分布式图片存储
⑴ 集中式存储和分布式存储有什么区别
区别:
1、物理介质分布不同。
集中存储:物理介质集中布放。
分布存储:物理介质分布到不同的地理位置。
2、视频流上传不同:
集中存储:视频流上传到中心。
分布存储:视频流就近上传,对骨干网带宽没有什么要求;可采用多套低端的小容量的存储设备分布部署,设备价格和维护成本较低;小容量设备分布部署,对机房环境要求低。
3、对机房有要求不同:
集中存储:对机房环境要求高,要求机房空间大,承重、空调等都是需要考虑的问题。
分布存储:对骨干网带宽没有什么要求,可采用多套低端的小容量的存储设备分布部署,设备价格和维护成本较低;。小容量设备分布部署,对机房环境要求低。
(1)分布式图片存储扩展阅读:
集中存储:
指建立一个庞大的数据库,把各种信息存入其中,各种功能模块围绕信息库的周围并对信息库进行录入、修改、查询、删除等操作的组织方式。
分布式存储系统:
是将数据分散存储在多台独立的设备上。传统的网络存储系统采用集中的存储服务器存放所有数据,存储服务器成为系统性能的瓶颈,也是可靠性和安全性的焦点,不能满足大规模存储应用的需要。
分布式网络存储系统采用可扩展的系统结构,利用多台存储服务器分担存储负荷,利用位置服务器定位存储信息,它不但提高了系统的可靠性、可用性和存取效率,还易于扩展。
网络-集中存储
网络-分布式存储系统
⑵ 图片存储在什么地方比较好数量比较多。。要那种永远不会丢失的地方。。最好方便点
同意楼上的,图片可以存储在又拍云存储,又拍云存储采取的是分布式存储,你的图片会备份到三台服务器上,一般来说,就算其中某台服务器出现问题,也会迅速的转接到其他的服务器上,另外们又拍云存储有四条线路,电信,移动,联通和教育四条线路,可以保证访问者从各条线路以最快的速度访问你的图片
⑶ 浅析 Haystack 图片存储系统
Facebook在2010年的时候发表过一篇在分布式存储系统领域很有名的一篇文章《Finding a needle in Haystack》来描述他们的图片存储系统,Haystack 存储了超过2600亿张图片,大约占了20TB的数据,用户每周都会上传10亿张图片,高峰时期的并发量在100万以上(这是2010年的数据,现在很有可能上了一个数量级)。
在这个数量级之下,需要考虑的问题不仅仅是高吞吐,低延时,保证数据的一致性,还要考虑如何能节省流量,容易扩展,容错等等。下面我们就来看下Haystack是怎样满足这些分布式系统的要素的。
图片存储系统的最大特点是数据只写一次,读取频繁,不会修改,很少删除。Facebook 一开始的存储系统是基于NFS的NAS(Network Attached Storage), 但这种基于 POSIX 的文件系统无法支撑如此大的负载。其中主要的问题在于在图片寻址的过程中会产生过多的磁盘操作。
我们知道从传统文件系统里面读取一个文件需要至少三次磁盘操作,第一次从硬盘中读取目录的 metadata 到内存中,然后读取inode到内存,最后才从磁盘中读取文件内容。
再者这些metadata里面包含了大量比如权限控制这些对于图片存储系统来说无用的信息,也浪费了大量的磁盘空间。当像图片这样的静态资源服务出现瓶颈的时候,自然就会想到使用 CDN (Content Delivery Networks) 系统。在传统的设计中,一个图片的 HTTP 请求发送后, 如果 CDN 有这个资源的缓存,就会立马返回,反之 ,CDN 会将根据请求的 URL 从存储系统里面读取图片,更新缓存,然后再返回。在这样的设计中,CDN 确实可以很有效地处理热点图片的请求。
但像 Facebook 这样的社交网络中,有大量的请求是针对那些非热点或者老内容的,用户在请求那些长尾 (long tail) 内容时将没有优化。当然,有些同学会说,那我可以将所有的图片都缓存到 CDN,那确实会解决这个问题,但将会极大地增加资源的开销。
为了减少那些直接 hit 到存储系统的请求的磁盘操作,他们想到在第一次读取文件的时候把filename到 file handle 的映射缓存到内存,在下一次读取文件的时候,会调用自定义的open_by_filehandle来减少磁盘操作,但这对于long tail的读取问题依然存在,因为这些文件的映射关系没有提前放在内存中。
于是,Facebook 决定从头研发图片存储系统,从前面我们可以看出,Haystack 的核心任务就是在处理每一次的请求中尽可能地减少磁盘操作。我们先来描述下 Haystack 读取和上传图片流程是怎样的,然后再来看其中的细节是如何处理的。
当发起一次图片读取请求的时候会通过一个事先构建好的 URL
http://///这个 URL 实际上显示出了访问的顺序,先从外部 CDN 读取,如果没有,访问内部 Cache,如果还是没有,就直接访问 Store Machine.(URL最后一部分提供了图片的唯一标识)
用户上传图片的时候先会上传到 web 服务器, 然后服务器从Directory中找到一个可写的physical volume,最后服务器会给这个图片生成一个唯一ID, 然后写入到这个logical volume 所对应的所有physical volume中。
上面的过程中出现了几个陌生的名词,别着急,我们一个个来看。我们先来介绍 Haystack 的三个主要组件:
Store,Directory,Cache.
Store 是核心组件,负责图片的存储。Store 的容量决定了这个存储系统的容量,整个 Store 组件由很多个 store machine 组成,store machine 的容量又由一系列的 physical volume 决定。
例:要提供 10TB容量,我们可分摊到 100 个 physical volume,每个 physical volume 提供 100 GB 的容量。这时候有的同学会问,那么数据冗余是怎么解决的呢?Haystack 借鉴了普通硬盘中的 logical volume 的概念,将不同机器上的多个 physical
volume 组成了一个虚拟的 logical volume。
当存储一张图片的时候,实际上是存储到了 logical volume 对应的所有 physical volume中。它们之间的映射关系连同其它的metadata都存储在 Directory组件中。每个physicalvolume 中都存储了上百万张图片,可以把它想象成一个巨大的 append-only 文件,然后通过 offset 来访问文件。
我们来详细看下这个文件到底是如何存放的,如何来达到减少磁盘操作目的的。对于每个这样超大的文件,都由一个 superblock 和一系列的 needles 组成,每个 needle 就是每张图片的信息。看下下面这张图,它的结构就一目了然了。
每个needle包含的细节信息有图片ID,图片大小,图片数据等等,还会有数据校验的属性。每个 store machine 都有若干个physical volume大文件, 为了提高检索needles 的速度,在内存里为每个physical volume都维护了一张图片I 到needle之间的映射表。
当store machine接收到读取请求时,首先从内存映射表中找到相应的metadata, 然后通过offset从硬盘中读取到整个needle, 通过数据校验后返回。如果接收到的是上传请求,会把组织好的needle追加到所有对应的physical volume文件中,并且更新内存里的映射表。如果是删除操作的话,我们注意到下图中有个Flags标志位其实就是用来标记是否是删除的状态,这样一来就很简单,直接在这个位置标记好,系统会在后面执行compaction 操作回收这些空间。
讲到这里,一个正常流程的存储过程已经很清楚了。这时候我们就需要考虑分布式系统一个必不可少的特性:容错性。当一个 store machine 宕机的时候,理论上我们可以读取所有的 physical volume 来重新构建内存映射表,但这就需要从磁盘重新读取 TB 级别的数据,显然是非常耗时和不高效的。为了解决这个问题,每个 store machine 为每个 physical volume 都维护了一个索引文件。这个索引文件类似于游戏中的存档点 (checkpoint),它的结构和 physical volume 文件类似,保存了查找每个 needle 所需的属性。为了性能,索引文件是异步更新的(写的时候异步更新,删的时候压根不会更新),这就会带来一个问题:索引文件有可能不是最新的。之前我们提到过,physical volume 文件是一个 append-only 的文件,索引文件也是。所以我们只需要在重启 store machine 的时候,从后向前扫描 physical volume 文件找到那几个没有被索引的文件,加到索引里去就行了。对于被删除的文件,在真正读取完整 needle 数据的时候,通过检查删除标志位来更新内存映射表。
我们之前提到可以使用 CDN 来缓解系统压力,但它无法很好地解决非热点图片的问题,并且如果 CDN 节点出现故障的话,没有 Cache 这一层会对底层的存储系统 Store 产生巨大的压力。Cache 组件主要缓存了最近上传的图片,它的概念很简单,实际上是一个分布式 hash table,通过图片的 ID 为 key 可以找到对应的数据。Cache 接收从 CDN 或者浏览器直接发来的 HTTP 请求,但只有在以下两个条件都满足的情况下才会缓存图片:
1) 请求来自用户浏览器而不是来自 CDN
2) 请求的 store machine 是可写的
这听上去有些费解,条件 1 的原因是如果一个请求在 CDN 缓存中 miss 其实也会在 Cache 中 miss (如果一张图片成为热门的话,那也能在 CDN 找到),条件 2 的原因则是避免让可写的 store machine 进行大量读操作,因为图片通常在刚刚上传后会被大量读取,文件系统通常在只读或者只写而不是既读又写的时候性能比较好。
如果没有 Cache 的话,可写的 store machine 将会同时处理写操作以及大量的读操作,会导致性能的急剧下降。
现在我们只剩下 Directory 组件没有讲了。除了之前我们提到的存储了 physical volume 到 logical volume 的映射关系以及图片 ID 到 logical physical 的映射关系,它还提供负载均衡服务以及为每个操作选择具体的 volume (因为写操作的对象是 logical volume,读操作的对象是 physical volume), 它还决定了一个请求是被 CDN 处理还是被 Cache 处理。Directory 还可以标记逻辑卷的状态,在运维需要或者空间满了的时候可以标记为只读状态。当往 Store 加新机器的时候,这些机器就会标记成可写的,只有可写的机器才能接受图片上传请求。这里有一个细节需要注意,图片 ID 到 logical physical 的映射表肯定无法存放在单机内存,文章中也没有交代具体实现。我们猜想可以使用 Mysql 分片集群和加上 Memcached 集群来实现。总的来讲,Directory 实际上根据 metadata,然后结合各种策略,实现了整个系统的调度器。
本文描述了 Haystack 图片存储系统的主要脉络,当然还有许多细节没有提到,比如整个系统的容错机制,如何实现批量写操作等等。经过这几年的发展,我们相信 Haystack 肯定也进行了更多的优化,现在一些开源的分布式存储系统也被应用到实际的生产系统中,比如淘宝的 TFS,MooseFS 等等。我们会在后续的文章中比较这些系统之间的异同,总结出解决其中典型问题的通用方法。
⑷ 什么是分布式存储
分布式存储是一种数据存储方式。
分布式存储具体是指通过网络将多台存储设备和计算机连接起来,共同构建一个存储系统。在这个系统中,数据被分散存储在多个节点上,每个节点都可以独立工作并处理数据请求。以下是关于分布式存储的详细解释:
1. 基本概述:与传统的中心化存储不同,分布式存储利用网络技术将数据存储和计算分散到多个节点上。通过这种方式,系统的可靠性和可扩展性得到了提高。因为数据被分散存储在多个地方,即使部分节点出现故障,数据也能得到保护。
2. 核心特点:分布式存储的关键在于其去中心化的特性。数据不是存储在一个中心服务器上,而是分布在多个存储设备中。这意味着没有一个单点故障会导致整个系统的瘫痪。此外,分布式存储系统通常具有较高的可扩展性,因为可以轻松地添加更多的存储节点来扩展存储容量。
3. 工作原理:在分布式存储系统中,数据被分割成小块并分布在不同的节点上。当需要访问数据时,系统会根据特定的算法找到存储数据的位置。由于数据是分散的,因此读取和写入操作可以在多个节点上同时进行,从而提高数据处理的效率。
4. 应用场景:分布式存储适用于需要大规模数据存储和处理的应用场景,如云计算、大数据分析和在线备份服务等。它能够提供高可靠性、灵活性和经济性,满足这些应用对于数据存储的需求。
总之,分布式存储通过网络连接多个存储设备和计算机来构建一个可靠且可扩展的存储系统。它去中心化的特性使得数据更加安全,并且能够适应大规模数据处理的需求。
⑸ 分布式存储是什么
什么是分布式存储系统?
就是将数据分散存储在多 *** 立的设备上
分布式存储是什么?选择什么样的分布式存储更好?
分布式存储系统,是将数据分散存储在多 *** 立的设备上。传统的网络存储系统采用集中的存储服务器存放所有数据,存储服务器成为系统性能的瓶颈,也是可靠性和安全性的焦点,不能满足大规模存储应用的需要。分布式网络存储系统采用可扩展的系统结构,利用多台存储服务器分担存储负荷,利用位置服务器定位存储信息,它不但提高了系统的可靠性、可用性和存取效率,还易于扩展。
联想超融合ThinkCloud AIO超融合云一体机是联想针对企业级用户推出的核心产品。ThinkCloud AIO超融合云一体机实现了对云管理平台、计算、网络和存储系统的无缝集成,构建了云计算基础设施即服务的一站式解决方案,为用户提供了一个高度简化的一站式基础设施云平台。这不仅使得业务部署上线从周缩短到天,而且与企业应用软件、中间件及数据库软件完全解耦,能够有效提升企业IT基础设施运维管理的效率和关键应用的性能
什么是分布式数据存储
定义:
分布式数据库是指利用高速计算机网络将物理上分散的多个数据存储单元连接起来组成一个逻辑上统一的数据库。分布式数据库的基本思想是将原来集中式数据库中的数据分散存储到多个通过网络连接的数据存储节点上,以获取更大的存储容量和更高的并发访问量。近年来,随着数据量的高速增长,分布式数据库技术也得到了快速的发展,传统的关系型数据库开始从集中式模型向分布式架构发展,基于关系型的分布式数据库在保留了传统数据库的数据模型和基本特征下,从集中式存储走向分布式存储,从集中式计算走向分布式计算。
特点:
1.高可扩展性:分布式数据库必须具有高可扩展性,能够动态地增添存储节点以实现存储容量的线性扩展。
2 高并发性:分布式数据库必须及时响应大规模用户的读/写请求,能对海量数据进行随机读/写。
3. 高可用性:分布式数据库必须提供容错机制,能够实现对数据的冗余备份,保证数据和服务的高度可靠性。
分布式块存储和 分布式文件存储有是什么区别
分布式文件系统(dfs)和分布式数据库都支持存入,取出和删除。但是分布式文件系统比较暴力,可以当做key/value的存取。分布式数据库涉及精炼的数据,传统的分布式关系型数据库会定义数据元组的schema,存入取出删除的粒度较小。
分布式文件系统现在比较出名的有GFS(未开源),HDFS(Hadoop distributed file system)。分布式数据库现在出名的有Hbase,oceanbase。其中Hbase是基于HDFS,而oceanbase是自己内部实现的分布式文件系统,在此也可以说分布式数据库以分布式文件系统做基础存储。
统一存储和融合存储以及分布式存储的区别
统一存储具体概念:
统一存储,实质上是一个可以支持基于文件的网络附加存储(NAS)以及基于数据块的SAN的网络化的存储架构。由于其支持不同的存储协议为主机系统提供数据存储,因此也被称为多协议存储。
基本简介:
统一存储(有时也称网络统一存储或者NUS)是一个能在单一设备上运行和管理文件和应用程序的存储系统。为此,统一存储系统在一个单一存储平台上整合基于文件和基于块的访问,支持基于光纤通道的SAN、基于IP的SAN(iSCSI)和NAS(网络附加存储)。
工作方式:
既然是一个集中化的磁盘阵列,那么就支持主机系统通过IP网络进行文件级别的数据访问,或通过光纤协议在SAN网络进行块级别的数据访问。同样,iSCSI亦是一种非常通用的IP协议,只是其提供块级别的数据访问。这种磁盘阵列配置多端口的存储控制器和一个管理接口,允许存储管理员按需创建存储池或空间,并将其提供给不同访问类型的主机系统。最通常的协议一般都包括了NAS和FC,或iSCSI和FC。当然,也可以同时支持上述三种协议的,不过一般的存储管理员都会选FC或iSCSI中的一种,它们都提供块级别的访问方式,和文件级别的访问方式(NAS方式)组成统一存储。
分布式存储支持多节点,节点是什么,一个磁盘还是一个主控?
一个节点是存储节点的简称,存储节点一般是一个存储服务器(必然带控制器),服务器之间通过高速网络互连。
现在越来越多的存储服务器使用arm CPU+磁盘阵列节省能耗,提高“容量能耗比”。
分布式文件系统有哪些主要的类别?
分布式存储在大数据、云计算、虚拟化场景都有勇武之地,在大部分场景还至关重要。munity.emc/message/655951 下面简要介绍*nix平台下分布式文件系统的发展历史:
1、单机文件系统
用于操作系统和应用程序的本地存储。
2、网络文件系统(简称:NAS)
基于现有以太网架构,实现不同服务器之间传统文件系统数据共享。
3、集群文件系统
在共享存储基础上,通过集群锁,实现不同服务器能够共用一个传统文件系统。
4、分布式文件系统
在传统文件系统上,通过额外模块实现数据跨服务器分布,并且自身集成raid保护功能,可以保证多台服务器同时访问、修改同一个文件系统。性能优越,扩展性很好,成本低廉。
分布式存储都有哪些,并阐述其基本实现原理
神州云科 DCN NCS DFS2000(简称DFS2000)系列是面向大数据的存储系统,采用分布式架构,真正的分布式、全对称群集体系结构,将模块化存储节点与数据和存储管理软件相结合,跨节点的客户端连接负载均衡,自动平衡容量和性能,优化集群资源,3-144节点无缝扩展,容量、性能岁节点增加而线性增长,在 60 秒钟内添加一个节点以扩展性能和容量。
什么是Hadoop分布式文件系统 10分
分布式文件系统(Distributed File System)是指文件系统管理的物理存储资源不一定直接连接在本地节点上,而是通浮计算机网络与节点相连。
Hadoop是Apache软件基金会所研发的开放源码并行运算编程工具和分散式档案系统,与MapRece和Google档案系统的概念类似。
HDFS(Hadoop 分布式文件系统)是其中的一部分。
分布式文件存储系统采用什么方式
一。分布式Session的几种实现方式1.基于数据库的Session共享2.基于NFS共享文件系统3.基于memcached 的session,如何保证 memcached 本身的高可用性?4. 基于resin/tomcat web容器本身的session复制机制5. 基于TT/Redis 或 jbosscache 进行 session 共享。6. 基于cookie 进行session共享或者是:一、Session Replication 方式管理 (即session复制) 简介:将一台机器上的Session数据广播复制到集群中其余机器上 使用场景:机器较少,网络流量较小 优点:实现简单、配置较少、当网络中有机器Down掉时不影响用户访问 缺点:广播式复制到其余机器有一定廷时,带来一定网络开销二、Session Sticky 方式管理 简介:即粘性Session、当用户访问集群中某台机器后,强制指定后续所有请求均落到此机器上 使用场景:机器数适中、对稳定性要求不是非常苛刻 优点:实现简单、配置方便、没有额外网络开销 缺点:网络中有机器Down掉时、用户Session会丢失、容易造成单点故障三、缓存集中式管理 简介:将Session存入分布式缓存集群中的某台机器上,当用户访问不同节点时先从缓存中拿Session信息 使用场景:集群中机器数多、网络环境复杂优点:可靠性好 缺点:实现复杂、稳定性依赖于缓存的稳定性、Session信息放入缓存时要有合理的策略写入二。Session和Cookie的区别和联系以及Session的实现原理1、session保存在服务器,客户端不知道其中的信息;cookie保存在客户端,服务器能够知道其中的信息。 2、session中保存的是对象,cookie中保存的是字符串。 3、session不能区分路径,同一个用户在访问一个网站期间,所有的session在任何一个地方都可以访问到。而cookie中如果设置了路径参数,那么同一个网站中不同路径下的cookie互相是访问不到的。 4、session需要借助cookie才能正常 工作 。如果客户端完全禁止cookie,session将失效。是无状态的协议,客户每次读取web页面时,服务器都打开新的会话......
⑹ 什么是分布式存储
随着大数据时代的蓬勃发展,分布式系统在互联网公司的应用场景中扮演着重要角色。它们以规模大和成本低为显着特点,以适应不同业务需求。分布式存储系统作为分布式系统的核心支撑,其定义和分类是理解其运作的关键。分布式存储系统主要具备四个特性:可扩展性、低成本、高性能和易用性。它涉及的数据分布、一致性、容错、负载均衡、事务并发控制以及易用性管理等技术问题。
数据分类主要分为非结构化数据,如音频、图片和文档,半结构化数据如HTML文档,以及结构化数据,通常存储在关系数据库中。根据存储需求,分布式存储系统可以分为不同的类别:
- 分布式文件系统,如Facebook Haystack和Taobao Flie System,主要针对非结构化数据的存储,如大文件和Blob对象。
- 分布式键值系统,如Amazon Dynamo和Taobao Tair,适用于存储关系简单的半结构化数据,提供基本的CRUD操作。
- 分布式表格系统,如Google Bigtable和Azure Table Storage,功能更丰富,处理复杂的数据结构,介于键值系统和数据库之间。
- 分布式数据库,如Mysql集群和Amazon RDS,专门用于结构化数据,支持SQL查询和复杂的事务处理,但扩展性可能受限。
然而,随着SQL数据库面临扩展性挑战,NoSQL系统应运而生,如Google Spanner等,它们旨在解决高并发和高性能的问题。总的来说,分布式存储系统是一个复杂而关键的组件,它通过各种技术手段,实现数据的高效存储和管理,以满足不同业务场景的需求。