)中的边 ;2,若(vi,vj)或<vi,vj>不是E(G)中的边。
若G是网,则邻接矩阵可定义为:
A[i][j]={wij,若(vi,vj)或<vi,vj>是E(G)中的边 ;0或&,若(vi,vj)或<vi,vj>不是E(G)中的边。
(1)无向图的邻接矩阵一定是一个对称矩阵。因此,在具体存放邻接矩阵时只需存放上或下三角矩阵的元素即可。
(2)对于无向图,邻接矩阵的第i行或第i列非零元素或非&元素的个数正好是第i个顶点的度TD(vi)。
(3)对于有向图,邻接矩阵的第i行货第i列非零元素或非&元素的个数正好是第i个顶点的出度OD(vi)或如度ID(vi)。
(4)用邻接矩阵方法存储图,很容易确定图中任意两个顶点之间是否有边相连;但是,要确定图中有多少条边,则必须按行、按列对每个元素进行检测,所花费的时间代价很大。这是用邻接矩阵存储图的局限性。
在实际应用邻接矩阵存储图时,除了用一个二维数组存储用于表示顶点间相邻关系的邻接矩阵外,还需用一个一维数组来存储顶点信息,另外,还有图的顶点树和边树。故可将其形式描述如下:
邻接表(Adjacency List)是图的一种顺序存储于链式存储结合的存储方法。邻接表表示法类似于树的孩子链表表示法。就是对于图G中的每个顶点vi,将所有邻接于vi的顶点vj链成一个单链表,这个单链表就称为顶点vi的邻接表,再将所有顶点的邻接表表头放到数组中,就构成了图邻接表。
在邻接表表示中有两种结点结构:一种是顶点表的结点结构,它由顶点域(vertex)和指向第一条邻接边的指针域(firstedge)构成。另一种是边表即邻接表结点,它由邻接点域(adjvex)和指向下一条邻接边的指针域(next)构成。对于网的边表需再增设一个存储边上的信息(如权值等)的域(info)。