当前位置:首页 » 存储配置 » 下一代存储器

下一代存储器

发布时间: 2023-08-22 06:44:00

❶ SDRM PSRAM SRAM PRAM各与各的区别是什么

1、SDRAM,即Synchronous DRAM(同步动态随机存储器),曾经是PC电脑上最为广泛应用的一种内存类型,即便在今天SDRAM仍旧还在市场占有一席之地。既然是“同步动态随机存储器”,那就代表着它的工作速度是与系统总线速度同步的。SDRAM内存又分为PC66、PC100、PC133等不同规格,而规格后面的数字就代表着该内存最大所能正常工作系统总线速度,比如PC100,那就说明此内存可以在系统总线为100MHz的电脑中同步工作。

与系统总线速度同步,也就是与系统时钟同步,这样就避免了不必要的等待周期,减少数据存储时间。同步还使存储控制器知道在哪一个时钟脉冲期由数据请求使用,因此数据可在脉冲上升期便开始传输。SDRAM采用3.3伏工作电压,168Pin的DIMM接口,带宽为64位。SDRAM不仅应用在内存上,在显存上也较为常见。
2、
PSRAM具有一个单晶体管的DRAM储存格,与传统具有六个晶体管的SRAM储存格或是四个晶体管与two-load resistor SRAM 储存格大不相同,但它具有类似SRAM的稳定接口,内部的DRAM架构给予PSRAM一些比low-power 6T SRAM优异的长处,例如体积更为轻巧,售价更具竞争力。目前在整体SRAM市场中,有90%的制造商都在生产PSRAM组件。在过去两年,市场上重要的SRAM/PSRAM供货商有Samsung、Cypress、Renesas、Micron与Toshiba等。

编辑本段PSRAM与SRAM的比较:基本原理PSRAM就是伪SRAM,内部的内存颗粒跟SDRAM的颗粒相似,但外部的接口跟SRAM相似,不需要SDRAM那样复杂的控制器和刷新机制,PSRAM的接口跟SRAM的接口是一样的。
容量PSRAM容量有4Mb,8Mbit,16Mbit,32Mbit等等,容量没有SDRAM那样密度高,但肯定是比SRAM的容量要高很多的,速度支持突发模式,并不是很慢,Hynix,Fidelix,Coremagic, WINBOND .MICRON. CY 等厂家都有供应,价格只比相同容量的SDRAM稍贵一点点,比SRAM便宜很多。

编辑本段主要应用PSRAM主要应用于手机,电子词典,掌上电脑,PDA,PMP.MP3/4,GPS接收器等消费电子产品与SRAM(采用6T的技术)相比,PSRAM采用的是1T+1C的技术,所以在体积上更小,同时,PSRAM的I/O接口与SRAM相同.在容量上,目前有4MB,8MB,16MB,32MB,64MB和128MB。目前智能手机基本采用256MB以上的PSRAM,很多采用512MB。比较于SDRAM,PSRAM的功耗要低很多。所以对于要求有一定缓存容量的很多便携式产品是一个理想的选择。

编辑本段目前发展现状:东芝(Toshiba)、NEC Electronics和富士通(Fujitsu)三家公司日前共同提出PSRAM (Pseudo Static Random Access Memory)第四版的标准接口规范,也称之为CSOMORAM Rev. 4 (COmmon Specifications for MObile RAM)是用于移动RAM的通用规范。三家公司将各自生产与销售自家产品,产品最快可在2007年3月推出。上述三家公司在1998年9月首次提出通用规范,将堆栈多芯片封装(MCP)通用接口规范共享给包括闪存和SRAM在内的移动设备。随后,他们在2002、2003和2004年分别对其进行了修订,增加了页面模式和突发模式等规格。COSMORAM Rev. 4为Pseudo SRAM增加了双速率突发(DDR突发)模式。
3、SRAM不需要刷新电路即能保存它内部存储的数据。而DRAM(Dynamic Random Access Memory)每隔一段时间,要刷新充电一次,否则内部的数据即会消失,因此SRAM具有较高的性能,但是SRAM也有它的缺点,即它的集成度较低,相同容量的DRAM内存可以设计为较小的体积,但是SRAM却需要很大的体积,且功耗较大。所以在主板上SRAM存储器要占用一部分面积。
4、
PRAM是韩国三星公司推出的一款存储器,相比普通的DRAM和闪存,PRAM具有高速低功耗的特点。如果发展顺利的话,预计PRAM将从2007年起逐步取代闪存,成为下一代存储器产品中的主导力量。

PRAM内存可在芯片供电中断时保存数据,与普通闪存的工作原理相同。但PRAM写入数据的速度要比闪存块30倍,其寿命周期也将至少提高十倍。

ITRI可能不是第一家销售PRAM内存产品的商家。全球最大芯片制造商三星公司在去年发布了512MB新内存原型,并有望在明年早些时候上市销售。但ITRI其他公司有可能以更大的内存容量和不同功能来击败三星。

其他芯片制造商也在积极开发相变内存,其中有英特尔公司、IBM公司、Qimonda公司、意法半导体公司、Hynix半导体公司和Ovonyx。

台积电和ITRI也在开发磁性随机储存内存技术(MRAM),双方已经获得了与此有关的40多项专利。台积电有可能在明年底或2009年早期向客户销售MRAM。

新芯片运用了 "垂直电极" 及 "3D 晶体管结构" 两项技术,让芯片的尺寸缩小,同时在写入新数据时,也不必先将旧资料复写。着眼于 Samsung 日前发表的 32GB NAND 内存还是属于 40 奈米制程,就长期来看,PRAM 也将比 NAND 更省成本。

IBM 和几家内存模块大厂合作,包括 Qimonda AG、台湾的旺宏电子(Macronix International),在固态内存(non-volatile memory)上头,有了相当大的进展。

PRAM(Phase-Change RAM),这个在将来的将来可能取代闪存(将来用来取代传统硬盘)的男人,不仅仅是在 Samsung 的大本营默默的蛰伏,以 IBM 为首的研究团队,更是在速度上硬是压下了 Samsung 先前发表的 30x 读写速度,一举推到了 500x ~ 1000x,并且电力也只需要ㄧ半,寿命(重复写入的次数)也大大的延长(以上皆是相较于一般闪存),IBM还是强大啊,硬盘到PRAM一路都是IBM在唱主角.

❷ 华为发布六大数据存储新品

华为数据存储与机器视觉产品线总裁周跃峰表示,到2030年,全球每年新增数据量将突破1YB量级。有数据的地方要用存储,有存储的地方一定要用专业存储。企业数字化转型、云、大数据正在深刻改变着全球数据产业,华为将和全球的客户、生态合作伙伴、科研工作者一起持续创新,打造世界领先的数据存储产品和解决方案。

专业存储设备承载的是千行百业的数据资产,数据不能丢、访问不能停、访问不能等是各行业对专业存储的关键诉求。面向不同数据场景,华为发布了六大数据存储新品。

其中,全新的OceanStorDorado全闪存存储,发力网络连接存储市场,能实现文件跨部门安全共享,性能领先业界30%,保障业务持续在线,为半导体EDA、企业研发、金融数据交换平台、运营商话单等场景提供高效、可靠的万亿级海量小文件基础设施;新一代OceanStor混合闪存存储,全新定义了五大融合,即存算融合、多协议融合、温热数据融合,跨代融合以及多云融合,实现高性能、多功能的兼容并举,为普惠多样化场景提供更简洁、更具性价比的数据基座;OceanProtect专用备份存储,能实现业界3倍备份带宽、5倍恢复带宽、72:1数据缩减率,以及全方位防勒索病毒方案,帮助用户实现高效备份恢复,构筑保护数据的最后一道防线;全新OceanStorPacific系列分布式存储,是业界唯一支持混合负载,实现一套存储即可支持HPDA、大数据、视频、备份归档等多样化应用。同时在大数据场景支持近实时处理,辅助千亿数据集分析时间从几天缩短至几分钟,大大缩短创新应用开发周期;FusionCube超融合+系列产品,通过算力融合、存算网融合、业务融合,实现从传统超融合到以效率+、节能+、应用+为特征的超融合+能力升级,实现虚拟机/容器密度提升20%以及节能效率提升15%,为新型数据中心的发展构筑基石;面向数据中心的DCS数据中心虚拟化解决方案,以虚拟化、容器、灾备套件为核心,南向兼容预验证的推荐硬件,同时通过全栈统一管理平台实现智能管理。

据了解,从2019年起,华为针对数据存储业界难题发布“奥林帕斯悬红”,旨在牵引基础理论研究方向,激励全球科研工作者突破存储关键技术难题,加速科研成果产业化,实现产学研合作共赢。在本次论坛上,2021奥林帕斯获奖团队正式揭晓。会上,华为同时发布“2022年奥林帕斯悬红”两大数据存储难题方向,一是极致能效比的超融合数据基础设施,二是每bit极致性价比的下一代存储。华为表示,希望与学术界持续合作,共同攻坚,构筑更好的数据存储未来。

❸ 存储器的发展史

存储器设备发展

1.存储器设备发展之汞延迟线

汞延迟线是基于汞在室温时是液体,同时又是导体,每比特数据用机械波的波峰(1)和波谷(0)表示。机械波从汞柱的一端开始,一定厚度的熔融态金属汞通过一振动膜片沿着纵向从一端传到另一端,这样就得名“汞延迟线”。在管的另一端,一传感器得到每一比特的信息,并反馈到起点。设想是汞获取并延迟这些数据,这样它们便能存储了。这个过程是机械和电子的奇妙结合。缺点是由于环境条件的限制,这种存储器方式会受各种环境因素影响而不精确。

1950年,世界上第一台具有存储程序功能的计算机EDVAC由冯.诺依曼博士领导设计。它的主要特点是采用二进制,使用汞延迟线作存储器,指令和程序可存入计算机中。

1951年3月,由ENIAC的主要设计者莫克利和埃克特设计的第一台通用自动计算机UNIVAC-I交付使用。它不仅能作科学计算,而且能作数据处理。

2.存储器设备发展之磁带

UNIVAC-I第一次采用磁带机作外存储器,首先用奇偶校验方法和双重运算线路来提高系统的可靠性,并最先进行了自动编程的试验。

磁带是所有存储器设备发展中单位存储信息成本最低、容量最大、标准化程度最高的常用存储介质之一。它互换性好、易于保存,近年来,由于采用了具有高纠错能力的编码技术和即写即读的通道技术,大大提高了磁带存储的可靠性和读写速度。根据读写磁带的工作原理可分为螺旋扫描技术、线性记录(数据流)技术、DLT技术以及比较先进的LTO技术。

根据读写磁带的工作原理,磁带机可以分为六种规格。其中两种采用螺旋扫描读写方式的是面向工作组级的DAT(4mm)磁带机和面向部门级的8mm磁带机,另外四种则是选用数据流存储技术设计的设备,它们分别是采用单磁头读写方式、磁带宽度为1/4英寸、面向低端应用的Travan和DC系列,以及采用多磁头读写方式、磁带宽度均为1/2英寸、面向高端应用的DLT和IBM的3480/3490/3590系列等。

磁带库是基于磁带的备份系统,它能够提供同样的基本自动备份和数据恢复功能,但同时具有更先进的技术特点。它的存储容量可达到数百PB,可以实现连续备份、自动搜索磁带,也可以在驱动管理软件控制下实现智能恢复、实时监控和统计,整个数据存储备份过程完全摆脱了人工干涉。

磁带库不仅数据存储量大得多,而且在备份效率和人工占用方面拥有无可比拟的优势。在网络系统中,磁带库通过SAN(Storage Area Network,存储区域网络)系统可形成网络存储系统,为企业存储提供有力保障,很容易完成远程数据访问、数据存储备份或通过磁带镜像技术实现多磁带库备份,无疑是数据仓库、ERP等大型网络应用的良好存储设备。

3.存储器设备发展之磁鼓

1953年,随着存储器设备发展,第一台磁鼓应用于IBM 701,它是作为内存储器使用的。磁鼓是利用铝鼓筒表面涂覆的磁性材料来存储数据的。鼓筒旋转速度很高,因此存取速度快。它采用饱和磁记录,从固定式磁头发展到浮动式磁头,从采用磁胶发展到采用电镀的连续磁介质。这些都为后来的磁盘存储器打下了基础。

磁鼓最大的缺点是利用率不高, 一个大圆柱体只有表面一层用于存储,而磁盘的两面都利用来存储,显然利用率要高得多。 因此,当磁盘出现后,磁鼓就被淘汰了。

4.存储器设备发展之磁芯

美国物理学家王安1950年提出了利用磁性材料制造存储器的思想。福雷斯特则将这一思想变成了现实。

为了实现磁芯存储,福雷斯特需要一种物质,这种物质应该有一个非常明确的磁化阈值。他找到在新泽西生产电视机用铁氧体变换器的一家公司的德国老陶瓷专家,利用熔化铁矿和氧化物获取了特定的磁性质。

对磁化有明确阈值是设计的关键。这种电线的网格和芯子织在电线网上,被人称为芯子存储,它的有关专利对发展计算机非常关键。这个方案可靠并且稳定。磁化相对来说是永久的,所以在系统的电源关闭后,存储的数据仍然保留着。既然磁场能以电子的速度来阅读,这使交互式计算有了可能。更进一步,因为是电线网格,存储阵列的任何部分都能访问,也就是说,不同的数据可以存储在电线网的不同位置,并且阅读所在位置的一束比特就能立即存取。这称为随机存取存储器(RAM),在存储器设备发展历程中它是交互式计算的革新概念。福雷斯特把这些专利转让给麻省理工学院,学院每年靠这些专利收到1500万~2000万美元。

最先获得这些专利许可证的是IBM,IBM最终获得了在北美防卫军事基地安装“旋风”的商业合同。更重要的是,自20世纪50年代以来,所有大型和中型计算机也采用了这一系统。磁芯存储从20世纪50年代、60年代,直至70年代初,一直是计算机主存的标准方式。

5.存储器设备发展之磁盘

世界第一台硬盘存储器是由IBM公司在1956年发明的,其型号为IBM 350 RAMAC(Random Access Method of Accounting and Control)。这套系统的总容量只有5MB,共使用了50个直径为24英寸的磁盘。1968年,IBM公司提出“温彻斯特/Winchester”技术,其要点是将高速旋转的磁盘、磁头及其寻道机构等全部密封在一个无尘的封闭体中,形成一个头盘组合件(HDA),与外界环境隔绝,避免了灰尘的污染,并采用小型化轻浮力的磁头浮动块,盘片表面涂润滑剂,实行接触起停,这是现代绝大多数硬盘的原型。1979年,IBM发明了薄膜磁头,进一步减轻了磁头重量,使更快的存取速度、更高的存储密度成为可能。20世纪80年代末期,IBM公司又对存储器设备发展作出一项重大贡献,发明了MR(Magneto Resistive)磁阻磁头,这种磁头在读取数据时对信号变化相当敏感,使得盘片的存储密度比以往提高了数十倍。1991年,IBM生产的3.5英寸硬盘使用了MR磁头,使硬盘的容量首次达到了1GB,从此,硬盘容量开始进入了GB数量级。IBM还发明了PRML(Partial Response Maximum Likelihood)的信号读取技术,使信号检测的灵敏度大幅度提高,从而可以大幅度提高记录密度。

目前,硬盘的面密度已经达到每平方英寸100Gb以上,是容量、性价比最大的一种存储设备。因而,在计算机的外存储设备中,还没有一种其他的存储设备能够在最近几年中对其统治地位产生挑战。硬盘不仅用于各种计算机和服务器中,在磁盘阵列和各种网络存储系统中,它也是基本的存储单元。值得注意的是,近年来微硬盘的出现和快速发展为移动存储提供了一种较为理想的存储介质。在闪存芯片难以承担的大容量移动存储领域,微硬盘可大显身手。目前尺寸为1英寸的硬盘,存储容量已达4GB,10GB容量的1英寸硬盘不久也会面世。微硬盘广泛应用于数码相机、MP3设备和各种手持电子类设备。

另一种磁盘存储设备是软盘,从早期的8英寸软盘、5.25英寸软盘到3.5英寸软盘,主要为数据交换和小容量备份之用。其中,3.5英寸1.44MB软盘占据计算机的标准配置地位近20年之久,之后出现过24MB、100MB、200MB的高密度过渡性软盘和软驱产品。然而,由于USB接口的闪存出现,软盘作为数据交换和小容量备份的统治地位已经动摇,不久会退出存储器设备发展历史舞台。

6. 存储器设备发展之光盘

光盘主要分为只读型光盘和读写型光盘。只读型指光盘上的内容是固定的,不能写入、修改,只能读取其中的内容。读写型则允许人们对光盘内容进行修改,可以抹去原来的内容,写入新的内容。用于微型计算机的光盘主要有CD-ROM、CD-R/W和DVD-ROM等几种。

上世纪60年代,荷兰飞利浦公司的研究人员开始使用激光光束进行记录和重放信息的研究。1972年,他们的研究获得了成功,1978年投放市场。最初的产品就是大家所熟知的激光视盘(LD,Laser Vision Disc)系统。

从LD的诞生至计算机用的CD-ROM,经历了三个阶段,即LD-激光视盘、CD-DA激光唱盘、CD-ROM。下面简单介绍这三个存储器设备发展阶段性的产品特点。

LD-激光视盘,就是通常所说的LCD,直径较大,为12英寸,两面都可以记录信息,但是它记录的信号是模拟信号。模拟信号的处理机制是指,模拟的电视图像信号和模拟的声音信号都要经过FM(Frequency Molation)频率调制、线性叠加,然后进行限幅放大。限幅后的信号以0.5微米宽的凹坑长短来表示。

CD-DA激光唱盘 LD虽然取得了成功,但由于事先没有制定统一的标准,使它的开发和制作一开始就陷入昂贵的资金投入中。1982年,由飞利浦公司和索尼公司制定了CD-DA激光唱盘的红皮书(Red Book)标准。由此,一种新型的激光唱盘诞生了。CD-DA激光唱盘记录音响的方法与LD系统不同,CD-DA激光唱盘系统首先把模拟的音响信号进行PCM(脉冲编码调制)数字化处理,再经过EMF(8~14位调制)编码之后记录到盘上。数字记录代替模拟记录的好处是,对干扰和噪声不敏感,由于盘本身的缺陷、划伤或沾污而引起的错误可以校正。

CD-DA系统取得成功以后,使飞利浦公司和索尼公司很自然地想到利用CD-DA作为计算机的大容量只读存储器。但要把CD-DA作为计算机的存储器,还必须解决两个重要问题,即建立适合于计算机读写的盘的数据结构,以及CD-DA误码率必须从现有的10-9降低到10-12以下,由此就产生了CD-ROM的黄皮书(Yellow Book)标准。这个标准的核心思想是,盘上的数据以数据块的形式来组织,每块都要有地址,这样一来,盘上的数据就能从几百兆字节的存储空间上被迅速找到。为了降低误码率,采用增加一种错误检测和错误校正的方案。错误检测采用了循环冗余检测码,即所谓CRC,错误校正采用里德-索洛蒙(Reed Solomon)码。黄皮书确立了CD-ROM的物理结构,而为了使其能在计算机上完全兼容,后来又制定了CD-ROM的文件系统标准,即ISO 9660。

在上世纪80年代中期,光盘存储器设备发展速度非常快,先后推出了WORM光盘、磁光盘(MO)、相变光盘(Phase Change Disk,PCD)等新品种。20世纪90年代,DVD-ROM、CD-R、CD-R/W等开始出现和普及,目前已成为计算机的标准存储设备。

光盘技术进一步向高密度发展,蓝光光盘是不久将推出的下一代高密度光盘。多层多阶光盘和全息存储光盘正在实验室研究之中,可望在5年之内推向市场。

7.存储器设备发展之纳米存储

纳米是一种长度单位,符号为nm。1纳米=1毫微米,约为10个原子的长度。假设一根头发的直径为0.05毫米,把它径向平均剖成5万根,每根的厚度即约为1纳米。与纳米存储有关的主要进展有如下内容。

1998年,美国明尼苏达大学和普林斯顿大学制备成功量子磁盘,这种磁盘是由磁性纳米棒组成的纳米阵列体系。一个量子磁盘相当于我们现在的10万~100万个磁盘,而能源消耗却降低了1万倍。

1988年,法国人首先发现了巨磁电阻效应,到1997年,采用巨磁电阻原理的纳米结构器件已在美国问世,它在磁存储、磁记忆和计算机读写磁头等方面均有广阔的应用前景。

2002年9月,美国威斯康星州大学的科研小组宣布,他们在室温条件下通过操纵单个原子,研制出原子级的硅记忆材料,其存储信息的密度是目前光盘的100万倍。这是纳米存储材料技术研究的一大进展。该小组发表在《纳米技术》杂志上的研究报告称,新的记忆材料构建在硅材料表面上。研究人员首先使金元素在硅材料表面升华,形成精确的原子轨道;然后再使硅元素升华,使其按上述原子轨道进行排列;最后,借助于扫瞄隧道显微镜的探针,从这些排列整齐的硅原子中间隔抽出硅原子,被抽空的部分代表“0”,余下的硅原子则代表“1”,这就形成了相当于计算机晶体管功能的原子级记忆材料。整个试验研究在室温条件下进行。研究小组负责人赫姆萨尔教授说,在室温条件下,一次操纵一批原子进行排列并不容易。更为重要的是,记忆材料中硅原子排列线内的间隔是一个原子大小。这保证了记忆材料的原子级水平。赫姆萨尔教授说,新的硅记忆材料与目前硅存储材料存储功能相同,而不同之处在于,前者为原子级体积,利用其制造的计算机存储材料体积更小、密度更大。这可使未来计算机微型化,且存储信息的功能更为强大。

以上就是本文向大家介绍的存储器设备发展历程的7个关键时期

❹ 内存储器的发展历程

对于用过386机器的人来说,30pin的内存,我想在很多人的脑海里,一定或多或少的还留有一丝印象,这一次我们特意收集的7根30pin的内存条,并拍成图片,怎么样看了以后,是不是有一种久违的感觉呀!

30pin 反面 30pin 正面

下面是一些常见内存参数的介绍:
bit 比特,内存中最小单位,也叫“位”。它只有两个状态分别以0和1表示

byte字节,8个连续的比特叫做一个字节。

ns(nanosecond)
纳秒,是一秒的10亿分之一。内存读写速度的单位,其前面数字越小表示速度越快。

72pin正面 72pin反面

72pin的内存,可以说是计算机发展史的一个经典,也正因为它的廉价,以及速度上大幅度的提升,为电脑的普及,提供了坚实的基础。由于用的人比较多,目前在市场上还可以买得到。

SIMM(Single In-line Memory Moles)
单边接触内存模组。是5X86及其较早的PC中常采用的内存接口方式。在486以前,多采用30针的SIMM接口,而在Pentuim中更多的是72针的SIMM接口,或者与DIMM接口类型并存。人们通常把72线的SIMM类型内存模组直接称为72线内存。

ECC(Error Checking and Correcting)
错误检查和纠正。与奇偶校验类似,它不但能检测到错误的地方,还可以纠正绝大多数错误。它也是在原来的数据位上外加位来实现的,这些额外的位是用来重建错误数据的。只有经过内存的纠错后,计算机操作指令才可以继续执行。当然在纠错是系统的性能有着明显的降低。

EDO DRAM(Extended Data Output RAM)
扩展数据输出内存。是Micron公司的专利技术。有72线和168线之分、5V电压、带宽32bit、基本速度40ns以上。传统的DRAM和FPM DRAM在存取每一bit数据时必须输出行地址和列地址并使其稳定一段时间后,然后才能读写有效的数据,而下一个bit的地址必须等待这次读写操作完成才能输出。EDO DRAM不必等待资料的读写操作是否完成,只要规定的有效时间一到就可以准备输出下一个地址,由此缩短了存取时间,效率比FPM DRAM高20%—30%。具有较高的性/价比,因为它的存取速度比FPM DRAM快15%,而价格才高出5%。因此,成为中、低档Pentium级别主板的标准内存。

DIMM(Dual In-line Memory Moles)
双边接触内存模组。也就是说这种类型接口内存的插板两边都有数据接口触片,这种接口模式的内存广泛应用于现在的计算机中,通常为84针,由于是双边的,所以共有84×2=168线接触,所以人们常把这种内存称为168线内存。

PC133

SDRAM(Synchronous Burst RAM)
同步突发内存。是168线、3.3V电压、带宽64bit、速度可达6ns。是双存储体结构,也就是有两个储存阵列,一个被CPU读取数据的时候,另一个已经做好被读取数据的准备,两者相互自动切换,使得存取效率成倍提高。并且将RAM与CPU以相同时钟频率控制,使RAM与CPU外频同步,取消等待时间,所以其传输速率比EDO DRAM快了13%。SDRAM采用了多体(Bank)存储器结构和突发模式,能传输一整数据而不是一段数据。

SDRAM ECC 服务器专用内存

RDRAM(Rambus DRAM)
是美国RAMBUS公司在RAMBUSCHANNEL技术基础上研制的一种存储器。用于数据存储的字长为16位,传输率极速指标有望达到600MHz。以管道存储结构支持交叉存取同时执行四条指令,单从封装形式上看,与DRAM没有什么不同,但在发热量方面与100MHz的SDRAM大致相当。因为它的图形加速性能是EDO DRAM的3-10倍,所以目前主要应用于高档显卡上做显示内存。

Direct RDRAM
是RDRAM的扩展,它使用了同样的RSL,但接口宽度达到16位,频率达到800MHz,效率更高。单个传输率可达到1.6GB/s,两个的传输率可达到3.2GB/s。

点评:
30pin和72pin的内存,早已退出市场,现在市场上主流的内存,是SDRAM,而SDRAM的价格越降越底,对于商家和厂家而言,利润空间已缩到了极限,赔钱的买卖,有谁愿意去做了?再者也没有必要,毕竟厂家或商家们总是在朝着向“钱”的方向发展。

随着 INTEL和 AMD两大公司 CPU生产飞速发展,以及各大板卡厂家的支持,RAMBUS 和 DDRAM 也得到了更快的发展和普及,究竟哪一款会成为主流,哪一款更适合用户,市场终究会证明这一切的。

机存取存储器是电脑的记忆部件,也被认为是反映集成电路工艺水平的部件。各种存储器中以动态存储器(DRAM)的存储容量为最大,使用最为普及,几十年间它的存储量扩大了几千倍,存取数据的速度提高40多倍。存储器的集成度的提高是靠不断缩小器件尺寸达到的。尺寸的缩小,对集成电路的设计和制造技术提出了极为苛刻的要求,可以说是只有一代新工艺的突破,才有一代集成电路。

动态读写存储器DRAM(Dynamic Random Access MeMory)是利用MOS存储单元分布电容上的电荷来存储数据位,由于电容电荷会泄漏,为了保持信息不丢失,DRAM需要不断周期性地对其刷新。由于这种结构的存储单元所需要的MOS管较少,因此DRAM的集成度高、功耗也小,同时每位的价格最低。DRAM一般都用于大容量系统中。DRAM的发展方向有两个,一是高集成度、大容量、低成本,二是高速度、专用化。

从1970年Intel公司推出第一块1K DRAM芯片后,其存储容量基本上是按每三年翻两番的速度发展。1995年12月韩国三星公司率先宣布利用0.16μm工艺研制成功集成度达10亿以上的1000M位的高速(3lns)同步DRAM。这个领域的竞争非常激烈,为了解决巨额投资和共担市场风险问题,世界范围内的各大半导体厂商纷纷联合,已形成若干合作开发的集团格局。

1996年市场上主推的是4M位和16M位DRAM芯片,1997年以16M位为主,1998年64M位大量上市。64M DRAM的市场占有率达52%;16M DRAM的市场占有率为45%。1999年64M DRAM市场占有率已提高到78%,16M DRAM占1%。128M DRAM已经普及,明年将出现256M DRAM。

高性能RISC微处理器的时钟已达到100MHz~700MHz,这种情况下,处理器对存储器的带宽要求越来越高。为了适应高速CPU构成高性能系统的需要,DRAM技术在不断发展。在市场需求的驱动下,出现了一系列新型结构的高速DRAM。例如EDRAM、CDRAM、SDRAM、RDRAM、SLDRAM、DDR DRAM、DRDRAM等。为了提高动态读写存储器访问速度而采用不同技术实现的DRAM有:

(1) 快速页面方式FPM DRAM

快速页面方式FPM(Fast Page Mode)DRAM已经成为一种标准形式。一般DRAM存储单元的读写是先选择行地址,再选择列地址,事实上,在大多数情况下,下一个所需要的数据在当前所读取数据的下一个单元,即其地址是在同一行的下一列,FPM DRAM可以通过保持同一个行地址来选择不同的列地址实现存储器的连续访问。减少了建立行地址的延时时间从而提高连续数据访问的速度。但是当时钟频率高于33MHz时,由于没有足够的充电保持时间,将会使读出的数据不可靠。

(2) 扩展数据输出动态读写存储器EDO DRAM

在FPM技术的基础上发展起来的扩展数据输出动态读写存储器EDODRAM(Extended Data Out DRAM),是在RAM的输出端加一组锁存器构成二级内存输出缓冲单元,用以存储数据并一直保持到数据被可靠地读取时为止,这样就扩展了数据输出的有效时间。EDODRAM可以在50MHz时钟下稳定地工作。

由于只要在原DRAM的基础上集成成本提高并不多的EDO逻辑电路,就可以比较有效地提高动态读写存储器的性能,所以在此之前,EDO DRAM曾成为动态读写存储器设计的主流技术和基本形式。

(3) 突发方式EDO DRAM

在EDO DRAM存储器的基础上,又发展了一种可以提供更高有效带宽的动态读写存储器突发方式EDO DRAM(Burst EDO DRAM)。这种存储器可以对可能所需的4个数据地址进行预测并自动地预先形成,它把可以稳定工作的频率提高到66MHz。

(4) 同步动态读写存储器SDRAM

SDRAM(Synchronous DRAM)是通过同步时钟对控制接口的操作和安排片内隔行突发方式地址发生器来提高存储器的性能。它仅需要一个首地址就可以对一个存储块进行访问。所有的输入采样如输出有效都在同一个系统时钟的上升沿。所使用的与CPU同步的时钟频率可以高达66MHz~100MHz。它比一般DRAM增加一个可编程方式寄存器。采用SDRAM可大大改善内存条的速度和性能,系统设计者可根据处理器要求,灵活地采用交错或顺序脉冲。

Infineon Technologies(原Siemens半导体)今年已批量供应256Mit SDRAM。其SDRAM用0.2μm技术生产,在100MHz的时钟频率下输出时间为10ns。

(5) 带有高速缓存的动态读写存储器CDRAM

CDRAM(Cached DRAM)是日本三菱电气公司开发的专有技术,1992年推出样品,是通过在DRAM芯片,集成一定数量的高速SRAM作为高速缓冲存储器Cache和同步控制接口,来提高存储器的性能。这种芯片用单一+3.3V电源,低压TTL输入输出电平。目前三菱公司可以提供的CDRAM为4Mb和16Mb,其片内Cache为16KB,与128位内部总线配合工作,可以实现100MHz的数据访问。流水线式存取时间为7ns。

(6) 增强型动态读写存储器EDRAM(Enhanced DRAM)

由Ramtron跨国公司推出的带有高速缓冲存储器的DRAM产品称作增强型动态读写存储器EDRAM(Enhanced DRAM),它采用异步操作方式,单一+5V工作电源,CMOS或TTL输入输出电平。由于采用一种改进的DRAM 0.76μm CMOS工艺和可以减小寄生电容和提高晶体管增益的结构技术,其性能大大提高,行访问时间为35ns,读/写访问时间可以提高到65ns,页面写入周期时间为15ns。EDRAM还在片内DRAM存储矩阵的列译码器上集成了2K位15ns的静态RAM高速缓冲存储器Cache,和后写寄存器以及另外的控制线,并允许SRAM Cache和DRAM独立操作。每次可以对一行数据进行高速缓冲。它可以象标准的DRAM对任一个存储单元用页面或静态列访问模式进行操作,访问时间只有15ns。当Cache未命中时,EDRAM就把新的一行加载到Cache中,并把选择的存储单元数据输出,这需要花35ns。这种存储器的突发数据率可以达到267Mbytes/s。

(7) RDRAM(Rambus DRAM)

Rambus DRAM是Rambus公司利用本身研制的一种独特的接口技术代替页面方式结构的一种新型动态读写存储器。这种接口在处理机与DRAM之间使用了一种特殊的9位低压负载发送线,用250MHz同步时钟工作,字节宽度地址与数据复用的串行总线接口。这种接口又称作Rambus通道,这种通道嵌入到DRAM中就构成Rambus DRAM,它还可以嵌入到用户定制的逻辑芯片或微处理机中。它通过使用250MHz时钟的两个边沿可以使突发数据传输率达到500MHz。在采用Rambus通道的系统中每个芯片内部都有它自己的控制器,用来处理地址译码和面页高速缓存管理。由此一片存储器子系统的容量可达512K字节,并含有一个总线控制器。不同容量的存储器有相同的引脚并连接在同一组总线上。Rambus公司开发了这种新型结构的DRAM,但是它本身并不生产,而是通过发放许可证的方式转让它的技术,已经得到生产许可的半导体公司有NEC、Fujitsu、Toshiba、Hitachi和LG等。

被业界看好的下一代新型DRAM有三种:双数据传输率同步动态读写存储器(DDR SDRAM)、同步链动态读写存储器(SLDRAM)和Rambus接口DRAM(RDRAM)。

(1) DDR DRAM(Double Data Rate DRAM)

在同步动态读写存储器SDRAM的基础上,采用延时锁定环(Delay-locked Loop)技术提供数据选通信号对数据进行精确定位,在时钟脉冲的上升沿和下降沿都可传输数据(而不是第一代SDRAM仅在时钟脉冲的下降沿传输数据),这样就在不提高时钟频率的情况下,使数据传输率提高一倍,故称作双数据传输率(DDR)DRAM,它实际上是第二代SDRAM。由于DDR DRAM需要新的高速时钟同步电路和符合JEDEC标准的存储器模块,所以主板和芯片组的成本较高,一般只能用于高档服务器和工作站上,其价格在中低档PC机上可能难以接受。

(2) SLDRAM(Synchnonous Link DRAM)

这是由IBM、HP、Apple、NEC、Fujitsu、Hyundai、Micron、TI、Toshiba、Sansung和Siemens等业界大公司联合制定的一个开放性标准,委托Mosaid Technologies公司设计,所以SLDRAM是一种原本最有希望成为高速DRAM开放性工业标准的动态读写存储器。它是一种在原DDR DRAM基础上发展的一种高速动态读写存储器。它具有与DRDRAM相同的高数据传输率,但是它比其工作频率要低;另外生产这种存储器不需要支付专利使用费,使得制造成本较低,所以这种存储器应该具有市场竞争优势。但是由于SLDRAM联盟是一个松散的联合体,众多成员之间难以协调一致,在研究经费投入上不能达成一致意见,加上Intel公司不支持这种标准,所以这种动态存储器反而难以形成气候,敌不过Intel公司鼎立支持的Rambus公司的DRDRAM。SLDRAM可用于通信和消费类电子产品,高档PC和服务器。

(3) DRDRAM(Direct Rambus DRAM)

从1996年开始,Rambus公司就在Intel公司的支持下制定新一代RDRAM标准,这就是DRDRAM(Direct RDRAM)。这是一种基于协议的DRAM,与传统DRAM不同的是其引脚定义会随命令而变,同一组引脚线可以被定义成地址,也可以被定义成控制线。其引脚数仅为正常DRAM的三分之一。当需要扩展芯片容量时,只需要改变命令,不需要增加硬件引脚。这种芯片可以支持400MHz外频,再利用上升沿和下降沿两次传输数据,可以使数据传输率达到800MHz。同时通过把数据输出通道从8位扩展成16位,这样在100MHz时就可以使最大数据输出率达1.6Gb/s。东芝公司在购买了Rambus公司的高速传输接口技术专利后,于1998年9月首先推出72Mb的RDRAM,其中64Mb是数据存储器,另外8Mb用于纠错校验,由此大大提高了数据读写可靠性。

Intel公司办排众议,坚定地推举DRDRAM作为下一代高速内存的标准,目前在Intel公司对Micro、Toshiba和Samsung等公司组建DRDRAM的生产线和测试线投入资金。其他众多厂商也在努力与其抗争,最近AMD宣布至少今年推出的K7微处理器都不打算采用Rambus DRAM;据说IBM正在考虑放弃对Rambus的支持。当前市场上同样是64Mb的DRAM,RDRAM就要比其他标准的贵45美元。
由此可见存储器的发展动向是:大容量化,高速化, 多品种、多功能化,低电压、低功耗化。
存储器的工艺发展中有以下趋势:CHMOS工艺代替NMOS工艺以降低功耗;缩小器件尺寸,外围电路仍采用ECL结构以提高存取速度同时提高集成度;存储电容从平面HI-C改为深沟式,保证尺寸减少后的电荷存储量,以提高可靠性;电路设计中简化外围电路结构,注意降低噪声,运用冗余技术以提高质量和成品率;工艺中采用了多种新技术;使DRAM的存储容量稳步上升,为今后继续开发大容量的新电路奠定基础。
从电子计算机中的处理器和存储器可以看出ULSI前进的步伐和几十年间的巨大变化。

❺ 存储器的分类

一、RAM(Random Access Memory,随机存取存储器)
RAM的特点是:电脑开机时,操作系统和应用程序的所有正在运行的数据和程序都会放置其中,并且随时可以对存放在里面的数据进行修改和存取。它的工作需要由持续的电力提供,一旦系统断电,存放在里面的所有数据和程序都会自动清空掉,并且再也无法恢复。

根据组成元件的不同,RAM内存又分为以下十八种:

01.DRAM(Dynamic RAM,动态随机存取存储器)
这是最普通的RAM,一个电子管与一个电容器组成一个位存储单元,DRAM将每个内存位作为一个电荷保存在位存储单元中,用电容的充放电来做储存动作,但因电容本身有漏电问题,因此必须每几微秒就要刷新一次,否则数据会丢失。存取时间和放电时间一致,约为2~4ms。因为成本比较便宜,通常都用作计算机内的主存储器。

02.SRAM(Static RAM,静态随机存取存储器)
静态,指的是内存里面的数据可以长驻其中而不需要随时进行存取。每6颗电子管组成一个位存储单元,因为没有电容器,因此无须不断充电即可正常运作,因此它可以比一般的动态随机处理内存处理速度更快更稳定,往往用来做高速缓存。

03.VRAM(Video RAM,视频内存)

它的主要功能是将显卡的视频数据输出到数模转换器中,有效降低绘图显示芯片的工作负担。它采用双数据口设计,其中一个数据口是并行式的数据输出入口,另一个是串行式的数据输出口。多用于高级显卡中的高档内存。

04.FPM DRAM(Fast Page Mode DRAM,快速页切换模式动态随机存取存储器)
改良版的DRAM,大多数为72Pin或30Pin的模块。传统的DRAM在存取一个BIT的数据时,必须送出行地址和列地址各一次才能读写数据。而FRM DRAM在触发了行地址后,如果CPU需要的地址在同一行内,则可以连续输出列地址而不必再输出行地址了。由于一般的程序和数据在内存中排列的地址是连续的,这种情况下输出行地址后连续输出列地址就可以得到所需要的数据。FPM将记忆体内部隔成许多页数Pages,从512B到数KB不等,在读取一连续区域内的数据时,就可以通过快速页切换模式来直接读取各page内的资料,从而大大提高读取速度。在96年以前,在486时代和PENTIUM时代的初期, FPM DRAM被大量使用。

05.EDO DRAM(Extended Data Out DRAM,延伸数据输出动态随机存取存储器)
这是继FPM之后出现的一种存储器,一般为72Pin、168Pin的模块。它不需要像FPM DRAM那样在存取每一BIT 数据时必须输出行地址和列地址并使其稳定一段时间,然后才能读写有效的数据,而下一个BIT的地址必须等待这次读写操作完成才能输出。因此它可以大大缩短等待输出地址的时间,其存取速度一般比FPM模式快15%左右。它一般应用于中档以下的Pentium主板标准内存,后期的486系统开始支持EDO DRAM,到96年后期,EDO DRAM开始执行。。

06.BEDO DRAM(Burst Extended Data Out DRAM,爆发式延伸数据输出动态随机存取存储器)
这是改良型的EDO DRAM,是由美光公司提出的,它在芯片上增加了一个地址计数器来追踪下一个地址。它是突发式的读取方式,也就是当一个数据地址被送出后,剩下的三个数据每一个都只需要一个周期就能读取,因此一次可以存取多组数据,速度比EDO DRAM快。但支持BEDO DRAM内存的主板可谓少之又少,只有极少几款提供支持(如VIA APOLLO VP2),因此很快就被DRAM取代了。

07.MDRAM(Multi-Bank DRAM,多插槽动态随机存取存储器)
MoSys公司提出的一种内存规格,其内部分成数个类别不同的小储存库 (BANK),也即由数个属立的小单位矩阵所构成,每个储存库之间以高于外部的资料速度相互连接,一般应用于高速显示卡或加速卡中,也有少数主机板用于L2高速缓存中。

08.WRAM(Window RAM,窗口随机存取存储器)
韩国Samsung公司开发的内存模式,是VRAM内存的改良版,不同之处是它的控制线路有一、二十组的输入/输出控制器,并采用EDO的资料存取模式,因此速度相对较快,另外还提供了区块搬移功能(BitBlt),可应用于专业绘图工作上。

09.RDRAM(Rambus DRAM,高频动态随机存取存储器)
Rambus公司独立设计完成的一种内存模式,速度一般可以达到500~530MB/s,是DRAM的10倍以上。但使用该内存后内存控制器需要作相当大的改变,因此它们一般应用于专业的图形加速适配卡或者电视游戏机的视频内存中。

10.SDRAM(Synchronous DRAM,同步动态随机存取存储器)
这是一种与CPU实现外频Clock同步的内存模式,一般都采用168Pin的内存模组,工作电压为3.3V。 所谓clock同步是指内存能够与CPU同步存取资料,这样可以取消等待周期,减少数据传输的延迟,因此可提升计算机的性能和效率。

11.SGRAM(Synchronous Graphics RAM,同步绘图随机存取存储器)
SDRAM的改良版,它以区块Block,即每32bit为基本存取单位,个别地取回或修改存取的资料,减少内存整体读写的次数,另外还针对绘图需要而增加了绘图控制器,并提供区块搬移功能(BitBlt),效率明显高于SDRAM。

12.SB SRAM(Synchronous Burst SRAM,同步爆发式静态随机存取存储器)
一般的SRAM是异步的,为了适应CPU越来越快的速度,需要使它的工作时脉变得与系统同步,这就是SB SRAM产生的原因。

13.PB SRAM(Pipeline Burst SRAM,管线爆发式静态随机存取存储器)
CPU外频速度的迅猛提升对与其相搭配的内存提出了更高的要求,管线爆发式SRAM取代同步爆发式SRAM成为必然的选择,因为它可以有效地延长存取时脉,从而有效提高访问速度。

14.DDR SDRAM(Double Data Rate二倍速率同步动态随机存取存储器)
作为SDRAM的换代产品,它具有两大特点:其一,速度比SDRAM有一倍的提高;其二,采用了DLL(Delay Locked Loop:延时锁定回路)提供一个数据滤波信号。这是目前内存市场上的主流模式。

15.SLDRAM (Synchronize Link,同步链环动态随机存取存储器)
这是一种扩展型SDRAM结构内存,在增加了更先进同步电路的同时,还改进了逻辑控制电路,不过由于技术显示,投入实用的难度不小。

16.CDRAM(CACHED DRAM,同步缓存动态随机存取存储器)
这是三菱电气公司首先研制的专利技术,它是在DRAM芯片的外部插针和内部DRAM之间插入一个SRAM作为二级CACHE使用。当前,几乎所有的CPU都装有一级CACHE来提高效率,随着CPU时钟频率的成倍提高,CACHE不被选中对系统性能产生的影响将会越来越大,而CACHE DRAM所提供的二级CACHE正好用以补充CPU一级CACHE之不足,因此能极大地提高CPU效率。

17.DDRII (Double Data Rate Synchronous DRAM,第二代同步双倍速率动态随机存取存储器)
DDRII 是DDR原有的SLDRAM联盟于1999年解散后将既有的研发成果与DDR整合之后的未来新标准。DDRII的详细规格目前尚未确定。

18.DRDRAM (Direct Rambus DRAM)
是下一代的主流内存标准之一,由Rambus 公司所设计发展出来,是将所有的接脚都连结到一个共同的Bus,这样不但可以减少控制器的体积,已可以增加资料传送的效率。

二、ROM(READ Only Memory,只读存储器)

ROM是线路最简单半导体电路,通过掩模工艺,一次性制造,在元件正常工作的情况下,其中的代码与数据将永久保存,并且不能够进行修改。一般应用于PC系统的程序码、主机板上的 BIOS (基本输入/输出系统Basic Input/Output System)等。它的读取速度比RAM慢很多。

根据组成元件的不同,ROM内存又分为以下五种:

1.MASK ROM(掩模型只读存储器)
制造商为了大量生产ROM内存,需要先制作一颗有原始数据的ROM或EPROM作为样本,然后再大量复制,这一样本就是MASK ROM,而烧录在MASK ROM中的资料永远无法做修改。它的成本比较低。

2.PROM(Programmable ROM,可编程只读存储器)
这是一种可以用刻录机将资料写入的ROM内存,但只能写入一次,所以也被称为“一次可编程只读存储器”(One Time Progarmming ROM,OTP-ROM)。PROM在出厂时,存储的内容全为1,用户可以根据需要将其中的某些单元写入数据0(部分的PROM在出厂时数据全为0,则用户可以将其中的部分单元写入1), 以实现对其“编程”的目的。

3.EPROM(Erasable Programmable,可擦可编程只读存储器)
这是一种具有可擦除功能,擦除后即可进行再编程的ROM内存,写入前必须先把里面的内容用紫外线照射它的IC卡上的透明视窗的方式来清除掉。这一类芯片比较容易识别,其封装中包含有“石英玻璃窗”,一个编程后的EPROM芯片的“石英玻璃窗”一般使用黑色不干胶纸盖住, 以防止遭到阳光直射。

4.EEPROM(Electrically Erasable Programmable,电可擦可编程只读存储器)
功能与使用方式与EPROM一样,不同之处是清除数据的方式,它是以约20V的电压来进行清除的。另外它还可以用电信号进行数据写入。这类ROM内存多应用于即插即用(PnP)接口中。

5.Flash Memory(快闪存储器)
这是一种可以直接在主机板上修改内容而不需要将IC拔下的内存,当电源关掉后储存在里面的资料并不会流失掉,在写入资料时必须先将原本的资料清除掉,然后才能再写入新的资料,缺点为写入资料的速度太慢。

❻ [Microsoft][ODBC SQL Server Driver][SQL Server]无法打开数据库"msdb"。恢复操作已将

数据库现在是置疑状态,置疑时是不能备份的。要查找出置疑的原因,并修复好为正常状态,才可以继续备份操作。数据库置疑的修复是比较复杂的,有很多种情况可以使数据库显示为置疑状态,具体的原因要经过检测分析确定,你可以尝试把数据库设为紧急修复模式,然后进行检测,看能否进行。注意:操作前要把数据库文件复制出来一份,有确定把握后再进行操作。

热点内容
scratch编程网站 发布:2025-02-01 05:51:27 浏览:395
安卓怎么更好用 发布:2025-02-01 05:45:38 浏览:146
ps如何存储多页为pdf 发布:2025-02-01 05:44:15 浏览:32
预编译和预处理区别 发布:2025-02-01 05:30:42 浏览:965
怎么改变网络服务器 发布:2025-02-01 05:24:55 浏览:602
华为云服务器可以装软件吗 发布:2025-02-01 05:20:29 浏览:346
为什么ios比安卓稳定 发布:2025-02-01 05:17:15 浏览:668
农村社保卡密码多少 发布:2025-02-01 05:17:05 浏览:745
android下拉刷新通用 发布:2025-02-01 05:03:51 浏览:906
紫光存储最近 发布:2025-02-01 04:58:49 浏览:381