二叉树存储结构
‘壹’ 二叉树是什么
二叉树 (binary tree) 是另一种树型结构,它的特点是每个结点至多只有二棵子 树 (即二叉树中不存在度大于 2的结点 ),并且,二叉树的子树有左右之分,其次序不能任意颠倒 . 二叉树是一种数据结构 :
Binary_tree=(D,R)
其中: D是具有相同特性的数据元素的集合 ;若 D等于空 ,则 R等于空称为空的二叉树 ;若 D等于空则 R是 D上某个二元关系 H的集合,即 R={H},且
(1) D 中存在唯一的称为根的元素 r,它的关系 H下无前驱 ;
(2) 若 D-{r}不等于空,则 D-{r}={Dl,Dr},且 Dl交 Dr等于空 ;
(3) 若 Dl不等于空 ,则在 Dl中存在唯一的元素 xl,〈 r,xl〉属于 H,且存在 Dl上的关系 Hl属于 H; 若 Dr不等于空 ,则在 Dr中存在唯一的元素 xr,〈 r,xr〉 >属于 H, 且存 Dr上的关 系 Hr属于 H; H={r,xl,< r,xr> ,Hl, Hr};
(4) (Dl, Hl) 是一棵合本定义的二叉树,称为根 r的左子树 ,(Dr,Hr)是一棵符合定义的二叉树,称为根的右子树。
其中,图 6.2 是各种形态的二叉树 .
(1) 为空二叉树 (2)只有一个根结点的二叉树 (3)右子树为空的二叉树 (4)左子树为空的二叉树 (5)完全二叉树
二叉树的基本操作:
(1)INITIATE(BT ) 初始化操作。置 BT为空树。
(2)ROOT(BT)\ROOT(x) 求根函数。求二叉树 BT的根结点或求结点 x所在二叉树的根结点。
若 BT是空树或 x不在任何二叉树上,则函数值为 “空 ”。
(3)PARENT(BT,x) 求双亲函数。求二叉树 BT中结点 x的双亲结点。若结点 x是二叉树 BT 的根结点
或二叉树 BT中无 x结点,则函数值为 “空 ”。
(4)LCHILD(BT,x) 和 RCHILD(BT,x) 求孩子结点函数。分别求二叉树 BT中结点 x的左孩 子和右孩子结点。
若结点 x为叶子结点或不在二叉树 BT中,则函数值为 “空 ”。
(5)LSIBLING(BT,x) 和 RSIBING(BT,x) 求兄弟函数。分别求二叉树 BT中结点 x的左兄弟和右兄弟结点。
若结点 x是根结点或不在 BT中或是其双亲的左 /右子树根 ,则函树值 为 “空 ”。
(6)CRT_BT(x,LBT,RBT) 建树操作。生成一棵以结点 x为根,二叉树 LBT和 RBT分别为左, 右子树的二叉树。
(7)INS_LCHILD(BT,y,x) 和 INS_RCHILD(BT,x) 插入子树操作。将以结点 x为根且右子树为空的二叉树
分别置为二叉树 BT中结点 y的左子树和右子树。若结点 y有左子树 /右子树,则插入后是结点 x的右子树。
(8)DEL_LCHILD(BT,x) 和 DEL-RCHILD(BT,x) 删除子树操作。分别删除二叉树 BT中以结点 x为根的左子树或右子树。
若 x无左子树或右子树,则空操作。
(9)TRAVERSE(BT) 遍历操作。按某个次序依此访问二叉树中各个结点,并使每个结点只被访问一次。
(10)CLEAR(BT) 清除结构操作。将二叉树 BT置为空树。
5.2.2 二叉树的存储结构
一 、顺序存储结构
连续的存储单元存储二叉树的数据元素。例如图 6.4(b)的完全二叉树 , 可以向量 (一维数组 ) bt(1:6)作它的存储结构,将二叉树中编号为 i的结点的数据元素存放在分量 bt[i]中 ,如图 6.6(a) 所示。但这种顺序存储结构仅适合于完全二叉树 ,而一般二叉树也按这种形式来存储 ,这将造成存 贮浪费。如和图 6.4(c)的二叉树相应的存储结构图 6.6(b)所示,图中以 “0”表示不存在此结点 .
二、 链式存储结构
由二叉树的定义得知二叉树的结点由一个数据元素和分别指向左右子树的两个分支构成 ,则表 示二叉树的链表中的结点至少包含三个域 :数据域和左右指针域 ,如图 (b)所示。有时 ,为了便于找 到结点的双亲 ,则还可在结点结构中增加一个指向其双亲受的指针域,如图 6.7(c)所示。
5.3 遍历二叉树
遍历二叉树 (traversing binary tree)的问题, 即如何按某条搜索路径巡访树中每个结点,使得每个结点均被访问一次,而且仅被访问一次。 其中常见的有三种情况:分别称之为先 (根 )序遍历,中 (根 )序遍历和后 (根 )序遍历。
5.3.1 前序遍历
前序遍历运算:即先访问根结点,再前序遍历左子树,最后再前序遍历右子树。前序遍历运算访问二叉树各结点是以根、左、右的顺序进行访问的。例如:
按前序遍历此二叉树的结果为: Hello!How are you?
proc preorder(bt:bitreprtr)
if (bt>null)[
print(bt^);
preorder(bt^.lchild);
preorder(bt^.rchild);]
end;
5.3.2 中序遍历
中序遍历运算:即先中前序遍历左子树,然后再访问根结点,最后再中序遍历右子树。中序遍历运算访问二叉树各结点是以左、根、右的顺序进行访问的。例如:
按中序遍历此二叉树的结果为: a*b-c
proc inorder(bt:bitreprtr)
if (bt>null)[
inorder(bt^.lchild);
print(bt^);
niorder(bt^.rchild);]
end;
5.3.3 后序遍历
后序遍历运算:即先后序遍历左子树,然后再后序遍历右子树,最后访问根结点。后序遍历运算访问二叉树各结点是以左、右、根的顺序进行访问的。例如:
按后序遍历此二叉树的结果为: Welecome to use it!
proc postorder(bt:bitreprtr)
if (bt>null)[
postorder(bt^.lchild);
postorder(bt^.rchild);]
print(bt^);
end;
五、例:
1.用顺序存储方式建立一棵有31个结点的满二叉树,并对其进行先序遍历。
2.用链表存储方式建立一棵如图三、4所示的二叉树,并对其进行先序遍历。
3.给出一组数据:R={10.18,3,8,12,2,7,3},试编程序,先构造一棵二叉树,然后以中序遍历访问所得到的二叉树,并输出遍历结果。
4.给出八枚金币a,b,c,d,e,f,g,h,编程以称最少的次数,判定它们蹭是否有假币,如果有,请找出这枚假币,并判定这枚假币是重了还是轻了。
中山纪念中学三鑫双语学校信息学竞赛组编写 2004.7.15
‘贰’ 二叉树的存储结构是怎样的有哪些类型的存储结构对应的c语言描述是
楼上回答的是树的存储,不是二叉树的存储,主要如下:
1、顺序存储:适用于完全二叉树,如果根从1开始编号,则第i结点的左孩子编号为2i,右孩子为2i+1,双亲编号为(i/2)下取整,空间紧密
2、二叉链表:适用于普通二叉树,每个结点除了数据外,还有分别指向左右孩子结点的指针,存储n个结点有n+1个空指针域,存储密度小于顺序存储,但是适用范围广,缺陷是正常遍历只能从双亲向孩子,退回来一般需要借助栈(或者用递归,其实也是栈)
3、三叉链表:同样适用于普通二叉树,结点除了数据外,还有左右孩子与双亲的指针,存储密度低于二叉链表,但是可以非常方便地在二叉树中遍历,不需要其他辅助工具
‘叁’ 若二叉树采用二叉链表存储结构,要交换其所有分支结点左、右子树的位置,利用( )遍历方法最合适。
答案:C。用二叉链表存储结构也就是左孩子右兄弟的存储结构。
后序遍历比较合理。正常的逻辑应该就是:做好当前结点子树内部的交换,然后交换当前结点的左右子树。刚好符合后序遍历的算法逻辑。
1、交换好左子树
2、交换好右子树
3、交换左子树与右子树
其他算法如先序和按层次其逻辑都差不多,即访问当前结点时交换其左右子树。从逻辑上来看稍显别扭一点点。因此说最合适应该是后序遍历,但是从实现上来说先序和按层次都是可以的。
1、交换左子树与右子树
2、遍历左子树
3、遍历右子树
按层次遍历
1、根结点入队列
2、出队列,交换其左右子树,将子树的根入队列
3、重复2直到队列为空
中序遍历相对较难实现一些。
(3)二叉树存储结构扩展阅读:
树的遍历是树的一种重要的运算。树的3种最重要的遍历方式分别称为前序遍历、中序遍历和后序遍历。
以这3种方式遍历一棵树时,若按访问结点的先后次序将结点排列起来,就可分别得到树中所有结点的前序列表、中序列表和后序列表。相应的结点次序分别称为结点的前序、中序和后序。
‘肆’ 设二叉树bt存储结构如下
字符a是根结点,a的左分支是b,而a没有右分支.
二叉树示意图:
a
/
b
/
cd
//
efg
//
hi
/
j
二叉树的(链式)逻辑结构示意图:
#a^
/
#b#
/
#c^#d#
//
^e^#f^#g^
//
^h^#i^
/
^j^
上述示意图,符号#表示指针域,符号^表示NULL(空指针)
先序遍历序列:abcedfhgij
中序遍历序列:ecbhfdjiga
后序遍历序列:echfjigdba
//C语言测试程序
#include"stdio.h"
#include"stdlib.h"
structtree
{
chardata;
structtree*left;
structtree*right;
};
typedefstructtreetreenode;
typedeftreenode*btree;
btreecreatebtree(char*data,intpos,intmaxPos)//递归创建法
{
btreenewnode;
if(data[pos]==0||pos>maxPos)
{
returnNULL;
}
else
{
newnode=(btree)malloc(sizeof(treenode));
newnode->data=data[pos];
newnode->left=createbtree(data,2*pos,maxPos);
newnode->right=createbtree(data,2*pos+1,maxPos);
returnnewnode;
}
}
voidpreorder(btreeptr)//先序遍历(递归法)
{
if(ptr!=NULL)
{
printf("%C",ptr->data);
preorder(ptr->left);
preorder(ptr->right);
}
}
voidinorder(btreeptr)//中序遍历(递归法)
{
if(ptr!=NULL)
{
inorder(ptr->left);
printf("%C",ptr->data);
inorder(ptr->right);
}
}
voidpostorder(btreeptr)//后序遍历(递归法)
{
if(ptr!=NULL)
{
postorder(ptr->left);
postorder(ptr->right);
printf("%C",ptr->data);
}
}
intmain()
{
btreeroot=NULL;
inti;
chardata[64]={0,'a','b',0,'c','d',0,0,
'e',0,'f','g',0,0,0,0,
0,0,0,0,'h',0,'i',0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,'j',0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0};
root=createbtree(data,1,63);
printf("二叉树的顺序存储内容:");
for(i=1;i<64;i++)
{
if(data[i]==0)
{
printf("^");
}
else
{
printf("%c",data[i]);
}
}
printf(" 二叉树的先序遍历序列:");
preorder(root);
printf(" 二叉树的中序遍历序列:");
inorder(root);
printf(" 二叉树的后序遍历序列:");
postorder(root);
printf(" ");
return0;
}
‘伍’ 二叉树 两种存储结构的优缺点
顺序存储可能会浪费空间,但是读取某个指定的节点的时候效率比较高,链式存储相对二叉树比较大的时候浪费空间较少,但是读取某个指定节点的时候效率偏低O(nlogn)。
在数据的顺序存储中,由于每个元素的存储位置都可以通过简单计算得到,所以访问元素的时间都相同;而在数据的链接存储中,由于每个元素的存储位置保存在它的前驱或后继结点中,所以只有当访问到其前驱结点或后继结点后才能够按指针访问到。
(5)二叉树存储结构扩展阅读:
分类:
顺序存储方法它是把逻辑上相邻的结点存储在物理位置相邻的存储单元里,结点间的逻辑关系由存储单元的邻接关系来体现,由此得到的存储表示称为顺序存储结构。顺序存储结构是一种最基本的存储表示方法,通常借助于程序设计语言中的数组来实现。
链接存储方法它不要求逻辑上相邻的结点在物理位置上亦相邻,结点间的逻辑关系是由附加的指针字段表示的。由此得到的存储表示称为链式存储结构,链式存储结构通常借助于程序设计语言中的指针类型来实现。