当前位置:首页 » 存储配置 » hbasemob存储

hbasemob存储

发布时间: 2023-08-26 17:48:11

❶ hbase采用了什么样的数据结构

HBase采用了类似Google Bigtable的数据模型,即一个稀疏的、分布式的、持久化的多维映射表,每个表都由行键、列族、列限定符和时间戳组成。
在底层实现上,HBase使用了基于Hadoop的分布式文件系统HDFS来存储数据,并且使用了一搏皮搜种称为LSM-Tree(Log-Structured Merge-Tree)的数据结构来管理数据。LSM-Tree是一种支持高写入吞吐量的数据结构,它把数据分成多个层,每层采用不同的策略来管理数据,包括内存中的缓存、写入磁盘的SSTable、和合并SSTable的操作。通过这种方式,HBase能够支持高并发、高吞吐量的数据写入,同时保证数据的一致性和可靠性。
另外,HBase还采用了Bloom Filter、MemStore和Compaction等技术来提高数据查询效率和存储效率。Bloom Filter是一种快速的数据过滤技术,可以帮助HBase快速地过滤掉无效的查询请求,提高查询效率。MemStore是一种缓存机制,可以帮助基历HBase加速数据写入,提高数据握中写入效率。Compaction则是一种数据压缩和合并技术,可以帮助HBase节省存储空间,提高存储效率。
综上所述,HBase采用了LSM-Tree、Bloom Filter、MemStore和Compaction等多种数据结构和技术,以实现高并发、高吞吐量的分布式存储和查询功能。

❷ hbase与关系型数据库的存储方式有哪些不同

HBase与传统关系数据库的区别主要体现在以下几个方面:1.数据类型。关系数据库采用关系模型,具有丰富的数据类型和储存方式。HBase则采用了更加简单的数据模型,它把数据储存为未经解释的字符串,用户可以把不同格式的结构化数据和非结构化数据都序列化成字符串保存到HBase中,用户需要自己编写程序把字符串解析成不同的数据类型。 2.数据操作。关系数据库中包含了丰富的操作,如插入、删除、更新、查询等,其中会涉及复杂的多表连接,通常是借助多个表之间的主外键关联来实现的。HBase操作则不存在复杂的表与表之间的关系,只有简单的插入、查询、删除、清空等,因为HBase在设计上就避免了复杂的表与表之。
列存储不同于传统的关系型数据库,其数据在表中是按行存储的,列方式所带来的重要好处之一就是,由于查询中的选择规则是通过列来定义的,因此整个数据库是自动索引化的。
按列存储每个字段的数据聚集存储,在查询只需要少数几个字段的时候,能大大减少读取的数据量,一个字段的数据聚集存储,那就更容易为这种聚集存储设计更好的压缩/解压算法
传统的(Oracle)行存储和(Hbase)列存储的区别。
主要体现在以下几个方面:1.数据类型。关系数据库采用关系模型,具有丰富的数据类型和储存方式。HBase则采用了更加简单的数据模型,它把数据储存为未经解释的字符串,用户可以把不同格式的结构化数据和非结构化数据都序列化成字符串保存到HBase中,用户需要自己编写程序把字符串解析成不同的数据类型。 2.数据操作。关系数据库中包含了丰富的操作,如插入、删除、更新、查询等,其中会涉及复杂的多表连接,通常是借助多个表之间的主外键关联来实现的。HBase操作则不存在复杂的表与表之间的关系,只有简单的插入、查询、删除、清空等,因为HBase在设计上就避免了复杂的表与表之间的关系,通常只采用单表的主键查询。

❸ hbase 的数据存储及Region变化(flush compaction spilt)和性能调优

1. 对表做预分区处理(即在建表时指定Region数量和拆分边界);

2.配置hbase.hregion.max.filesize为50GB

以fileServer为例,在使用默认的split策略-- 的情况下,16个预分区Region, 则单个Resion容量达到 min(32,50),即32GB时分裂。

3.修改Linux最大文件句柄数

因为hbase是以文件的形式存储数据,最大文件句柄数影响着hbase的并发量。

用root权限修改/etc/security/limits.conf文件,增加以下内容(前面的*不能忽略):

*              soft    nproc          10240

*              hard    nproc          10240

*              soft    nofile          10240

*              hard    nofile          10240 

编辑/etc/pam.d/common-session,加入一行

session required  pam_limits.so

编辑/etc/profile,加入

ulimit -SHn 51200

重新登陆,生效

4.HRegionServer挂掉异常和解决:

is not online on......

常规解决方案:

  删除zk中hbase的缓存

  重启hbase

使用上述解决方案后本次异常依旧存在,并且HMaster和HRegionServer都不断的自动挂掉。

HMaster报错:

解决方案:

新增配置(看情况决定使用不使用,建议在HMaster不能启动时排除错误使用)(让启动hbase时只让HMaster去进行日志split,缺点是恢复数据时候速度慢):

<property>

<name>hbase.master.distributed.log.splitting</name>

<value>false</value>

</property>

   删除WAL文件(会丢数据):

6. RPC请求的最大线程数

hbase.regionserver.handler.count  默认是10,在服务器测试时建议设置到50(经测试在单个Region Server时无用,单个RegionServer 最多在6个线程put时保持稳定)

7.日志分割(hbase出错后恢复数据)

MemStore中大量更新丢失时,对数据进行恢复时会做日志分割

hbase.regionserver.hlog.splitlog.writer.threads 日志分割的线程数, 默认为3 ,建议设定为10

8.Region Server频繁掉线

出现Hbase Region Server频繁掉线的情况,表现为在多线程put的情况下,忽然Hbase Region Server掉线

猜测是GC或者split过程中没有及时和ZK通信,导致与ZK连接时间超时,zk返回dead region到master,当Hbase Region恢复正常后,找不到wal,产生如下报错。

zookeeper.session.timeout :默认值是3分钟

但是 hbase regionserver和zookeeper的timeout不是单方面决定的,是取决于hbase的zookeeper.session.timeout和zookeeper的MaxSessionTimeout中的最小值

配置hbase:

zookeeper.session.timeout

600000

配置zookeeper:

tickTime=30000

9.内存及GC优化

在测试的过程中依旧出现Hbase Region Server掉线的情况,报错如下

2021-02-0318:49:14,091INFO[sync.0]wal.FSHLog: Slow sync cost:1955ms, current pipeline: []

2021-02-0318:49:14,091WARN[regionserver/botsc/192.168.0.107:16020.append-pool5-t1]wal.MetricsWAL: regionserver/botsc/192.168.0.107:16020.append-pool5-t1 took1953ms appending an edit to wal; len~=109

2021-02-0318:49:14,106ERROR[sync.3]wal.FSHLog:Errorsyncing, request close of WAL

java.io .IOException:io.grpc.StatusRuntimeException: CANCELLED: Failed to stream message

    at seaweed.hdfs.SeaweedOutputStream.(SeaweedOutputStream.java:78)

    at seaweed.hdfs.SeaweedOutputStream.(SeaweedOutputStream.java:263)

    at seaweed.hdfs.SeaweedOutputStream.flushInternalAsync(SeaweedOutputStream.java:243)

    at seaweed.hdfs.SeaweedOutputStream.flush(SeaweedOutputStream.java:129)

at java.io .FilterOutputStream.flush(FilterOutputStream.java:140)

at java.io .DataOutputStream.flush(DataOutputStream.java:123)

    at org.apache.hadoop.hbase.regionserver.wal.ProtobufLogWriter.sync(ProtobufLogWriter.java:170)

    at org.apache.hadoop.hbase.regionserver.wal.FSHLog$SyncRunner.run(FSHLog.java:1286)

    at java.lang.Thread.run(Thread.java:748)

修改hbase的配置文件hbase-env.sh,GC优化如下:

export HBASE_HEAPSIZE=21384

export master_heapsize=8292

export regionserver_heapsize=21384

export HBASE_OPTS="$HBASE_OPTS -XX:+UseConcMarkSweepGC -XX:=60 -XX:+UseParNewGC -XX:ParallelGCThreads=6"

export HBASE_MASTER_OPTS="$HBASE_MASTER_OPTS $HBASE_JMX_BASE -Xmx8g -Xms8g -XX:+UseParNewGC -XX:+UseConcMarkSweepGC -XX:=70"

export HBASE_REGIONSERVER_OPTS="$HBASE_REGIONSERVER_OPTS $HBASE_JMX_BASE -Xmx20g -Xms20g -Xmn1g -XX:+UseParNewGC

-XX:+UseConcMarkSweepGC -XX:=70"

❹ HBase存储架构

上图是HBase的存储架构图。

由上图可以知道,客户端是通过Zookeeper找到HMaster,然后再与具体的Hregionserver进行沟通读写数据的。

具体到物理实现,细节包括以下这些:

首先要清楚HBase在hdfs中的存储路径,以及各个目录的作用。在hbase-site.xml 文件中,配置项 <name> hbase.rootdir</name> 默认 “/hbase”,就是hbase在hdfs中的存储根路径。以下是hbase0.96版本的个路径作用。1.0以后的版本请参考这里: https://blog.bcmeng.com/post/hbase-hdfs.html

1、 /hbase/.archive
HBase 在做 Split或者 compact 操作完成之后,会将 HFile 移到.archive 目录中,然后将之前的 hfile 删除掉,该目录由 HMaster 上的一个定时任务定期去清理。

2、 /hbase/.corrupt
存储HBase损坏的日志文件,一般都是为空的。

3、 /hbase/.hbck
HBase 运维过程中偶尔会遇到元数据不一致的情况,这时候会用到提供的 hbck 工具去修复,修复过程中会使用该目录作为临时过度缓冲。

4、 /hbase/logs
HBase 是支持 WAL(Write Ahead Log) 的,HBase 会在第一次启动之初会给每一台 RegionServer 在.log 下创建一个目录,若客户端如果开启WAL 模式,会先将数据写入一份到.log 下,当 RegionServer crash 或者目录达到一定大小,会开启 replay 模式,类似 MySQL 的 binlog。

5、 /hbase/oldlogs
当.logs 文件夹中的 HLog 没用之后会 move 到.oldlogs 中,HMaster 会定期去清理。

6、 /hbase/.snapshot
hbase若开启了 snapshot 功能之后,对某一个用户表建立一个 snapshot 之后,snapshot 都存储在该目录下,如对表test 做了一个 名为sp_test 的snapshot,就会在/hbase/.snapshot/目录下创建一个sp_test 文件夹,snapshot 之后的所有写入都是记录在这个 snapshot 之上。

7、 /hbase/.tmp
当对表做创建或者删除操作的时候,会将表move 到该 tmp 目录下,然后再去做处理操作。

8、 /hbase/hbase.id
它是一个文件,存储集群唯一的 cluster id 号,是一个 uuid。

9、 /hbase/hbase.version
同样也是一个文件,存储集群的版本号,貌似是加密的,看不到,只能通过web-ui 才能正确显示出来

10、 -ROOT-
该表是一张的HBase表,只是它存储的是.META.表的信息。通过HFile文件的解析脚本 hbase org.apache.hadoop.hbase.io.hfile.HFile -e -p -f 可以查看其存储的内容,如下所示:

以上可以看出,-ROOT-表记录的.META.表的所在机器是dchbase2,与web界面看到的一致:

11、 .META.
通过以上表能找到.META.表的信息,该表也是一张hbase表,通过以上命令,解析其中一个region:

以上可以看出,adt_app_channel表的数据记录在dchbase3这台reginserver上,也与界面一致,如果有多个region,则会在表名后面加上rowkey的范围:

通过以上描述,只要找到-ROOT-表的信息,就能根据rowkey找到对应的数据,那-ROOT-在哪里找呢?从本文一开始的图中可以知道,就是在zookeeper中找的。进入zookeeper命令行界面:

可以看出-ROOT-表存储在 dchbase3 机器中,对应界面如下:

以上就是HBase客户端根据指定的rowkey从zookeeper开始找到对应的数据的过程。

那在Region下HBase是如何存储数据的呢?

以下就具体操作一张表,查询对应的HFile文件,看HBase的数据存储过程。

在HBase创建一张表 test7,并插入一些数据,如下命令:

查看wal日志,通过 hbase org.apache.hadoop.hbase.regionserver.wal.HLog --mp -p 命令可以解析HLog文件,内容如下:

查看HFile文件,内容如下:

由此可见,HFile文件就是存储HBase的KV对,其中Key的各个字段包含了的信息如下:

由于hbase把cf和column都存储在HFile中,所以在设计的时候,这两个字段应该尽量短,以减少存储空间。

但删除一条记录的时候,HBase会怎么操作呢?执行以下命令:

删除了rowkey为200的记录,查看hdfs,原来的HFile并没有改变,而是生成了一个新的HFile,内容如下:

所以在HBase中,删除一条记录并不是修改HFile里面的内容,而是写新的文件,待HBase做合并的时候,把这些文件合并成一个HFile,用时间比较新的文件覆盖旧的文件。HBase这样做的根本原因是,HDFS不支持修改文件。

❺ 大数据知识点里面的 HBase 是什么意思

HBase是一个分布式的、面向列的开源数据库,基于Hadoop生态圈,在NoSQL蓬勃发展的今天被国内外众多公司选择,应用于现代互联网系统的不同业务。
HBase业务场景
1.标签数据的存储
标签数据是稀疏矩阵的代表,描述了实体的各类属性,主要应用于智能推荐、商务智能或营销引擎等领域。
2. 车联网数据的收集
车联网系统是利用车载设备收集车辆运行时产生的各项数据,通过网络实时上传,在平台进行动态分析和利用。
3. 交易记录的保存
在移动支付领域,保证历史交易记录等敏感信息的安全性是一个重要的话题。当数据中心遭遇自然灾害、外部攻击时,必须保证这些信息不丢,而且从业务角度要保证RTO尽可能短、RPO尽可能为0。
HBase基于底层的HDFS作为存储系统,HDFS实现了三副本策略,按照一定的规则将副本放在不同的节点或机架中,本身具有较高的容灾能力。在工程实践中,也产生了Region replica、主备集群、互备双活等策略来尽可能进行灾备并保证高可用。

❻ 解读Hadoop Hbase适合存储哪类数据

最适合使用Hbase存储的数据是非常稀疏的数据(非结构化或者半结构化的数据)。Hbase之所以擅长存储这类数据,是因为Hbase是column-oriented列导向的存储机制,而我们熟知的RDBMS都是row- oriented行导向的存储机制(郁闷的是我看过N本关于关系数据库的介绍从来没有提到过row- oriented行导向存储这个概念)。在列导向的存储机制下对于Null值得存储是不占用任何空间的。比如,如果某个表 UserTable有10列,但在存储时只有一列有数据,那么其他空值的9列是不占用存储空间的(普通的数据库MySql是如何占用存储空间的呢?)。 Hbase适合存储非结构化的稀疏数据的另一原因是他对列集合 column families 处理机制。 打个比方,ruby和python这样的动态语言和c++、java类的编译语言有什么不同? 对于我来说,最显然的不同就是你不需要为变量预先指定一个类型。Ok ,现在Hbase为未来的DBA也带来了这个激动人心的特性,你只需要告诉你的数据存储到Hbase的那个column families 就可以了,不需要指定它的具体类型:char,varchar,int,tinyint,text等等。 Hbase还有很多特性,比如不支持join查询,但你存储时可以用:parent-child tuple 的方式来变相解决。 由于它是Google BigTable的 Java 实现,你可以参考一下:google bigtable 。
解读Hadoop Hbase适合存储哪类数据,参考:http://e.51cto.com/course/course_id-3819.html

热点内容
安卓快手极速版在哪里填写邀请码 发布:2025-01-31 22:59:36 浏览:319
如何让给文件夹设置密码查看 发布:2025-01-31 22:49:07 浏览:2
配置动态路由协议配错了怎么改 发布:2025-01-31 22:49:07 浏览:77
扫行程码为什么需要支付密码 发布:2025-01-31 22:47:08 浏览:738
什么样的配置能玩地平线4 发布:2025-01-31 22:44:05 浏览:241
python正则表达式符号 发布:2025-01-31 22:43:50 浏览:391
androidmime 发布:2025-01-31 22:34:44 浏览:782
ftp和http的中文含义是 发布:2025-01-31 22:33:48 浏览:402
sqlite3存储图片 发布:2025-01-31 22:27:14 浏览:162
sqlserverphp 发布:2025-01-31 22:22:55 浏览:877