大数据存储结构
‘壹’ 大数据存储的三种方式
大数据存储的三种方式有:
1、不断加密:任何类型的数据对于任何一个企业来说都是至关重要的,而且通常被认为是私有的,并且在他们自己掌控的范围内是安全的。
然而,黑客攻击经常被覆盖在业务故障中,最新的网络攻击活动在新闻报道不断充斥。因此,许多公司感到很难感到安全,尤其是当一些行业巨头经常成为攻击目标时。随着企业为保护资产全面开展工作,加密技术成为打击网络威胁的可行途径。
2、仓库存储:大数据似乎难以管理,就像一个永无休止统计数据的复杂的漩涡。因此,将信息精简到单一的公司位置似乎是明智的,这是一个仓库,其中所有的数据和服务器都可以被充分地规划指定。然而,有些报告指出了反对这种方法的论据,指出即使是最大的存储中心,大数据的指数增长也不再能维持。
3、备份服务云端:大数据管理和存储正在迅速脱离物理机器的范畴,并迅速进入数字领域。除了所有技术的发展,大数据增长得更快,以这样的速度,世界上所有的机器和仓库都无法完全容纳它。
由于云存储服务推动了数字化转型,云计算的应用越来越繁荣。数据在一个位置不再受到风险控制,并随时随地可以访问,大型云计算公司将会更多地访问基本统计信息。数据可以在这些服务上进行备份,这意味着一次网络攻击不会消除多年的业务增长和发展。
‘贰’ 大数据的存储
⼤数据的存储⽅式是结构化、半结构化和⾮结构化海量数据的存储和管理,轻型数据库⽆法满⾜对其存储以及复杂的数据挖掘和分析操作,通常使⽤分布式⽂件系统、No sql 数据库、云数据库等。
结构化、半结构化和⾮结构化海量数据的存储和管理,轻型数据库⽆法满⾜对其存储以及复杂的数据挖掘和分析操作,通常使⽤分布式⽂件系统、No SQL 数据库、云数据库等。
1 分布式系统:分布式系统包含多个⾃主的处理单元,通过计算机⽹络互连来协作完成分配的任务,其分⽽治之的策略能够更好的处理⼤规模数据分析问题。
主要包含以下两类:
1)分布式⽂件系统:存储管理需要多种技术的协同⼯作,其中⽂件系统为其提供最底层存储能⼒的⽀持。分布式⽂件系统 HDFS 是⼀个⾼度容错性系统,被设计成适⽤于批量处理,能够提供⾼吞吐量的的数据访问。
2)分布式键值系统:分布式键值系统⽤于存储关系简单的半结构化数据。典型的分布式键值系统有 Amazon Dynamo,以及获得⼴泛应⽤和关注的对象存储技术(Object Storage)也可以视为键值系统,其存储和管理的是对象⽽不是数据块。
2 Nosql 数据库:关系数据库已经⽆法满⾜ Web2.0 的需求。主要表现为:⽆法满⾜海量数据的管理需求、⽆法满⾜数据⾼并发的需求、⾼可扩展性和⾼可⽤性的功能太低。No SQL 数据库的优势:可以⽀持超⼤规模数据存储,灵活的数据模型可以很好地⽀持 Web2.0 应⽤,具有强⼤的横向扩展能⼒等,典型的 No SQL 数据库包含以下⼏种:
3 云数据库:云数据库是基于云计算技术发展的⼀种共享基础架构的⽅法,是部署和虚拟化在云计算环境中的数据库。
‘叁’ 大数据下的地质资料信息存储架构设计
颉贵琴 胡晓琴
(甘肃省国土资源信息中心)
摘要 为推进我国地质资料信息服务集群化产业化工作,更大更好地发挥地质资料信息的价值,本文针对我国现有的地质资料信息集群化共享服务平台存在的缺陷和问题,基于现有系统的存储架构,设计了一种大数据下的地质资料信息存储架构,以便于我国地质资料信息服务集群化产业化工作能够适应大数据时代的数据存储。
关键词 大数据 地质资料 存储 NoSQL 双数据库
0 引言
新中国成立60多年来,我国形成了海量的地质资料信息,为国民经济和社会发展提供了重要支撑。但在地质资料管理方面长期存在资料信息分散、综合研究不够、数字化信息化程度不高、服务渠道不畅、服务能力不强等问题,使地质资料信息的巨大潜在价值未能得到充分发挥。为进一步提高地质工作服务国民经济和社会发展的能力,充分发挥地质资料信息的服务功能,扩大服务领域,国土资源部根据国内外地质工作的先进经验,做出了全面推进地质资料信息服务集群化产业化工作的部署。
目前,全国各省地质资料馆都在有条不紊地对本省成果、原始和实物地质资料进行清理,并对其中重要地质资料进行数字化和存储工作。然而,由于我国地质资源丰富,经过几十年的积累,已经形成了海量的地质资料,数据量早已经超过了几百太字节(TB)。在进行地质资料信息服务集群化工作中,随着共享数据量的不断增大,传统的数据存储方式和管理系统必然会展现出存储和检索方面的不足以及系统管理方面的缺陷。为了解决该问题,需要设计更加先进的数据存储架构来实现海量地质资料的存储。
而大数据(Big Data)作为近年来在云计算领域中出现的一种新型数据,科技工作者在不断的研究中,设计了适合大数据存储管理的非关系型数据库NoSQL进行大数据的存储和管理。本文将针对我国现有的地质资料信息集群化共享服务平台存在的缺陷和问题,利用大数据存储管理模式的思想,提出一种海量地质资料存储架构,改进现有系统存储架构,以便于我国全面推进地质资料信息服务集群化产业化工作。
1 工作现状
1.1 国内外地质资料信息的存储现状
在美国,主要有两大地质资料公共服务平台,分别是地球科学信息中心(ESIC)、地球资源观测和科学中心(EROS),其目的是通过为社会和政府提供更加便利、快速的地质信息服务。20世纪90年代初,澳大利亚出台了国家地球科学填图协议,采用先进的科学方法和技术进行数据存储,从而形成了第二代澳大利亚陆地地质图。
目前,我国地质资料信息服务集群化产业化工作刚刚起步,虽然国土资源部信息中心已经开发了地质资料信息集群化共享服务平台,并倡导各地方用户使用该系统。但由于各个地方早期的工作背景不一致,因此各地方所使用的存储系统也不尽相同,主要有Access、SQL Server、Oracle、MySQL等系统。本文以国土资源部信息中心开发的地质资料信息集群化共享服务平台的存储系统MySQL为例说明。该系统是基于关系数据库管理系统MySQL的一套分布式存储检索系统。该系统的部署使得我国地质资料信息服务集群化产业化工作取得了重大进展,同时也为我国建立标准统一的地质资料信息共享服务平台和互联互通的网络服务体系奠定了坚实的基础。然而,该系统的研发并没有考虑到地质资料信息进一步集群化以及在未来地质资料信息进入大数据时代的信息共享和存储管理问题,也没有给出明确的解决方案。
1.2 大数据的存储架构介绍
大数据是近年在云计算领域中出现的一种新型数据,具有数据量大、数据结构不固定、类型多样、查询分析复杂等特点。传统关系型数据库管理系统在数据存储规模、检索效率等方面已不再适合大数据存储。NoSQL(Not Only SQL)是与关系数据库相对的一类数据库的总称。这些数据库放弃了对关系数据库的支持,转而采用灵活的、分布式的数据存储方式管理数据,从而可以满足大数据存储和处理的需求。NoSQL基于非关系型数据存储的设计理念,以键值对进行存储,采用的数据字的结构不固定,每一个元组可以有不一样的字段,且每个元组可以根据自己的需要增加一些自己的键值对,可以减少一些检索时间和存储空间。目前,应用广泛的 NoSQL 数据库有 Google BigTable、HBase、MongoDB、Neo4 j、Infinite Graph等。
2 大数据下的地质资料信息存储架构设计
根据国土资源部做出的全面推进地质资料信息服务集群化产业化工作的部署,国土资源部倡导全国地质资料馆使用国土资源部信息中心开发的地质资料信息集群化共享服务平台,实现地质资料信息的存储和共享。该系统采用了数据库管理系统MySQL作为数据存储系统。
为了与现有系统和现有的工作进行对接,并为将来地质资料进入大数据时代后的存储工作做准备,本文设计了一种能用于海量地质资料信息存储并且兼容MySQL的分布式的数据存储架构(图1)。
整个系统可以根据不同的用户等级分为不同的用户管理层,由于图幅限制,在图1 中仅仅展示了3级:国家级管理层(即共享服务平台用户层)、省级管理层以及市级管理层(可根据实际需要延伸至县级)。
每级管理层的每个用户可以单独管理一个服务器。如国土资源部信息中心可以单独管理一个服务器;甘肃省国土资源信息中心可以单独管理一个服务器,陕西省国土资源信息中心可以单独管理一个服务器;甘肃的若干个市级国土资源局可以根据需要分别管理各自的服务器。
在服务器上分别安装两套数据库管理系统,一套是原有的MySQL数据库管理系统,另一套是为大数据存储而配备的NoSQL型数据库管理系统。在服务器上还专门开发一个数据库管理器中间件,用于进行用户层和数据库的通信以及两套数据库之间的通信。
由于各个管理层都各自维护自己的数据库和数据。当用户需要进行数据存储时,他所影响的数据库仅仅是本地数据库,存储效率较高;当用户需要从多个数据库读取数据时,顶层的共享服务平台会根据用户需求进行任务分解,将任务分发给下层的管理层进行数据库读取,由于各个数据库并行读取,从而提高了数据库读取效率。
图1 大数据下的地质资料信息存储架构框图
2.1 用户管理层
用户管理层根据权限范围,分为多层(本文以3层为例)。
位于顶层的国家级管理层(共享服务平台用户层)负责用户访问权限的分配、与其直接关联的数据库的访问、下级管理层任务的分配等工作。
用户访问权限的分配是指为访问本共享服务平台的个人用户和单位用户分配数据的使用权限、安全性的设计等。
与其直接关联的数据库访问是指直接存储在其本地数据库上的数据的访问。在该数据库中不仅要存储所需要的地质资料,还要存储注册用户信息等数据。
下级管理层任务分配是指如果用户需要访问多个下层数据库,用户只需要输入查询这几个下层数据库的命令,而如何查找下层数据库则由该功能来完成。例如某用户要查找甘肃、陕西、上海、北京的铁矿分布图,则用户只需要输入这几个地方及铁矿等查询条件,系统将自动把各个省的数据库查询任务分派到下级管理层。
同理,位于下层的省级管理层和市级管理层除了没有用户访问权限功能外,其余功能与国家级管理层是相同的。各层之间的数据库通过互联网相互连接成分布式的数据库系统。
2.2 MySQL和NoSQL的融合
MySQL是关系型数据库,它支持SQL查询语言,而NoSQL是非关系型数据库,它不支持SQL查询语言。用户要想透明地访问这两套数据库,必须要设计数据库管理器中间件,作为用户访问数据库的统一入口和两套数据库管理系统的通信平台。本文所设计的数据库管理器简单模型如图2所示。
图2 数据库管理器模型
服务器管理器通过用户程序接口与应用程序进行通讯,通过MySQL数据库接口与MySQL服务器通讯,通过NoSQL数据库接口与NoSQL数据库接口通讯。当应用程序接口接收到一条数据库访问命令之后,交由数据库访问命令解析器进行命令解析,从而形成MySQL访问命令或者NoSQL访问命令,通过相应的数据库接口访问数据库;数据库返回访问结果后经过汇总,由应用程序接口返回给应用程序。
两套数据库可以通过双数据库通信协议进行相互的通信和互访。此通信协议的建立便于地质工作人员将已经存入MySQL数据库的不适合结构化存储的数据转存到NoSQL数据库中,从而便于系统的升级和优化。
2.3 系统的存储和检索模式
在本存储框架设计中,系统采用分布式网络存储模式,即采用可扩展的存储结构,利用分散在全国各地的多台独立的服务器进行数据存储。这种方式不仅分担了服务器的存储压力,提高了系统的可靠性和可用性,还易于进行系统扩展。另外,由于地质资料信息存储的特殊性,各地方用户的数据存储工作基本都是在本地服务器进行,很少通过网络进行远程存储,所以数据存储效率较高。
在一台数据库服务器上安装有MySQL和NoSQL型两套数据库管理系统,分别用于存储地质资料信息中的结构化数据和非结构化数据。其中,NoSQL型数据库作为主数据库,用于存储一部分结构化数据和全部的非结构化数据;而MySQL数据库作为辅助数据库,用于存储一部分结构化的数据,以及旧系统中已经存储的数据。使用两套数据库不仅可以存储结构化数据而且还可以适用于大数据时代地质资料信息的存储,因此系统具有很好的适应性和灵活性。
2.4 安全性设计
地质资料信息是国家的机密,地质工作人员必须要保证它的安全。地质资料信息进入数字化时代之后,地质资料常常在计算机以及网络上进行传输,地质资料信息的安全传输和保存更是地质工作人员必须关注和解决的问题。在本存储架构的设计中设计的安全问题主要有数据库存储安全、数据传输安全、数据访问安全等问题。
数据库设计时采用多边安全模型和多级安全模型阻止数据库中信息和数据的泄露来提高数据库的安全性能,以保障地质信息在数据库中的存储安全;当用户登录系统访问数据库时,必须进行用户甄别和实名认证,这主要是对用户的身份进行有效的识别,防止非法用户访问数据库;在对地质资料进行网络传输时,应该首先将数据进行加密,然后再进行网络传输,以防止地质信息在传输过程中被窃取。
3 结语
提高地质资料数字化信息化水平,是国外地质工作强国的普遍做法。为推进我国地质资料信息服务集群化产业化工作,本文针对我国现有的地质资料信息集群化共享服务平台存在的缺陷和问题,利用大数据存储管理模式的思想,基于现有系统的存储架构,设计了一种大数据下的地质资料信息存储架构,以便于我国地质资料信息服务集群化产业化工作能够适应大数据时代的数据存储。该存储架构的设计只涉及了简单模型的构建,具体详细复杂的功能设计和软件实现还需要在进一步的研究工作中完成。
参考文献
[1]吴金朋.一种大数据存储模型的研究与应用[D].北京:北京邮电大学计算机学院,2012.
[2]吴广君,王树鹏,陈明,等.海量结构化数据存储检索系统[J].计算机研究与发展,2012,49(Suppl):1~5.
[3]黄
‘肆’ 传统大数据存储的架构有哪些各有什么特点
数据源:所有大数据架构都从源代码开始。这可以包含来源于数据库的数据、来自实时源(如物联网设备)的数据,及其从应用程序(如Windows日志)生成的静态文件。
实时消息接收:假如有实时源,则需要在架构中构建一种机制来摄入数据。
数据存储:公司需要存储将通过大数据架构处理的数据。一般而言,数据将存储在数据湖中,这是一个可以轻松扩展的大型非结构化数据库。
批处理和实时处理的组合:公司需要同时处理实时数据和静态数据,因而应在大数据架构中内置批量和实时处理的组合。这是由于能够应用批处理有效地处理大批量数据,而实时数据需要立刻处理才能够带来价值。批处理涉及到长期运转的作业,用于筛选、聚合和准备数据开展分析。
分析数据存储:准备好要分析的数据后,需要将它们放到一个位置,便于对整个数据集开展分析。分析数据储存的必要性在于,公司的全部数据都聚集在一个位置,因而其分析将是全面的,而且针对分析而非事务进行了优化。
这可能采用基于云计算的数据仓库或关系数据库的形式,具体取决于公司的需求。
分析或报告工具:在摄入和处理各类数据源之后,公司需要包含一个分析数据的工具。一般而言,公司将使用BI(商业智能)工具来完成这项工作,而且或者需要数据科学家来探索数据。
“大数据” 通常指的是那些数量巨大、难于收集、处理、分析的数据集,亦指那些在传统基础设施中长期保存的数据。大数据存储是将这些数据集持久化到计算机中。
‘伍’ 第三章 大数据存储
一,HDFS的基本特征与构架
1.基本特征
(1)大规模数据分布存储能力:以分布式存储能力和良好的可扩展性。(基于大量分布节点上的本地文件系统,构建一个逻辑上具有巨大容量的分布式文件系统,并且整个文件系统的容量可随集群中节点的增加而线性扩展)
(2)高并发访问能力:提供很高的数据访问宽带(高数据吞吐率),并且可以把带宽的大小等比例扩展到集群中的全部节点上
(3)强大的容错能力:(设计理念中硬件故障被视作常态)保证在经常有节点发生硬件故障的情况下正确检测硬件故障,并且能自动从故障中快速恢复,确保数据不丢失(采用多副本数据块形式存储)
(4)顺序式文件访问:(大数据批处理都是大量简单数据记录的顺序处理)对顺序读进行了优化,支持大量数据的快速顺序读出,代价是对于随机的访问负载较高
(5)简单的一致性模型(一次写多次读):支持大量数据的一次写入,多次读取;不支持已写入数据的更新操作,但允许在文件尾部添加新的数据
(6)数据块存储模式:默认的块大小是64MB。好处:减少元数据的数量,允许这些数据块通过随机方式选择节点,分布存储在不同地方
2.基本框架与工作过程
(1)基本组成结构与文件访问过程
[1]HDFS;一个建立在一组分布式服务器节点的本地文件系统之上的分布式文件系统(采用经典主-从结构)
[2]主控节点NameNode:
1)是一个主服务器,用来管理整个文件系统的命名空间和元数据,以及处理来自外界的文件访问请求
2)保存了文件系统的三中元数据
命名空间:整个分布式文件系统的目录结构
数据块与文件名的映射表
每个数据块副本的位置信息,每一个数据块默认有3个副本
[3]从节点DataNode:
1)用来实际存储和管理文件的数据块
2)为了防止数据丢失,每个数据块默认有3个副本,且3个副本会分别复制在不同节点上,以避免一个节点失效造成一个数据块的彻底丢失
[4]程序访问文件时,实际文件数据流并不会通过NameNode传送,而是从NameNode获得所需访问数据块的存储位置信息后,直接去访问对应的DataNode获取数据
[5]设计好处:
1)可以允许一个文件的数据能同时在不同DataNode上并发访问,提高数据访问的速度
2)减少NameNode的负担,避免使NameNode成为数据访问瓶颈
[6]基本访问过程:
1)首先,用户的应用程序通过HDFS的客户端程序将文件名发送至NameNode
2)NameNode接收到文件名之后,在HDFS目录中检索文件名对应的数据块,再根据数据块信息找到保存数据块的DataNode地址,讲这些地址回送到客户端
3)客户端接收到这些DataNode地址之后,与这些DataNode并行的进行数据传输操作,同时将操作结果的相关日志提交到NameNode
2.数据块
(1)为了提高硬盘的效率,文件系统中最小的数据读写单元是数据块
(2)HDFS数据块的默认大小是64MB,实际部署中,可能会更多
(3)将数据块设置大的原因是减少寻址开销的时间
(4)当应用发起数据传输请求:
[1]NameNode首先检索文件对应的数据块信息,找到数据块对应的DataNode
[2]DataNode根据数据块信息在自身的存储中寻找相应的文件,进而与应用程序之间交换数据
[3]因为检索过程是但进行,所以要增加数据块大小,这样就可以减少寻址的频度和时间开销
3.命名空间
(1)文件命名遵循“目录/子目录/文件”格式
(2)通过命令行或者是API可以创建目录,并且将文件保存在目录中。可以对文件进行创建,删除,重命名操作
(3)命令空间由NameNode管理。所有对命名空间的改动都会被记录
(4)允许用户配置文件在HDFS上保存的副本数量,保存的副本数称作“副本因子”
4.通信协议
(1)采用TCP协议作为底层的支撑协议
(2)应用协议
[1]应用可以向NameNode主动发起TCP连接
[2]应用和NameNode交互协议称为Client协议
[3]NameNode和DataNode交互的协议称为DataNode协议
(3)用户和DataNode的交互是通过发起远程调用(RPC),并由NameNode响应来完成的。另外,NameNode不会主动发起远程过程调用请求
5.客户端:是用户和HDFS通信最常见的渠道,部署的HDFS都会提供客户端
二,HDFS可靠性设计
1.HDFS数据块多副本存储设计
(1)采用了在系统中保存多个副本的方式保存数据,且同一个数据块的多个副本会存放在不同节点上
(2)优点:
[1]采用多副本,可以让客户从不同数据块中读取数据,加快传输速度
[2]HDFS的DataNode之间通过网络传输数据,如果采用多个副本可以判断数据传输是否出错
[3]多副本可以保证某个DataNode失效的情况下,不会丢失数据
2.可靠性的设计实现
(1)安全模式:
[1]HDFS启动时,NameNode进入安全模式
[2]处于安全模式的NameNode不能做任何文本操作,甚至内部的副本创建不允许
[3]NameNode需要和各个DataNode通信,获得其中保存的数据块信息,并对数据块信息进行检查
[4]只有通过了NameNode检查,一个数据块被认为安全。当被认为安全的数据块所占比例达到某个阈值,NameNode退出
(2)SecondaryNmaeNode
[1]使用它来备份NameNode元数据,以便在其失效时能从中恢复出其上的元数据
[2]它充当NameNode的一个副本,本身并不处理任何请求。
[3]作用:周期性保存NameNode的元数据
(3)心跳包和副本重新创建
[1]心跳包:位于HDFS核心的NameNode,通过周期性的活动检查DataNode的活动
[2]检测到DataNode失效,保存在其上的数据不可用。则其上保存的副本需要重新创建这个副本,放到另外可用的地方
(4)数据一致性
[1]采用了数据校验和机制
[2]创建文件时,HDFS会为这个文件生成一个校验和,校验和文件和文件本身保存在同一空间上,
[3]传输数据时会将数据与校验和一起传输,应用收到数据后可以进行校验
(5)租约
[1]防止同一个文件被多个人写入数据
[2]NameNode保证同一个文件只会发放一个允许的租约,可以有效防止出现多人写入的情况
(6)回滚
三,HDFS文件存储组织与读写
1.文件数据的存储组织
(1)NameNode目录结构
[1]借助本地文件系统来保存数据,保存文件夹位置由配置选项({dfs.name.dir}/{/tmp/dfs/name})决定
[2]在NameNode的${dfs.name.dir}之下有3个文件夹和1个文件:
1)current目录:
文件VERSION:保存了当前运行的HDFS版本信息
FsImages:是整个系统的空间镜像文件
Edit:EditLog编辑文件
Fstime:上一次检查点时间
2)previous.checkpoint目录:和上一个一致,但是保存的是上一次检查点的内容
3)image目录:旧版本的FsImage存储位置
4)in_use.look:NameNode锁,只在NameNode有效(启动并且能和DataNode正常交互)时存在。
(2)DataNode目录结构
[1]借助本地文件系统来保存数据。保存文件夹位置由配置选项{dfs.data.dir}决定
[2]在其之下有4个子目录和2个文件
1)current目录:已经成功写入的数据块,以及一些系统需要的文件
a)文件VERSION:保存了当前运行的HDFS版本信息
b)subdirXX:当同一目录下文件超过一定限制,新建一个目录,保存多出来的数据块和元数据
2)tmp目录和blockBeingWritten目录:正在写入的数据块,是HDFS系统内部副本创建时引发的写入操作对应的数据块
3)detach目录:用于DataNode升级
4)Storage目录:防止版本不同带来风险
5)in_user.lock文件:DataNode锁。只有在DataNode有效时存在。
(3)CheckPointNode目录结构:和上一个基本一致
2.数据的读写过程
(1)数据读取过程
[1]首先,客户端调用FileSystem实例的open方法,获得这个文件对应的输入流,在HDFS中就是DFSInputStream
[2]构造第一步的输入流时,通过RPC远程调用NameNode可以获得NameNode中此文件对应的数据块保存位置,包括这个文件副本的保存位置(注:在输入流中会按照网络拓扑结构,根据与客户端距离对DataNode进行简单排序)
[3]-[4]获得此输入流后,客户端调用READ方法读取数据。输入流选择最近的DFSInputStream会根据前面的排序结果,选择最近的DataNode建立连接并读取数据。
[5]如果已达到数据块末端,关闭这个DataNode的连接,然后重新查找下一个数据块
[6]客户端调用close,关闭输入流DFSInputStream
(2)数据输入过程
[1]-[2]:客户端调用FileSystem实例的create方法,创建文件。检查后,在NameNode添加文件信息,创建结束之后,HDFS会返回一个输出流DFSDataOutputStream给客户端
[3]调用输出流的write方法向HDFS中对应的文件写入数据。
数据首先会被分包,这些分包会写入一个输出流的内部队列Data队列中,接收完整数据分包,输出流回想NameNode申请保存文件和副本数据块的若干个DataNode
[4]DFSDataOutputStream会(根据网络拓扑结构排序)将数据传输给距离上最短的DataNode,这个节点接收到数据包后传给下一个。数据在各节点之间通过管道流通,减少传输开销
[5]数据节点位于不同机器上,数据需要通过网络发送。(为保证数据节点数据正确,接收到数据的节点要向发送者发送确认包)
[6]执行3-5知道数据全部写完,DFSDataInputStream继续等待知道所有数据写入完毕并确认,调用complete方法通知NameNode文件写入完成
[7]NameNode接收到complete消息之后,等待相应数量的副本写入完毕后,告知客户端
传输过程,当某个DataNode失效,HDFS执行:
1)关闭数据传输的管道
2)将等待ACK队列的数据放到Data队列头部
3)更新正常DataNode中所有数据块版本。当失效的DataNode重启,之前的数据块会因为版本不对被清除
4)在传输管道中删除失效的DataNode,重新建立管道并发送数据包
4.HDFS文件系统操作命令
(1)HDFS启动与关闭
[1]启动过程:
1)进入到NameNode对应节点的Hadoop安装目录
2)执行启动脚本:bin/start-dfs.sh
[2]关闭过程:bin/stop-dfs.sh
(2)文件操作命令格式与注意事项
[1]基本命令格式:
1)bin/hadoop dfs-cmd <args> args-> scheme://authority/path
2)args参数基本格式前面是scheme,authority是机器地址和对应端口
a)本地文件,scheme是file
b)HDFS上文件,scheme是hdfs
(3)文件操作基本格式
[1]hadoop dfs-cat URL [URL ...]
[2]作用:将参数所指示文件内容输出到stdout