当前位置:首页 » 存储配置 » 存储发展史

存储发展史

发布时间: 2023-12-14 11:07:35

存储器的发展史

存储器设备发展

1.存储器设备发展之汞延迟线

汞延迟线是基于汞在室温时是液体,同时又是导体,每比特数据用机械波的波峰(1)和波谷(0)表示。机械波从汞柱的一端开始,一定厚度的熔融态金属汞通过一振动膜片沿着纵向从一端传到另一端,这样就得名“汞延迟线”。在管的另一端,一传感器得到每一比特的信息,并反馈到起点。设想是汞获取并延迟这些数据,这样它们便能存储了。这个过程是机械和电子的奇妙结合。缺点是由于环境条件的限制,这种存储器方式会受各种环境因素影响而不精确。

1950年,世界上第一台具有存储程序功能的计算机EDVAC由冯.诺依曼博士领导设计。它的主要特点是采用二进制,使用汞延迟线作存储器,指令和程序可存入计算机中。

1951年3月,由ENIAC的主要设计者莫克利和埃克特设计的第一台通用自动计算机UNIVAC-I交付使用。它不仅能作科学计算,而且能作数据处理。

2.存储器设备发展之磁带

UNIVAC-I第一次采用磁带机作外存储器,首先用奇偶校验方法和双重运算线路来提高系统的可靠性,并最先进行了自动编程的试验。

磁带是所有存储器设备发展中单位存储信息成本最低、容量最大、标准化程度最高的常用存储介质之一。它互换性好、易于保存,近年来,由于采用了具有高纠错能力的编码技术和即写即读的通道技术,大大提高了磁带存储的可靠性和读写速度。根据读写磁带的工作原理可分为螺旋扫描技术、线性记录(数据流)技术、DLT技术以及比较先进的LTO技术。

根据读写磁带的工作原理,磁带机可以分为六种规格。其中两种采用螺旋扫描读写方式的是面向工作组级的DAT(4mm)磁带机和面向部门级的8mm磁带机,另外四种则是选用数据流存储技术设计的设备,它们分别是采用单磁头读写方式、磁带宽度为1/4英寸、面向低端应用的Travan和DC系列,以及采用多磁头读写方式、磁带宽度均为1/2英寸、面向高端应用的DLT和IBM的3480/3490/3590系列等。

磁带库是基于磁带的备份系统,它能够提供同样的基本自动备份和数据恢复功能,但同时具有更先进的技术特点。它的存储容量可达到数百PB,可以实现连续备份、自动搜索磁带,也可以在驱动管理软件控制下实现智能恢复、实时监控和统计,整个数据存储备份过程完全摆脱了人工干涉。

磁带库不仅数据存储量大得多,而且在备份效率和人工占用方面拥有无可比拟的优势。在网络系统中,磁带库通过SAN(Storage Area Network,存储区域网络)系统可形成网络存储系统,为企业存储提供有力保障,很容易完成远程数据访问、数据存储备份或通过磁带镜像技术实现多磁带库备份,无疑是数据仓库、ERP等大型网络应用的良好存储设备。

3.存储器设备发展之磁鼓

1953年,随着存储器设备发展,第一台磁鼓应用于IBM 701,它是作为内存储器使用的。磁鼓是利用铝鼓筒表面涂覆的磁性材料来存储数据的。鼓筒旋转速度很高,因此存取速度快。它采用饱和磁记录,从固定式磁头发展到浮动式磁头,从采用磁胶发展到采用电镀的连续磁介质。这些都为后来的磁盘存储器打下了基础。

磁鼓最大的缺点是利用率不高, 一个大圆柱体只有表面一层用于存储,而磁盘的两面都利用来存储,显然利用率要高得多。 因此,当磁盘出现后,磁鼓就被淘汰了。

4.存储器设备发展之磁芯

美国物理学家王安1950年提出了利用磁性材料制造存储器的思想。福雷斯特则将这一思想变成了现实。

为了实现磁芯存储,福雷斯特需要一种物质,这种物质应该有一个非常明确的磁化阈值。他找到在新泽西生产电视机用铁氧体变换器的一家公司的德国老陶瓷专家,利用熔化铁矿和氧化物获取了特定的磁性质。

对磁化有明确阈值是设计的关键。这种电线的网格和芯子织在电线网上,被人称为芯子存储,它的有关专利对发展计算机非常关键。这个方案可靠并且稳定。磁化相对来说是永久的,所以在系统的电源关闭后,存储的数据仍然保留着。既然磁场能以电子的速度来阅读,这使交互式计算有了可能。更进一步,因为是电线网格,存储阵列的任何部分都能访问,也就是说,不同的数据可以存储在电线网的不同位置,并且阅读所在位置的一束比特就能立即存取。这称为随机存取存储器(RAM),在存储器设备发展历程中它是交互式计算的革新概念。福雷斯特把这些专利转让给麻省理工学院,学院每年靠这些专利收到1500万~2000万美元。

最先获得这些专利许可证的是IBM,IBM最终获得了在北美防卫军事基地安装“旋风”的商业合同。更重要的是,自20世纪50年代以来,所有大型和中型计算机也采用了这一系统。磁芯存储从20世纪50年代、60年代,直至70年代初,一直是计算机主存的标准方式。

5.存储器设备发展之磁盘

世界第一台硬盘存储器是由IBM公司在1956年发明的,其型号为IBM 350 RAMAC(Random Access Method of Accounting and Control)。这套系统的总容量只有5MB,共使用了50个直径为24英寸的磁盘。1968年,IBM公司提出“温彻斯特/Winchester”技术,其要点是将高速旋转的磁盘、磁头及其寻道机构等全部密封在一个无尘的封闭体中,形成一个头盘组合件(HDA),与外界环境隔绝,避免了灰尘的污染,并采用小型化轻浮力的磁头浮动块,盘片表面涂润滑剂,实行接触起停,这是现代绝大多数硬盘的原型。1979年,IBM发明了薄膜磁头,进一步减轻了磁头重量,使更快的存取速度、更高的存储密度成为可能。20世纪80年代末期,IBM公司又对存储器设备发展作出一项重大贡献,发明了MR(Magneto Resistive)磁阻磁头,这种磁头在读取数据时对信号变化相当敏感,使得盘片的存储密度比以往提高了数十倍。1991年,IBM生产的3.5英寸硬盘使用了MR磁头,使硬盘的容量首次达到了1GB,从此,硬盘容量开始进入了GB数量级。IBM还发明了PRML(Partial Response Maximum Likelihood)的信号读取技术,使信号检测的灵敏度大幅度提高,从而可以大幅度提高记录密度。

目前,硬盘的面密度已经达到每平方英寸100Gb以上,是容量、性价比最大的一种存储设备。因而,在计算机的外存储设备中,还没有一种其他的存储设备能够在最近几年中对其统治地位产生挑战。硬盘不仅用于各种计算机和服务器中,在磁盘阵列和各种网络存储系统中,它也是基本的存储单元。值得注意的是,近年来微硬盘的出现和快速发展为移动存储提供了一种较为理想的存储介质。在闪存芯片难以承担的大容量移动存储领域,微硬盘可大显身手。目前尺寸为1英寸的硬盘,存储容量已达4GB,10GB容量的1英寸硬盘不久也会面世。微硬盘广泛应用于数码相机、MP3设备和各种手持电子类设备。

另一种磁盘存储设备是软盘,从早期的8英寸软盘、5.25英寸软盘到3.5英寸软盘,主要为数据交换和小容量备份之用。其中,3.5英寸1.44MB软盘占据计算机的标准配置地位近20年之久,之后出现过24MB、100MB、200MB的高密度过渡性软盘和软驱产品。然而,由于USB接口的闪存出现,软盘作为数据交换和小容量备份的统治地位已经动摇,不久会退出存储器设备发展历史舞台。

6. 存储器设备发展之光盘

光盘主要分为只读型光盘和读写型光盘。只读型指光盘上的内容是固定的,不能写入、修改,只能读取其中的内容。读写型则允许人们对光盘内容进行修改,可以抹去原来的内容,写入新的内容。用于微型计算机的光盘主要有CD-ROM、CD-R/W和DVD-ROM等几种。

上世纪60年代,荷兰飞利浦公司的研究人员开始使用激光光束进行记录和重放信息的研究。1972年,他们的研究获得了成功,1978年投放市场。最初的产品就是大家所熟知的激光视盘(LD,Laser Vision Disc)系统。

从LD的诞生至计算机用的CD-ROM,经历了三个阶段,即LD-激光视盘、CD-DA激光唱盘、CD-ROM。下面简单介绍这三个存储器设备发展阶段性的产品特点。

LD-激光视盘,就是通常所说的LCD,直径较大,为12英寸,两面都可以记录信息,但是它记录的信号是模拟信号。模拟信号的处理机制是指,模拟的电视图像信号和模拟的声音信号都要经过FM(Frequency Molation)频率调制、线性叠加,然后进行限幅放大。限幅后的信号以0.5微米宽的凹坑长短来表示。

CD-DA激光唱盘 LD虽然取得了成功,但由于事先没有制定统一的标准,使它的开发和制作一开始就陷入昂贵的资金投入中。1982年,由飞利浦公司和索尼公司制定了CD-DA激光唱盘的红皮书(Red Book)标准。由此,一种新型的激光唱盘诞生了。CD-DA激光唱盘记录音响的方法与LD系统不同,CD-DA激光唱盘系统首先把模拟的音响信号进行PCM(脉冲编码调制)数字化处理,再经过EMF(8~14位调制)编码之后记录到盘上。数字记录代替模拟记录的好处是,对干扰和噪声不敏感,由于盘本身的缺陷、划伤或沾污而引起的错误可以校正。

CD-DA系统取得成功以后,使飞利浦公司和索尼公司很自然地想到利用CD-DA作为计算机的大容量只读存储器。但要把CD-DA作为计算机的存储器,还必须解决两个重要问题,即建立适合于计算机读写的盘的数据结构,以及CD-DA误码率必须从现有的10-9降低到10-12以下,由此就产生了CD-ROM的黄皮书(Yellow Book)标准。这个标准的核心思想是,盘上的数据以数据块的形式来组织,每块都要有地址,这样一来,盘上的数据就能从几百兆字节的存储空间上被迅速找到。为了降低误码率,采用增加一种错误检测和错误校正的方案。错误检测采用了循环冗余检测码,即所谓CRC,错误校正采用里德-索洛蒙(Reed Solomon)码。黄皮书确立了CD-ROM的物理结构,而为了使其能在计算机上完全兼容,后来又制定了CD-ROM的文件系统标准,即ISO 9660。

在上世纪80年代中期,光盘存储器设备发展速度非常快,先后推出了WORM光盘、磁光盘(MO)、相变光盘(Phase Change Disk,PCD)等新品种。20世纪90年代,DVD-ROM、CD-R、CD-R/W等开始出现和普及,目前已成为计算机的标准存储设备。

光盘技术进一步向高密度发展,蓝光光盘是不久将推出的下一代高密度光盘。多层多阶光盘和全息存储光盘正在实验室研究之中,可望在5年之内推向市场。

7.存储器设备发展之纳米存储

纳米是一种长度单位,符号为nm。1纳米=1毫微米,约为10个原子的长度。假设一根头发的直径为0.05毫米,把它径向平均剖成5万根,每根的厚度即约为1纳米。与纳米存储有关的主要进展有如下内容。

1998年,美国明尼苏达大学和普林斯顿大学制备成功量子磁盘,这种磁盘是由磁性纳米棒组成的纳米阵列体系。一个量子磁盘相当于我们现在的10万~100万个磁盘,而能源消耗却降低了1万倍。

1988年,法国人首先发现了巨磁电阻效应,到1997年,采用巨磁电阻原理的纳米结构器件已在美国问世,它在磁存储、磁记忆和计算机读写磁头等方面均有广阔的应用前景。

2002年9月,美国威斯康星州大学的科研小组宣布,他们在室温条件下通过操纵单个原子,研制出原子级的硅记忆材料,其存储信息的密度是目前光盘的100万倍。这是纳米存储材料技术研究的一大进展。该小组发表在《纳米技术》杂志上的研究报告称,新的记忆材料构建在硅材料表面上。研究人员首先使金元素在硅材料表面升华,形成精确的原子轨道;然后再使硅元素升华,使其按上述原子轨道进行排列;最后,借助于扫瞄隧道显微镜的探针,从这些排列整齐的硅原子中间隔抽出硅原子,被抽空的部分代表“0”,余下的硅原子则代表“1”,这就形成了相当于计算机晶体管功能的原子级记忆材料。整个试验研究在室温条件下进行。研究小组负责人赫姆萨尔教授说,在室温条件下,一次操纵一批原子进行排列并不容易。更为重要的是,记忆材料中硅原子排列线内的间隔是一个原子大小。这保证了记忆材料的原子级水平。赫姆萨尔教授说,新的硅记忆材料与目前硅存储材料存储功能相同,而不同之处在于,前者为原子级体积,利用其制造的计算机存储材料体积更小、密度更大。这可使未来计算机微型化,且存储信息的功能更为强大。

以上就是本文向大家介绍的存储器设备发展历程的7个关键时期

❷ 存储技术发展史:从磁带到硬件液化

信息是人类认知外界的方式,最初的信息都会对应到现实世界的一个客体或者相关描述。人类是通过不断增加、完善信息来接触、认知并改变世界的。

最初人类依靠大脑中的神经突触来存储信息,但有些信息是如此重要,所以人们想出一切办法来使这些信息能保存下来。于是人类发明了一种描述信息的信息,这种信息就是数据。

数据是可以保存在一种物理介质上的,其实, 在“说话”的过程中,空气可以被视为一种短暂的物理介质。人类通过振动声带在空气中产生波动,声波在空气中可以短暂保留并扩散,不同波形携带了不同数据,这种波动被鼓膜接收到,达到了数据传递的效果。

但是,空气只能将信息保存一瞬间,之后就要靠大脑了。人是会生老病死的,除了口耳相传,人类需要更可靠的数据存储方法与更长久的物理介质。在过去,人类将数据保存在石板、竹简上,后来人类将数据保存在纸上,配合印刷术,使得信息可以大范围长久传播保存。

人类学会以电磁波的方式承载信息后,距离不再是信息传输的限制,但电话无非是远距离说话,电报无非是快速邮寄的信件,最终所有的信息还要回归到大自然构造的眼睛、耳朵和大脑。直到计算机问世后,人类终于可以突破自己处理信息的生理学极限,让程序和电路代替自己处理信息。

1928年,可存储模拟信号的录音磁带问世,每段磁带随着音频信号电流的强弱不同而被不同程度的磁化,从而使得声音被记录到磁带上。1951年,磁带开始应用于计算机中,最早的磁带机可以每秒钟传输7200个字符。20世纪70年代后期出现的小型磁带盒,可记录约660KB的数据。

1956年,世界上第一个硬盘驱动器出现,应用 在IBM的RAMAC305计算机中,该驱动器能存储5M的数据,传输速度为10K/S,标志着磁盘存储时代的开始。1962年,IBM发布了第一个可移动硬盘驱动器,它有六个14英寸的盘片,可存储2.6MB数据。1973年,IBM发明了温氏硬盘,其特点是工作时磁头悬浮在高速转动的盘片上方,而不与盘片直接接触,这便是现代硬盘的原型。

1967年,IBM公司推出世界上第一张软盘。随后三十年,软盘盛极一时,成为个人计算机中最早使用的可移介质。这个最初有8英寸的大家伙,可以保存80K的只读数据。四年后,可读写软盘诞生。至上世纪九十年代,软盘尺寸逐渐精简至3.5英寸,存储容量也逐步增长到250M。截止1996年,全球有多达50亿只软盘被使用。直到CD-ROM(只读光盘,Compact Disc Read-Only Memory)、USB存储设备出现后,软盘销量才开始下滑。

进入21世纪,信息爆炸导致数据量成倍增长,硬盘容量也在飙升,单盘容量已可达到TB级别。即便如此,单块磁盘所能提供的存储容量和速度已经远远无法满足实际业务需求,磁盘阵列应运而生。磁盘阵列使用独立磁盘冗余阵列技术(RAID)把相同的数据存储在多个硬盘,输入输出操作能以平衡的方式交叠进行,改善了磁盘性能,增加了平均故障间隔时间和容错能力。RAID作为高性能、高可靠的存储技术,已经得到非常广泛的应用。

21世纪以来,计算机存储技术飞速发展,如何快速高效的为计算机提供数据以辅助其完成运算成为存储技术新的突破口。在RAID技术实现高速大容量存储的基础上,网络存储技术的出现弱化了空间限制,使得数据的使用更加自由。

网络存储将存储系统扩展到网络上,存储设备作为整个网络的一个节点存在,为其他节点提供数据访问服务。即使计算主机本身没有硬盘,仍可通过网络来存取其他存储设备上的数据。基于网络存储技术,分布式云存储、容灾备份、虚拟化和云计算等技术得以广泛应用。其中,“硬件液化”与“存储资源盘活系统”是其中最新的技术方向。

如果把所有分散硬件都看做一个整体,所有数据统一定义并存储,尽可能充分发挥其中所有硬件的效率,不光会消除数据孤岛,还会提升整体硬件利用率,变相“创造”出新的资源,节省购置新设备与其配套软件、服务设施的成本。这种将所有硬件视为一个整体的概念就是“硬件液化”,即,将原本以各个服务器为单位的硬件资源进行打散、重组,使之像液体一样可以流到任何需要的地方,将数据孤岛溶解在硬件液化的海洋中。

存储资源盘活系统是贯彻硬件液化思想的产品之一,它是纯软件的存储控制器,能够安装在任意Linux服务器上,可以把各服务器中分散的磁盘整合成高性能的存储资源池,通过分布式双控制器架构保证了低延迟、高可用、易拓展的特性;通过完善的控制台、命令行与API来统一调度管理所有存储设备;通过强大的兼容性和独特的硬件异构特性充分利用全部存储资源。

存储资源盘活系统不独占硬件资源,可与现有应用混合部署在同一套硬件设备上,不影响现有业务的运行的同时将闲置存储资源予以整合,帮用户把现有服务器集群中存储资源利用率不高的设备进行统一管理,形成统一存储资源池。可基于异构硬件进行部署,兼容x86、ARM、龙芯等平台设备。可以通过标准 iSCSI 协议为上层应用提供虚拟 Target 和逻辑卷,提供分布式块存储服务并可被灵活调度、分配、使用。

参考资料:

存储小白-为什么需要存储

中国信息通信研究院-下一代数据存储技术研究报告

维基网络-计算机存储技术

IDC-《IDC FutureScape: 全球云计算 2020 年预测——中国启示》.

❸ 存储技术发展历史

最早的外置存储器可以追溯到19世纪末。为了解决人口普查的需要,霍列瑞斯首先把穿孔纸带改造成穿孔卡片。

他把每个人所有的调查项目依次排列于一张卡片,然后根据调查结果在相应项目的位置上打孔。在以后的计算机系统里,用穿孔卡片输入数据的方法一直沿用到20世纪70年代,数据处理也发展成为电脑的主要功能之一。

2、磁带

UNIVAC-I第一次采用磁带机作外存储器,首先用奇偶校验方法和双重运算线路来提高系统的可靠性,并最先进行了自动编程的试验。此时这个磁带长达1200英寸、包含8个磁道,每英寸可存储128bits,每秒可记录12800个字符,容量也达到史无前例的184KB。从 此之后,磁带经历了迅速发展,后来广泛应用了录音、影像领域。

3、软盘(见过这玩意的一定是80后)

1967年 IBM公司推出世界上第一张“软盘”,直径32英寸。随着技术的发展,软盘的尺寸一直在减小,容量也在不断提升,大小从8英寸,减到到5.25英寸软盘,以及到后来的3.5英寸软盘,容量却从最早的81KB到后来的1.44MB。在80-90年代3.5英寸软盘达到了巅峰。直到CD-ROM、USB存储设备出现后,软盘销量才逐渐下滑。

4、CD

CD也就是我们常说的光盘、光盘,诞生于1982年,最早用于数字音频存储。1985年,飞利浦和索尼将其引入PC,当时称之为CD-ROM(只 读),后来又发展成CD-R(可读)。因为声频CD的巨大成功,今天这种媒体的用途已经扩大到进行数据储存,目的是数据存档和传递。

5、磁盘

第一台磁盘驱动器是由IBM于1956年生产,可存储5MB数据,总共使用了50个24英寸盘片。到1973年,IBM推出第一个现代“温彻斯特”磁盘驱动器3340,使用了密封组件、润滑主轴和小质量磁头。此后磁盘的容量一度提升MB到GB再到TB。

6、DVD

数字多功能光盘,简称DVD,是一种光盘存储器。起源于上世纪60年代,荷兰飞利浦公司的研究人员开始使用激光光束进行记录和重放信息的研究。1972年,他们的研究获得了成功,1978年投放市场。最初的产品就是大家所熟知的激光视盘(LD,Laser Vision Disc)系统。它们的直径多是120毫米左右。容量目前最大可到17.08GB。

7、闪存

浅谈存储器的进化历程
闪存(Flash Memory)是一种长寿命的非易失性(在断电情况下仍能保持所存储的数据信+息)的存储器。包含U盘、SD卡、CF卡、记忆棒等等种类。在1984年,东芝公司的发明人舛冈富士雄首先提出了快速闪存存储器(此处简称闪存)的概念。与传统电脑内存不同,闪存的特点是非易失性(也就是所存储的数据在主机掉电后不会丢失),其记录速度也非常快。Intel是世界上第一个生产闪存并将其投放市场的公司。到目前为止闪存形态多样,存储容量也不断扩展到256GB甚至更高。

随着存储器的更新换代,存储容量越来越大,读写速度也越来越快,企业级硬盘单盘容量已经达到10TB以上,目前使用的SSD固态硬盘,读速度达:3000+MB/s,写速度达:1700MB/s,用起来美滋滋啊。

❹ 计算机储存介质的发展史

个人电脑中的硬盘类存储设备发展史
原始的IBMPC,出现于1981年,当时它还不支持任何形式的固定式存储器(也就是今天我们说的‘硬盘’),因此在它的BIOS里没有任何关于识别与控制此类设备的代码。早期的DOS操作系统在目录总数上的限制也影响到了大容量存储设备的使用。考虑到最初的CPU仅为4.77MHz的主频和少得可怜的内存容量(16KB,可扩展到64KB),对那时的PC来说就连软驱都显得有些“奢侈”了。当时,软驱和装在软盘中的操作系统都还属于系统中的可选部分,大多数用户靠的还是磁带机和记录在ROM里的Basic程序来操作电脑。在一台PC机里使用固定式硬盘需要满足以下几个条件:提供一个独立的IRQ(中断请求号)为控制器预留一段I/O接口地址。提供一条DMA通道(这在今天已不再是必须的了)。得到BIOS中低级程序代码的支持。在总线上开出一个物理接口(通过扩展卡或主板板载来实现)。保证操作系统的支持。保障相应的供电和冷却条件。从DOS2开始,DOS得以在大容量存储设备中使用“子目录”这一概念,受此影响,终于开始有厂家推出面向PC机的硬盘设备了。当时它还是一种外置的,使用专用接口卡的特殊设备,电源也是由外部独立供给的(因为当时PC内置的63.5W电源光对机箱内部原有的设备供电都已经显得有些功率不足了)。使用它时,需要在PC里找出一个空余的8bit扩展槽,插上专用接口卡,并调整系统设置为该卡留出专用的IRQ和一定范围的I/O地址,然后在每次启动时,都要用软盘来引导系统时,以便向内存中加载带有读写控制代码的驱动程序,整个过程烦琐而复杂。但到了1983年的IBMPCXT(eXTended)问世时,有些机型就已经开始内置10MB的固定式硬盘了。IBM开始在机箱内预设硬盘控制接口,读写硬盘所需的程序代码也正式被作为主板上BIOS的扩展部分而保存到了接口卡的ROM上,不用在启动时一次次地向内存里加载了。并且,机箱内置的电源功率提高到了135W,这一性能已完全能满足机箱内置硬盘的供电要求了。XT规格中关于硬盘接口的部分规定如下:使用IRQ5。使用I/O地址320-32F。使用DMA3。相应程序代码记录于ROM地址C8000处。使用DOS2.0版本以上的操作系统。受此影响,更多的公司开始生产、销售类似的驱动器/接口卡套件。这些第三方生产的套件都带有各自不同的特色,有的提供了更大的容量、有的实现了更高的读写速度、还有的在接口控制卡上集成了软驱接口以节约主板上有限的扩展槽。进入1984年后,IBMPC/AT(AdvancedTechnology,先进技术)规格中关于硬盘子系统的部分得到了全面更新。程序控制代码开始被内建于主板搭载的BIOS中,从而不再依靠接口控制卡上所带的ROM芯片了。系统开始支持新增加的高位IRQ中断号,废除了对DMA通道的占用,并更改了硬盘接口所使用的I/O地址。AT规格中关于硬盘接口规定如下:使用IRQ14。使用I/O接口地址1F0-1F8。不再占用DMA通道。使用主板BIOS中内建的程序代码对硬盘接口进行控制。使用DOS2.0版本以上的操作系统。AT兼容机上的硬件设置信息都被保存在一块CMOS芯片上,所记录的内容受一块小型电池的供电来维持。因此即便机箱的电源被切断,所有设置仍旧会被保存下来。这一技术使PC机的用户不必再受一大堆跳线和拨动开关的困扰(在早期的电脑上,每件设备所占用的系统资源都是由用户手动更改跳线或拨动开关来进行分配的),且CMOS中所记录的内容可以运行一个简单的程序方便地进行更改,此举可算是提高电脑易用性方面的一大进步。原始的AT规格界定了从10MB到112MB共计14种容量的硬盘,在使用那些不合规格的硬盘时,仍需要在接口卡上搭载ROM芯片或是在系统启动时加载专用的设备驱动程序。在DOS4.0之前的操作系统不支持32MB以上的分区,哪怕是使用容量在100MB以上的硬盘时,也要把它切割成小区方能使用,这是因为“系统中的扇区总数不能超过16位(65,536)”这一传统限制。想使用大于32MB的分区,就必须使用特殊的分区工具,例如Ontrack’sDiskManager(即便是在今天,新版本DiskManager仍旧受到用户们的欢迎,它可是解决老主板不支持大容量硬盘的制胜法宝啊),当时有许多硬盘厂家都将DiskManager与自家的产品捆绑销售。但不幸的是,DiskManager与其他许多磁盘工具都发生了兼容性问题,因为在大多数工具软件下,用DiskManager所分的区都会被识别成了非DOS(Non-DOS)分区。因此,许多用户被迫选择了分割多个32MB以下小分区的办法来使用大容量硬盘,但这种办法也有局限性,因为DOS3.3之前的版本根本就不支持扩展分区这一概念……今天的用户当然不必理会这些限制,因为AT兼容机所支持的硬盘种类已增加为40多种,并且大多数BIOS都会提供一个可由用户自由设定各种硬盘参数的选项。您只要打开WINDOWS操作系统中的硬盘属性,就能看到“GENERICIDEDISKTYPE46/47”等字样(具体显示46还是47与系统设置有关,在BIOS里把硬盘类型设为USER时显示为TYPE46,而设为AUTO时系统属性里则显示TYPE47),这就是您的硬盘所属的“固有的硬盘类型”。当然,在WINDOWS环境下,用户根本用不着在意硬盘到底被设成了什么类型,因为随着操作系统本身的发展进步,WINDOWS本身不需要读取这一参数就能正确地读写硬盘了。不过,原始的AT规格中的部分条文在今天依旧是PC机的桎梏,例如一台PC机最多只能连接2个硬盘、BIOS/操作系统只能识别1024柱面、16磁头和63扇区/磁轨的限制等等(当然,这些限制现在都已被克服了)。人们已经采用了多种不同的办法来将那些“不合规格的”物理参数与系统所能支持的逻辑参数之间进行互相转换。

❺ 信息存储技术的发展过程

人类记录信息、存储信息方法经历了以下几大技术:
1,结绳记事;
2,文字纸张;
3,磁记录方式(磁鼓,磁带,磁盘等) 当前比较成熟,
4,半导体电记录(电路,电量或电容):ROM,RAM等;随着半导体技术的提升而不断提升、改进
5,光记录(光盘,光运算器件) 光计算和光存储也许会在不久的将来大力发展

❻ 内存条的发展史

首先说说我知道的.在DDR之前是SDR,DDR是在02年以后才开始成为主流的.中间还出现过RDR,性能比当时的DDR要好一些,但是因为成本太高而被DDR淘汰.SDR之前的我不大知道了,刚才在网上查了一下,挑选一些有用的信息给你.
开山鼻祖——SIMM 内存

在80286主板发布之前,内存并没有被世人所重视,这个时候的内存是直接固化在主板上,而且容量只有64 ~256KB,对于当时PC所运行的工作程序来说,这种内存的性能以及容量足以满足当时软件程序的处理需要。不过随着软件程序和新一代80286硬件平台的出现,程序和硬件对内存性能提出了更高要求,为了提高速度并扩大容量,内存必须以独立的封装形式出现,因而诞生了前面我们所提到的“内存条”概念。

在80286主板刚推出的时候,内存条采用了SIMM(Single In-lineMemory Moles,单边接触内存模组)接口,容量为30pin、256kb,必须是由8 片数据位和1 片校验位组成1 个bank,正因如此,我们见到的30pin SIMM一般是四条一起使用。自1982年PC进入民用市场一直到现在,搭配80286处理器的30pin SIMM 内存是内存领域的开山鼻祖

随后,在1988 ~1990 年当中,PC 技术迎来另一个发展高峰,也就是386和486时代,此时CPU 已经向16bit 发展,所以30pin SIMM 内存再也无法满足需求,其较低的内存带宽已经成为急待解决的瓶颈,所以此时72pin SIMM 内存出现了(如图3),72pin SIMM支持32bit快速页模式内存,内存带宽得以大幅度提升。72pin SIMM内存单条容量一般为512KB ~2MB,而且仅要求两条同时使用,由于其与30pin SIMM 内存无法兼容,因此这个时候PC业界毅然将30pin SIMM 内存淘汰出局了。

徘徊不前——EDO DRAM内存

EDO DRAM(Extended Date Out RAM,外扩充数据模式存储器)内存,这是1991 年到1995 年之间盛行的内存条,EDO-RAM同FP DRAM极其相似,它取消了扩展数据输出内存与传输内存两个存储周期之间的时间间隔,在把数据发送给CPU的同时去访问下一个页面,故而速度要比普通DRAM快15~30%。工作电压为一般为5V,带宽32bit,速度在40ns以上,其主要应用在当时的486及早期的Pentium电脑上

在1991 年到1995 年中,让我们看到一个尴尬的情况,那就是这几年内存技术发展比较缓慢,几乎停滞不前,所以我们看到此时EDO RAM有72 pin和168 pin并存的情况,事实上EDO 内存也属于72pin SIMM 内存的范畴,不过它采用了全新的寻址方式。EDO 在成本和容量上有所突破,凭借着制作工艺的飞速发展,此时单条EDO 内存的容量已经达到4 ~16MB 。由于Pentium及更高级别的CPU数据总线宽度都是64bit甚至更高,所以EDO RAM与FPM RAM都必须成对使用

一代经典——SDRAM 内存

自Intel Celeron系列以及AMD K6处理器以及相关的主板芯片组推出后,EDO DRAM内存性能再也无法满足需要了,内存技术必须彻底得到个革新才能满足新一代CPU架构的需求,此时内存开始进入比较经典的SDRAM时代。

第一代SDRAM 内存为PC66 规范(如图6),但很快由于Intel 和AMD的频率之争将CPU外频提升到了100MHz,所以PC66内存很快就被PC100内存取代(如图7),接着133MHz 外频的PIII以及K7时代的来临,PC133规范也以相同的方式进一步提升SDRAM 的整体性能,带宽提高到1GB/sec以上(如图8)。由于SDRAM 的带宽为64bit,正好对应CPU 的64bit 数据总线宽度,因此它只需要一条内存便可工作,便捷性进一步提高。在性能方面,由于其输入输出信号保持与系统外频同步,因此速度明显超越EDO 内存。
不可否认的是,SDRAM 内存由早期的66MHz,发展后来的100MHz、133MHz,尽管没能彻底解决内存带宽的瓶颈问题,但此时CPU超频已经成为DIY用户永恒的话题,所以不少用户将品牌好的PC100品牌内存超频到133MHz使用以获得CPU超频成功,值得一提的是,为了方便一些超频用户需求,市场上出现了一些PC150、PC166规范的内存

曲高和寡——Rambus DRAM内存

尽管SDRAM PC133内存的带宽可提高带宽到1064MB/S,加上Intel已经开始着手最新的Pentium 4计划,所以SDRAM PC133内存不能满足日后的发展需求,此时,Intel为了达到独占市场的目的,与Rambus联合在PC市场推广Rambus DRAM内存(称为RDRAM内存)。与SDRAM不同的是,其采用了新一代高速简单内存架构,基于一种类RISC(Reced Instruction Set Computing,精简指令集计算机)理论,这个理论可以减少数据的复杂性,使得整个系统性能得到提高
在AMD与Intel的竞争中,这个时候是属于频率竞备时代,所以这个时候CPU的主频在不断提升,Intel为了盖过AMD,推出高频PentiumⅢ以及Pentium 4 处理器,因此Rambus DRAM内存是被Intel看着是未来自己的竞争杀手剑,Rambus DRAM内存以高时钟频率来简化每个时钟周期的数据量,因此内存带宽相当出色,如PC 1066 1066 MHz 32 bits带宽可达到4.2G Byte/sec,Rambus DRAM曾一度被认为是Pentium 4 的绝配。

尽管如此,Rambus RDRAM 内存生不逢时,后来依然要被更高速度的DDR“掠夺”其宝座地位,在当时,PC600、PC700的Rambus RDRAM 内存因出现Intel820 芯片组“失误事件”、PC800 Rambus RDRAM因成本过高而让Pentium 4平台高高在上(如图11),无法获得大众用户拥戴,种种问题让Rambus RDRAM胎死腹中,Rambus曾希望具有更高频率的PC1066 规范RDRAM来力挽狂澜,但最终也是拜倒在DDR 内存面前。

再续经典——DDR内存

DDR SDRAM(Dual Date Rate SDRAM)简称DDR,也就是“双倍速率SDRAM“的意思。DDR可以说是SDRAM的升级版本, DDR在时钟信号上升沿与下降沿各传输一次数据,这使得DDR的数据传输速度为传统SDRAM的两倍。由于仅多采用了下降缘信号,因此并不会造成能耗增加。至于寻址与控制信号则与传统SDRAM相同,仅在时钟上升缘传输。

DDR 内存是作为一种在性能与成本之间折中的解决方案,其目的是迅速建立起牢固的市场空间,继而一步步在频率上高歌猛进,最终弥补内存带宽上的不足。第一代DDR200 规范并没有得到普及,第二代PC266 DDR SRAM(133MHz时钟×2倍数据传输=266MHz带宽)是由PC133 SDRAM内存所衍生出的,它将DDR 内存带向第一个高潮,目前还有不少赛扬和AMD K7处理器都在采用DDR266规格的内存(如图12),其后来的DDR333内存也属于一种过度(如图13),而DDR400内存成为目前的主流平台选配(如图14),双通道DDR400内存已经成为800FSB处理器搭配的基本标准,随后的DDR533 规范则成为超频用户的选择对象

我自己也看了一下,都是比较有用的信息,再之后就是我们熟悉的DDR2和DDR3了.不再赘述了.

热点内容
云识别系统登陆密码是多少 发布:2025-01-21 06:23:39 浏览:368
stl源码剖析中文 发布:2025-01-21 06:14:17 浏览:344
我的世界手机版为什么连不上服务器 发布:2025-01-21 06:14:17 浏览:453
压缩机的性能参数 发布:2025-01-21 06:10:34 浏览:607
2014年预算法修订历时20年 发布:2025-01-21 06:05:46 浏览:191
linux切换到root用户 发布:2025-01-21 06:05:38 浏览:516
php存在文件 发布:2025-01-21 06:04:51 浏览:171
故乡的密码标题运用了什么手法 发布:2025-01-21 06:00:20 浏览:724
java新浪微博 发布:2025-01-21 06:00:07 浏览:887
php防止注入 发布:2025-01-21 06:00:04 浏览:815