当前位置:首页 » 存储配置 » hadoop存储结构

hadoop存储结构

发布时间: 2024-02-27 17:12:32

① hbase的核心数据结构

hbase的核心数据结构如下:

Hadoop是大数据开发的重要框架,其核心是HDFS和MapRece,HDFS为海量的数据提供了存陪备段储,MapRece为海量的数据提供了计算,因此,需要重点掌握,除此之外,还需要掌握Hadoop集群、Hadoop集群管理、YARN以及Hadoop高级管理等相关技术与操作!

其他数据结构:

1、Java编程技术

Java编程技术是大数据学习的基础,Java是一种强类型语言,拥有极高的跨平台滚租能力,可以编写桌面应用程序、Web应用程序、分布式系统和嵌入式系统应用程序等,是大数据工程师最喜欢的编程工具,因此,想学好大数据,掌握Java基础是必不可少的!

2、Linux命令

对于大数据开发通常是在Linux环境下进行的,相比Linux操作系统,Windows操作系统是封闭的操作系统,开源的大数据软件很受限制,因此,想从事大数据开发相关工作,还需掌握Linux基础操作命令芦誉。

② Hadoop生态系统-新手快速入门(含HDFS、HBase系统架构)

Hadoop是一个由Apache基金会所开发的分布式系统基础架构。

用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储

Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS。HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上;而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。

Hadoop的框架最核心的设计就是:HDFS和MapRece。HDFS为海量的数据提供了存储,而MapRece则为海量的数据提供了计算。

广义的Hadoop,一般称为Hadoop生态系统,如下所示。

Hadoop生态系统中这些软件的作用:

HDFS 采用了主从(Master/Slave)结构模型,一个HDFS集群包括一个名称节点(NameNode)和若干个数据节点(DataNode)。

HDFS采用Java语言开发,因此任何支持JVM的机器都可以部署名称节点和数据节点。

在配置好Hadoop 集群之后,可以通过浏览器访问 http://[NameNodeIP]:9870,查询HDFS文件系统。通过该Web界面,可以查看当前文件系统中各个节点的分布信息。

HBase系统架构如下所示,包括客户端、Zookeeper服务器、Master主服务器、Region服务器。一般而言,HBase会采用HDFS作为底层数据存储。

在HBase服务器集群中,包含了一个Master和多个Region服务器,Master是HBase集群的“总管”,它必须知道Region服务器的状态。

HBase中可以启动多个Master,但是Zookeeper 可以帮助选举出一个Master 作为集群的总管,并保证在任何时刻总有唯一一个Master在运行,这样可以避免Master单点失效的问题。

Region服务器是HBase中最核心的模块,负责维护分配给自己的Region,并响应用户的读写请求。

Store是Region服务器的核心。每个Store对应了表中的一个列族的存储。每一个Store包含了一个MemStore缓存和若干个StoreFile文件。

HBase采用HLog来保证系统发生故障时,能够恢复到正确的状态。HLog是磁盘上面的记录文件,它记录着所有的更新操作。

HBase系统为每个Region服务器配置了一个HLog文件,它是一种预写式日志(Write Ahead Log),也就是说,用户更新数据必须首先被记入日志后,才能写入MemStore缓存。

此外,Pig和Hive还为HBase提供了高层语言支持,使得在HBase上进行数据统计处理变的非常简单。 Sqoop则为HBase提供了方便的RDBMS数据导入功能,使得传统数据库数据向HBase中迁移变的非常方便。

注意:Hadoop 安装完成之后,只包含HDFS和MapRece,并不含HBase,因此需要在Hadoop 之上继续安装HBase。

③ 基于hadoop的云存储实例

基于Hadoop平台的云存储应用实践

http://cio.itxinwen.com/case_studies/2012/0327/402100.html

云计算(CloudComputing)是一种基于因特网的超级计算模式,在远程的数据中心里,成千上万台电脑和服务器连接成一片电脑云。用户通过电脑、笔记本、手机等方式接人数据中心,按自己的需求进行运算。目前,对于云计算仍没有普遍一致的定义。结合上述定义,可以总结出云计算的一些本质特征,即分布式计算和存储特性、高扩展性、用户友好性、良好的管理性。

1云存储架构图

橘色的作为存储节点(StorageNode)负责存放文件,蓝色作为控制节点((ControlNode)则是负责文件索引,并负责监控存储节点间容量及负载的均衡,这两个部分合起来便组成一个云存储。存储节点与控制节点都是单纯的服务器,只是存储节点的硬盘多一些,存储节点服务器不需要具备RAID的功能,只要能安装Linux即可,控制节点为了保护数据,需要有简单的RAIDlevelO1的功能。

云存储不是要取代现有的盘阵,而是为了应付高速成长的数据量与带宽而产生的新形态存储系统,因此云存储在设计时通常会考虑以下三点:

(1)容量、带宽的扩容是否简便

扩容是不能停机,会自动将新的存储节点容量纳入原来的存储池。不需要做繁复的设定。

图1云存储架构图


(2)带宽是否线形增长

使用云存储的客户,很多是考虑未来带宽的增长,因此云存储产品设计的好坏会产生很大的差异,有些十几个节点便达到饱和,这样对未来带宽的扩容就有不利的影响,这一点要事先弄清楚,否则等到发现不符合需求时,已经买了几百TB,后悔就来不及了。

(3)管理是否容易。

2云存储关键技术

云存储必须具备九大要素:①性能;②安全性;③自动ILM存储;④存储访问模式;⑤可用性;⑥主数据保护;⑦次级数据保护;⑧存储的灵活;⑨存储报表。

云计算的发展离不开虚拟化、并行计算、分布式计算等核心技术的发展成熟。下面对其介绍如下:

(1)集群技术、网格技术和分布式文件系统

云存储系统是一个多存储设备、多应用、多服务协同工作的集合体,任何一个单点的存储系统都不是云存储。

既然是由多个存储设备构成的,不同存储设备之间就需要通过集群技术、分布式文件系统和网格计算等技术,实现多个存储设备之间的协同工作,使多个的存储设备可以对外提供同一种服务,并提供更大更强更好的数据访问性能。如果没有这些技术的存在,云存储就不可能真正实现,所谓的云存储只能是一个一个的独立系统,不能形成云状结构。

(2)CDN内容分发、P2P技术、数据压缩技术、重复数据删除技术、数据加密技术

CDN内容分发系统、数据加密技术保证云存储中的数据不会被未授权的用户所访问,同时,通过各种数据备份和容灾技术保证云存储中的数据不会丢失,保证云存储自身的安全和稳定。如果云存储中的数据安全得不到保证,也没有人敢用云存储了。

(3)存储虚拟化技术、存储网络化管理技术

云存储中的存储设备数量庞大且分布多在不同地域,如何实现不同厂商、不同型号甚至于不同类型(例如FC存储和IP存储)的多台设备之间的逻辑卷管理、存储虚拟化管理和多链路冗余管理将会是一个巨大的难题,这个问题得不到解决,存储设备就会是整个云存储系统的性能瓶颈,结构上也无法形成一个整体,而且还会带来后期容量和性能扩展难等问题。

④ Hadoop系列之HDFS架构

    本篇文章翻译了Hadoop系列下的 HDFS Architecture ,原文最初经过笔者翻译后大概有6000字,之后笔者对内容进行了精简化压缩,从而使笔者自己和其他读者们阅读本文时能够更加高效快速的完成对Hadoop的学习或复习。本文主要介绍了Hadoop的整体架构,包括但不限于节点概念、命名空间、数据容错机制、数据管理方式、简单的脚本命令和垃圾回收概念。

    PS:笔者新手一枚,如果看出哪里存在问题,欢迎下方留言!

    Hadoop Distributed File System(HDFS)是高容错、高吞吐量、用于处理海量数据的分布式文件系统。

    HDFS一般由成百上千的机器组成,每个机器存储整个数据集的一部分数据,机器故障的快速发现与恢复是HDFS的核心目标。

    HDFS对接口的核心目标是高吞吐量而非低延迟。

    HDFS支持海量数据集合,一个集群一般能够支持千万以上数量级的文件。

    HDFS应用需要对文件写一次读多次的接口模型,文件变更只支持尾部添加和截断。

    HDFS的海量数据与一致性接口特点,使得迁移计算以适应文件内容要比迁移数据从而支持计算更加高效。

    HDFS支持跨平台使用。

    HDFS使用主从架构。一个HDFS集群由一个NameNode、一个主服务器(用于管理系统命名空间和控制客户端文件接口)、大量的DataNode(一般一个节点一个,用于管理该节点数据存储)。HDFS对外暴露了文件系统命名空间并允许在文件中存储用户数据。一个文件被分成一个或多个块,这些块存储在一组DataNode中。NameNode执行文件系统命名空间的打开关闭重命名等命令并记录着块和DataNode之间的映射。DataNode用于处理客户端的读写请求和块的相关操作。NameNode和DataNode一般运行在GNU/Linux操作系统上,HDFS使用Java语言开发的,因此NameNode和DataNode可以运行在任何支持Java的机器上,再加上Java语言的高度可移植性,使得HDFS可以发布在各种各样的机器上。一个HDFS集群中运行一个NameNode,其他机器每个运行一个(也可以多个,非常少见)DataNode。NameNode简化了系统的架构,只用于存储所有HDFS元数据,用户数据不会进入该节点。下图为HDFS架构图:

    HDFS支持传统的分层文件管理,用户或者应用能够在目录下创建目录或者文件。文件系统命名空间和其他文件系统是相似的,支持创建、删除、移动和重命名文件。HDFS支持用户数量限制和访问权限控制,不支持软硬链接,用户可以自己实现软硬链接。NameNode控制该命名空间,命名空间任何变动几乎都要记录到NameNode中。应用可以在HDFS中对文件声明复制次数,这个次数叫做复制系数,会被记录到NameNode中。

    HDFS将每个文件存储为一个或多个块,并为文件设置了块的大小和复制系数从而支持文件容错。一个文件所有的块(除了最后一个块)大小相同,后来支持了可变长度的块。复制系数在创建文件时赋值,后续可以更改。文件在任何时候只能有一个writer。NameNode负责块复制,它周期性收到每个数据节点的心跳和块报告,心跳表示数据节点的正常运作,块报告包含了这个DataNode的所有块。

    副本存储方案对于HDFS的稳定性和性能至关重要。为了提升数据可靠性、灵活性和充分利用网络带宽,HDFS引入了机架感知的副本存储策略,该策略只是副本存储策略的第一步,为后续优化打下基础。大型HDFS集群一般运行于横跨许多支架的计算机集群中,一般情况下同一支架中两个节点数据传输快于不同支架。一种简单的方法是将副本存放在单独的机架上,从而防止丢失数据并提高带宽,但是增加了数据写入的负担。一般情况下,复制系数是3,HDFS存储策略是将第一份副本存储到本地机器或者同一机架下一个随机DataNode,另外两份副本存储到同一个远程机架的不同DataNode。NameNode不允许同一DataNode存储相同副本多次。在机架感知的策略基础上,后续支持了 存储类型和机架感知相结合的策略 ,简单来说就是在机架感知基础上判断DataNode是否支持该类型的文件,不支持则寻找下一个。

    HDFS读取数据使用就近原则,首先寻找相同机架上是否存在副本,其次本地数据中心,最后远程数据中心。

    启动时,NameNode进入安全模式,该模式下不会发生数据块复制,NameNode接收来自DataNode的心跳和块报告,每个块都有一个最小副本数量n,数据块在NameNode接受到该块n次后,认为这个数据块完成安全复制。当完成安全复制的数据块比例达到一个可配的百分比值并再过30s后,NameNode退出安全模式,最后判断是否仍然存在未达到最小复制次数的数据块,并对这些块进行复制操作。

    NameNode使用名为EditLog的事务日志持续记录文件系统元数据的每一次改动(如创建文件、改变复制系数),使用名为FsImage的文件存储全部的文件系统命名空间(包括块到文件的映射关系和文件系统的相关属性),EditLog和FsImage都存储在NameNode本地文件系统中。NameNode在内存中保存着元数据和块映射的快照,当NameNode启动后或者某个配置项达到阈值时,会从磁盘中读取EditLog和FsImage,通过EditLog新的记录更新内存中的FsImage,再讲新版本的FsImage刷新到磁盘中,然后截断EditLog中已经处理的记录,这个过程就是一个检查点。检查点的目的是确保文件系统通过在内存中使用元数据的快照从而持续的观察元数据的变更并将快照信息存储到磁盘FsImage中。检查点通过下面两个配置参数出发,时间周期(dfs.namenode.checkpoint.period)和文件系统事务数量(dfs.namenode.checkpoint.txns),二者同时配置时,满足任意一个条件就会触发检查点。

    所有的HDFS网络协议都是基于TCP/IP的,客户端建立一个到NameNode机器的可配置的TCP端口,用于二者之间的交互。DataNode使用DataNode协议和NameNode交互,RPC包装了客户端协议和DataNode协议,通过设计,NameNode不会发起RPC,只负责响应来自客户端或者DataNode的RPC请求。

    HDFS的核心目标是即使在失败或者错误情况下依然能够保证数据可靠性,三种常见失败情况包括NameNode故障、DataNode故障和network partitions。

    网络分区可能会导致部分DataNode市区和NameNode的连接,NameNode通过心跳包判断并将失去连接的DataNode标记为挂掉状态,于是所有注册到挂掉DataNode的数据都不可用了,可能会导致部分数据块的复制数量低于了原本配置的复制系数。NameNode不断地追踪哪些需要复制的块并在必要时候进行复制,触发条件包含多种情况:DataNode不可用、复制乱码、硬件磁盘故障或者认为增大负值系数。为了避免DataNode的状态不稳定导致的复制风暴,标记DataNode挂掉的超时时间设置比较长(默认10min),用户可以设置更短的时间间隔来标记DataNode为陈旧状态从而避免在对读写性能要求高的请求上使用这些陈旧节点。

    HDFS架构兼容数据各种重新平衡方案,一种方案可以在某个DataNode的空闲空间小于某个阈值时将数据移动到另一个DataNode上;在某个特殊文件突然有高的读取需求时,一种方式是积极创建额外副本并且平衡集群中的其他数据。这些类型的平衡方案暂时还未实现(不太清楚现有方案是什么...)。

    存储设备、网络或者软件的问题都可能导致从DataNode获取的数据发生乱码,HDFS客户端实现了对文件内容的校验,客户端在创建文件时,会计算文件中每个块的校验值并存储到命名空间,当客户端取回数据后会使用校验值对每个块进行校验,如果存在问题,客户端就会去另一个DataNode获取这个块的副本。

    FsImage和EditLog是HDFS的核心数据结构,他们的错误会导致整个HDFS挂掉,因此,NameNode应该支持时刻维持FsImage和EditLog的多分复制文件,它们的任何改变所有文件应该同步更新。另一个选择是使用 shared storage on NFS 或者 distributed edit log 支持多个NameNode,官方推荐 distributed edit log 。

    快照能够存储某一特殊时刻的数据副本,从而支持HDFS在发生错误时会滚到上一个稳定版本。

    HDFS的应用场景是大的数据集下,且数据只需要写一次但是要读取一到多次并且支持流速读取数据。一般情况下一个块大小为128MB,因此一个文件被切割成128MB的大块,且每个快可能分布在不同的DataNode。

    当客户端在复制系数是3的条件下写数据时,NameNode通过目标选择算法收到副本要写入的DataNode的集合,第1个DataNode开始一部分一部分的获取数据,把每个部分存储到本地并转发给第2个DataNode,第2个DataNode同样的把每个部分存储到本地并转发给第3个DataNode,第3个DataNode将数据存储到本地,这就是管道复制。

    HDFS提供了多种访问方式,比如 FileSystem Java API 、 C language wrapper for this Java API 和 REST API ,而且还支持浏览器直接浏览。通过使用 NFS gateway ,客户端可以在本地文件系统上安装HDFS。

    HDFS使用目录和文件的方式管理数据,并提供了叫做 FS shell 的命令行接口,下面有一些简单的命令:

    DFSAdmin命令集合用于管理HDFS集群,这些命令只有集群管理员可以使用,下面有一些简单的命令:

正常的HDFS安装都会配置一个web服务,通过可配的TCP端口对外暴露命名空间,从而使得用户可以通过web浏览器查看文件内容。

如果垃圾回收配置打开,通过FS shell移除的文件不会立刻删除,而是会移动到一个垃圾文件专用的目录(/user/<username>/.Trash),类似回收站,只要文件还存在于那个目录下,则随时可以被回复。绝大多数最近删除的文件都被移动到了垃圾目录(/user/<username>/.Trash/Current),并且HDFS每个一段时间在这个目录下创建一个检查点用于删除已经过期的旧的检查点,详情见 expunge command of FS shell 。在垃圾目录中的文件过期后,NameNode会删除这个文件,文件删除会引起这个文件的所有块的空间空闲,需要注意的是在文件被删除之后和HDFS的可用空间变多之间会有一些时间延迟(个人认为是垃圾回收机制占用的时间)。下面是一些简单的理解删除文件的例子:

    当文件复制系数减小时,NameNode会选择多余的需要删除的副本,在收到心跳包时将删除信息发送给DataNode。和上面一样,这个删除操作也是需要一些时间后,才能在集群上展现空闲空间的增加。

HDFS Architecture

⑤ HDFS架构

HDFS中的文件是以数据块(Block)的形式存储的,默认最基本的存储单位是128 MB(Hadoop 1.x为64 MB)的数据块。也就是说,存储在HDFS中的文件都会被分割成128 MB一块的数据块进行存储,如果文件本身小于一个数据块的大小,则按实际大竖岁答小存储,并不占用整个数据块空间。HDFS的数据块之所以会设置这么大,其目的是减少寻址开销。数据块数量越多,寻址数据块所耗的时间就越多。当然也不会设置过大,MapRece中的Map任务通常一次只处理一个块中的数据,如果任务数太少,作业的运行速度就会比较慢。HDFS的每一个数据块默认都有三个副本,分别存储在不同的DataNode上,以实现容错功能。因此,若数据块的某个副本丢失并不会影响对数据块的访问。数据块大小和副本数量可在配置文件中更改

NameNode是HDFS中存储元数据(文件名称、大小和位置等信息)的地方,它将所有文件和文件夹的元数据保存在一个文件系统目录树中,任何元数据信息的改变,NameNode都会记录。HDFS中的每个文件都被拆分为多个数据块存放,这种文件与数据块的对应关系也存储在文件系统目录树中,由NameNode维护。NameNode还存储数据块到DataNode的映射信息,这种映射信息包括:数据块存放在哪些DataNode上、每个DataNode上保存了哪些数据块。NameNode也会周期性地接收来自集群中DataNode的“心跳”和“块报告”。通过“心跳”与DataNode保持通信,监控DataNode的状态(活着还是宕机),若长时间接收不到“心跳”信息,NameNode会认为DataNode已经宕机,从而做出相应的调整策略。“块报告”包含了DataNode上所有数据块的列表信息。

DataNode是HDFS中真正存储数据的地方。客户端可以向DataNode请求写入或读取数据块,DataNode还在来自NameNode的指令下执行块的创建、删除和复制,并且周期性地向NameNode汇报数据块信息。

NodeSecondaryNameNode用于帮助NameNode管理元数据,从而使NameNode能够快速、高效地工作。它并不是第二个NameNode,仅是NameNode的一个辅助工具。HDFS的元数据信息主要存储于两个文件中:fsimage和edits。fsimage是文件系统映射文件,主余慧要存储文件元数据信息,其中包含文件系统所有目录、文件信息以及数据块的索引;edits是HDFS操作日志文件,HDFS对文件系统的修改日志会存储到该文件中。当NameNode启动时,会从文件fsimage中读取HDFS的状态,雀辩也会对文件fsimage和edits进行合并,得到完整的元数据信息,随后会将新HDFS状态写入fsimage。但是在繁忙的集群中,edits文件会随着时间的推移变得非常大,这就导致NameNode下一次启动的时间会非常长。为了解决这个问题,则产生了SecondaryNameNode,SecondaryNameNode会定期协助NameNode合并fsimage和edits文件,并使edits文件的大小保持在一定的限制内。SecondaryNameNode通常与NameNode在不同的计算机上运行,因为它的内存需求与NameNode相同,这样可以减轻NameNode所在计算机的压力。

⑥ hbase采用了什么样的数据结构

HBase采用了类似Google Bigtable的数据模型,即一个稀疏的、分布式的、持久化的多维映射表,每个表都由行键、列族、列限定符和时间戳组成。
在底层实现上,HBase使用了基于Hadoop的分布式文件系统HDFS来存储数据,并且使用了一搏皮搜种称为LSM-Tree(Log-Structured Merge-Tree)的数据结构来管理数据。LSM-Tree是一种支持高写入吞吐量的数据结构,它把数据分成多个层,每层采用不同的策略来管理数据,包括内存中的缓存、写入磁盘的SSTable、和合并SSTable的操作。通过这种方式,HBase能够支持高并发、高吞吐量的数据写入,同时保证数据的一致性和可靠性。
另外,HBase还采用了Bloom Filter、MemStore和Compaction等技术来提高数据查询效率和存储效率。Bloom Filter是一种快速的数据过滤技术,可以帮助HBase快速地过滤掉无效的查询请求,提高查询效率。MemStore是一种缓存机制,可以帮助基历HBase加速数据写入,提高数据握中写入效率。Compaction则是一种数据压缩和合并技术,可以帮助HBase节省存储空间,提高存储效率。
综上所述,HBase采用了LSM-Tree、Bloom Filter、MemStore和Compaction等多种数据结构和技术,以实现高并发、高吞吐量的分布式存储和查询功能。

热点内容
联想怎么刷机解锁密码 发布:2024-11-28 04:31:21 浏览:244
方舟编译器厂家 发布:2024-11-28 04:13:15 浏览:979
android源码编辑 发布:2024-11-28 04:12:38 浏览:596
两路服务器是什么意思 发布:2024-11-28 03:39:39 浏览:937
sql精简版64 发布:2024-11-28 03:36:28 浏览:73
金立怎么加密图片 发布:2024-11-28 03:31:43 浏览:664
2017玩dnf电脑什么配置 发布:2024-11-28 03:30:56 浏览:520
ftp挂载存储ip配置 发布:2024-11-28 03:28:51 浏览:963
山耐斯空压机密码多少 发布:2024-11-28 03:26:28 浏览:405
安卓拍照摇一摇是什么软件 发布:2024-11-28 03:26:27 浏览:257