8k乘8存储器多少字
‘壹’ 【计算机组成原理】这里8K*8位的存储器为什么容量是8kb,这是怎么算的
一个字节等于八位,8片8k×1位的存储器就是8k×8位,大写的B表示的是字节,所以存储器容量是8k字节没问题。
‘贰’ 计算机组成原理(三)存储系统
辅存中的数据要调入主存后才能被CPU访问
按存储介质,存储器可分为磁表面存储器(磁盘、磁带)、磁心存储器半导体存储器(MOS型存储器、双极型存储器)和光存储器(光盘)。
随机存取存储器(RAM):读写任何一个存储单元所需时间都相同,与存储单元所在的物理位置无关,如内存条等
顺序存取存储器(SAM):读写一个存储单元所需时间取决于存储单元所在的物理位置,如磁盘等
直接存取存储器(DAM):既有随机存取特性,也有顺序存取特性。先直接选取信息所在区域,然后按顺序方式存取。如硬盘等
相联存储器,即可以按内容访问的存储器(CAM)可以按照内容检索到存储位置进行读写,“快表”就是一种相联存储器
读写存储器—即可读、也可写(如:磁盘、内存、Cache)
只读存储器—只能读,不能写(如:实体音乐专辑通常采用CD-ROM,实体电影采用蓝光光盘,BIOS通常写在ROM中)
断电后,存储信息消失的存储器——易失性存储器(主存、Cache)
断电后,存储信息依然保持的存储器——非易失性存储器(磁盘、光盘)
信息读出后,原存储信息被破坏——破坏性读出(如DRAM芯片,读出数据后要进行重写)
信息读出后,原存储信息不被破坏——非破坏性读出(如SRAM芯片、磁盘、光盘)
存储器芯片的基本电路如下
封装后如下图所示
图中的每条线都会对应一个金属引脚,另外还有供电引脚、接地引脚,故可以由此求引脚数目
n位地址对应2 n 个存储单元
假如有8k×8位的存储芯片,即
现代计算机通常按字节编址,即每个字节对应一个地址
但也支持按字节寻址、按字寻址、按半字寻址、按双字寻址
(Dynamic Random Access Memory,DRAM)即动态RAM,使用栅极电容存储信息
(Static Random Access Memory,SRAM)即静态RAM,使用双稳态触发器存储信息
DRAM用于主存、SRAM用于Cache,两者都属于易失性存储器
简单模型下需要有 根选通线,而行列地址下仅需 根选通线
ROM芯片具有非易失性,断电后数据不会丢失
主板上的BIOS芯片(ROM),存储了“自举装入程序”,负责引导装入操作系统(开机)。逻辑上,主存由 辅存RAM+ROM组成,且二者常统一编址
位扩展的连接方式是将多个存储芯片的地址端、片选端和读写控制端相应并联,数据端分别引出。
字扩展是指增加存储器中字的数量,而位数不变。字扩展将芯片的地址线、数据线、读写控制线相应并联,而由片选信号来区分各芯片的地址范围。
实际上,存储器往往需要同时扩充字和位。字位同时扩展是指既增加存储字的数量,又增加存储字长。
两个端口对同一主存操作有以下4种情况:
当出现(3)(4)时,置“忙”信号为0,由判断逻辑决定暂时关闭一个端口(即被延时),未被关闭的端口正常访问,被关闭的端口延长一个很短的时间段后再访问。
多体并行存储器由多体模块组成。每个模块都有相同的容量和存取速度,各模块都有独立的读写控制电路、地址寄存器和数据寄存器。它们既能并行工作,又能交义工作。多体并行存储器分为高位交叉编址(顺序方式)和低位交叉编址(交叉方式)两种.
①高位交叉编址
②低位交叉编址
采用“流水线”的方式并行存取(宏观上并行,微观上串行),连续取n个存储字耗时可缩短为
宏观上,一个存储周期内,m体交叉存储器可以提供的数据量为单个模块的m倍。存取周期为T,存取时间/总线传输周期为r,为了使流水线不间断,应保证模块数
单体多字系统的特点是存储器中只有一个存储体,每个存储单元存储m个字,总线宽度也为m个字。一次并行读出m个字,地址必须顺序排列并处于同一存储单元。
缺点:每次只能同时取m个字,不能单独取其中某个字;指令和数据在主存内必须是连续存放的
为便于Cache 和主存之间交换信息,Cache 和主存都被划分为相等的块,Cache 块又称Cache 行,每块由若干字节组成。块的长度称为块长(Cache 行长)。由于Cache 的容量远小于主存的容盘,所以Cache中的块数要远少于主存中的块数,它仅保存主存中最活跃的若干块的副本。因此 Cache 按照某种策略,预测CPU在未来一段时间内欲访存的数据,将其装入Cache.
将某些主存块复制到Cache中,缓和CPU与主存之间的速度矛盾
CPU欲访问的信息已在Cache中的比率称为命中率H。先访问Cache,若Cache未命中再访问主存,系统的平均访问时间t 为
同时访问Cache和主存,若Cache命中则立即停止访问主存系统的平均访问时间t 为
空间局部性:在最近的未来要用到的信息(指令和数据),很可能与现在正在使用的信息在存储空间上是邻近的
时间局部性:在最近的未来要用到的信息,很可能是现在正在使用的信息
基于局部性原理,不难想到,可以把CPU目前访问的地址“周围”的部分数据放到Cache中
直接映射方式不需要考虑替换算法,仅全相联映射和组相联映射需要考虑
①随机算法(RAND):若Cache已满,则随机选择一块替换。实现简单,但完全没考虑局部性原理,命中率低,实际效果很不稳定
②先进先出算法(FIFO):若Cache已满,则替换最先被调入Cache的块。实现简单,依然没考虑局部性原理
③近期最少使用算法(LRU):为每一个Cache块设置一个“计数器”,用于记录每个Cache块已经有多久没被访问了。当Cache满后替换“计数器”最大的.基于“局部性原理”,LRU算法的实际运行效果优秀,Cache命中率高。
④最不经常使用算法(LFU):为每一个Cache块设置一个“计数器”,用于记录每个Cache块被访问过几次。当Cache满后替换“计数器”最小的.并没有很好地遵循局部性原理,因此实际运行效果不如LRU
现代计算机常采用多级Cache,各级Cache之间常采用“全写法+非写分配法”;Cache-主存之间常采用“写回法+写分配法”
写回法(write-back):当CPU对Cache写命中时,只修改Cache的内容,而不立即写入主存,只有当此块被换出时才写回主存。减少了访存次数,但存在数据不一致的隐患。
全写法(写直通法,write-through):当CPU对Cache写命中时,必须把数据同时写入Cache和主存,一般使用写缓冲(write buffer)。使用写缓冲,CPU写的速度很快,若写操作不频繁,则效果很好。若写操作很频繁,可能会因为写缓冲饱和而发生阻塞访存次数增加,速度变慢,但更能保证数据一致性
写分配法(write-allocate):当CPU对Cache写不命中时,把主存中的块调入Cache,在Cache中修改。通常搭配写回法使用。
非写分配法(not-write-allocate):当CPU对Cache写不命中时只写入主存,不调入Cache。搭配全写法使用。
页式存储系统:一个程序(进程)在逻辑上被分为若干个大小相等的“页面”, “页面”大小与“块”的大小相同 。每个页面可以离散地放入不同的主存块中。CPU执行的机器指令中,使用的是“逻辑地址”,因此需要通“页表”将逻辑地址转为物理地址。页表的作用:记录了每个逻辑页面存放在哪个主存块中
逻辑地址(虚地址):程序员视角看到的地址
物理地址(实地址):实际在主存中的地址
快表是一种“相联存储器”,可以按内容寻访,表中存储的是页表项的副本;Cache中存储的是主存块的副本
地址映射表中每一行都有对应的标记项
主存-辅存:实现虚拟存储系统,解决了主存容量不够的问题
Cache-主存:解决了主存与CPU速度不匹配的问题