当前位置:首页 » 存储配置 » 大数据通用存储格式

大数据通用存储格式

发布时间: 2023-08-05 12:26:36

❶ 请分析“大数据”的存储方式及主要业务跟课中所讲解的关系型数据库有何区别

大数据的存储方式主要使用nosql
这种数据库有几个特点,一个是针对大数据环境,它是分布式的,另一个他的操作非常原始,只有Keyvalue读写
关系数据库呢,一般都是单机的,因为关系数据库最强大的就是事务,事物在分布式环境很难实现,所以关系数据库通常都是单机版,另外一个是关系数据库,它的计算层次更高,是表格上的运算

❷ 大数据存储与应用特点及技术路线分析

大数据存储与应用特点及技术路线分析

大数据时代,数据呈爆炸式增长。从存储服务的发展趋势来看,一方面,对数据的存储量的需求越来越大;另一方面,对数据的有效管理提出了更高的要求。大数据对存储设备的容量、读写性能、可靠性、扩展性等都提出了更高的要求,需要充分考虑功能集成度、数据安全性、数据稳定性,系统可扩展性、性能及成本各方面因素。

大数据存储与应用的特点分析

“大数据”是由数量巨大、结构复杂、类型众多数据构成的数据集合,是基于云计算的数据处理与应用模式,通过数据的整合共享,交叉复用形成的智力资源和知识服务能力。其常见特点可以概括为3V:Volume、Velocity、Variety(规模大、速度快、多样性)。

大数据具有数据规模大(Volume)且增长速度快的特性,其数据规模已经从PB级别增长到EB级别,并且仍在不断地根据实际应用的需求和企业的再发展继续扩容,飞速向着ZB(ZETA-BYTE)的规模进军。以国内最大的电子商务企业淘宝为例,根据淘宝网的数据显示,至2011年底,淘宝网最高单日独立用户访问量超过1.2亿人,比2010年同期增长120%,注册用户数量超过4亿,在线商品数量达到8亿,页面浏览量达到20亿规模,淘宝网每天产生4亿条产品信息,每天活跃数据量已经超过50TB.所以大数据的存储或者处理系统不仅能够满足当前数据规模需求,更需要有很强的可扩展性以满足快速增长的需求。

(1)大数据的存储及处理不仅在于规模之大,更加要求其传输及处理的响应速度快(Velocity)。

相对于以往较小规模的数据处理,在数据中心处理大规模数据时,需要服务集群有很高的吞吐量才能够让巨量的数据在应用开发人员“可接受”的时间内完成任务。这不仅是对于各种应用层面的计算性能要求,更加是对大数据存储管理系统的读写吞吐量的要求。例如个人用户在网站选购自己感兴趣的货物,网站则根据用户的购买或者浏览网页行为实时进行相关广告的推荐,这需要应用的实时反馈;又例如电子商务网站的数据分析师根据购物者在当季搜索较为热门的关键词,为商家提供推荐的货物关键字,面对每日上亿的访问记录要求机器学习算法在几天内给出较为准确的推荐,否则就丢失了其失效性;更或者是出租车行驶在城市的道路上,通过GPS反馈的信息及监控设备实时路况信息,大数据处理系统需要不断地给出较为便捷路径的选择。这些都要求大数据的应用层可以最快的速度,最高的带宽从存储介质中获得相关海量的数据。另外一方面,海量数据存储管理系统与传统的数据库管理系统,或者基于磁带的备份系统之间也在发生数据交换,虽然这种交换实时性不高可以离线完成,但是由于数据规模的庞大,较低的数据传输带宽也会降低数据传输的效率,而造成数据迁移瓶颈。因此大数据的存储与处理的速度或是带宽是其性能上的重要指标。

(2)大数据由于其来源的不同,具有数据多样性的特点。

所谓多样性,一是指数据结构化程度,二是指存储格式,三是存储介质多样性。对于传统的数据库,其存储的数据都是结构化数据,格式规整,相反大数据来源于日志、历史数据、用户行为记录等等,有的是结构化数据,而更多的是半结构化或者非结构化数据,这也正是传统数据库存储技术无法适应大数据存储的重要原因之一。所谓存储格式,也正是由于其数据来源不同,应用算法繁多,数据结构化程度不同,其格式也多种多样。例如有的是以文本文件格式存储,有的则是网页文件,有的是一些被序列化后的比特流文件等等。所谓存储介质多样性是指硬件的兼容,大数据应用需要满足不同的响应速度需求,因此其数据管理提倡分层管理机制,例如较为实时或者流数据的响应可以直接从内存或者Flash(SSD)中存取,而离线的批处理可以建立在带有多块磁盘的存储服务器上,有的可以存放在传统的SAN或者NAS网络存储设备上,而备份数据甚至可以存放在磁带机上。因而大数据的存储或者处理系统必须对多种数据及软硬件平台有较好的兼容性来适应各种应用算法或者数据提取转换与加载(ETL)。

大数据存储技术路线最典型的共有三种:

第一种是采用MPP架构的新型数据库集群,重点面向行业大数据,采用Shared Nothing架构,通过列存储、粗粒度索引等多项大数据处理技术,再结合MPP架构高效的分布式计算模式,完成对分析类应用的支撑,运行环境多为低成本 PC Server,具有高性能和高扩展性的特点,在企业分析类应用领域获得极其广泛的应用。

这类MPP产品可以有效支撑PB级别的结构化数据分析,这是传统数据库技术无法胜任的。对于企业新一代的数据仓库和结构化数据分析,目前最佳选择是MPP数据库。

第二种是基于Hadoop的技术扩展和封装,围绕Hadoop衍生出相关的大数据技术,应对传统关系型数据库较难处理的数据和场景,例如针对非结构化数据的存储和计算等,充分利用Hadoop开源的优势,伴随相关技术的不断进步,其应用场景也将逐步扩大,目前最为典型的应用场景就是通过扩展和封装 Hadoop来实现对互联网大数据存储、分析的支撑。这里面有几十种NoSQL技术,也在进一步的细分。对于非结构、半结构化数据处理、复杂的ETL流程、复杂的数据挖掘和计算模型,Hadoop平台更擅长。

第三种是大数据一体机,这是一种专为大数据的分析处理而设计的软、硬件结合的产品,由一组集成的服务器、存储设备、操作系统、数据库管理系统以及为数据查询、处理、分析用途而特别预先安装及优化的软件组成,高性能大数据一体机具有良好的稳定性和纵向扩展性。

以上是小编为大家分享的关于大数据存储与应用特点及技术路线分析的相关内容,更多信息可以关注环球青藤分享更多干货

❸ 大数据常用文件格式介绍

图片看不见的话可以看我CSDN上的文章:
https://blog.csdn.net/u013332124/article/details/86423952

最近在做hdfs小文件合并的项目,涉及了一些文件格式的读写,比如avro、orc、parquet等。期间阅读了一些资料,因此打算写篇文章做个记录。

这篇文章不会介绍如何对这些格式的文件进行读写,只会介绍一下它们各自的特点以及底层存储的编码格式

[图片上传失败...(image-a5104a-1547368703623)]

使用sequencefile还可以将多个小文件合并到一个大文件中,通过key-value的形式组织起来,此时该sequencefile可以看做是一个小文件容器。

[图片上传失败...(image-4d03a2-1547368703623)]

Parquet是一个基于列式存储的文件格式,它将数据按列划分进行存储。Parquet官网上的文件格式介绍图:

[图片上传失败...(image-92770e-1547368703623)]

我们可以看出,parquet由几个部分构成:

[图片上传失败...(image-391e57-1547368703623)]

Orc也是一个列式存储格式,产生自Apache Hive,用于降低Hadoop数据存储空间和加速Hive查询速度。

[图片上传失败...(image-ba6160-1547368703623)]

目前列式存储是大数据领域基本的优化项,无论是存储还是查询,列式存储能做的优化都很多,看完上面对orc和parquet的文件结构介绍后,我们列式存储的优化点做一个总结:

压缩方面

在查询方面

就网上找到的一些数据来看,Orc的压缩比会比Parquet的高一些,至于查询性能,两个应该不会差距太大。本人之前做过一个测试,在多数场景,hive on mr下,orc的查询性能会更好一些。换成hive on spark后,parquet的性能更好一些

本文介绍的4种大数据存储格式,2个是行式存储,2个是列式存储,但我们可以看到一个共同点:它们都是支持分割的。这是大数据文件结构体系中一个非常重要的特点, 因为可分割使一个文件可以被多个节点并发处理,提高数据的处理速度

另外,当前大数据的主要趋势应该是使用列式存储,目前我们公司已经逐步推进列式存储的使用,本人也在hive上做过一些测试,在多个查询场景下,无论是orc还是parquet的查询速度都完爆text格式的, 差不多有4-8倍的性能提升 。另外,orc和parquet的压缩比都能达到10比1的程度。因此,无论从节约资源和查询性能考虑,在大多数情况下,选择orc或者parquet作为文件存储格式是更好的选择。另外,spark sql的默认读写格式也是parquet。

当然,并不是说列式存储已经一统天下了,大多时候我们还是要根据自己的使用场景来决定使用哪种存储格式。

Sequencefile

https://blog.csdn.net/en_joker/article/details/79648861

https://stackoverflow.com/questions/11778681/advantages-of-sequence-file-over-hdfs-textfile

Avro和Sequencefile区别

https://stackoverflow.com/questions/24236803/difference-between-avrodata-file-and-sequence-file-with-respect-to-apache-sqoop

parquet

https://www.cnblogs.com/ITtangtang/p/7681019.html

Orc

https://www.cnblogs.com/ITtangtang/p/7677912.html

https://www.cnblogs.com/cxzdy/p/5910760.html

Orc和parquet的一些对比

https://blog.csdn.net/colorant/article/details/53699822

https://blog.csdn.net/yu616568/article/details/51188479

❹ 大数据解决方案主要用于存储哪种类型的数据

大数据解决方案主要用于存储二进制类型的数据。

数据还包括了结构化数据和非结构化数据,邮件,Word,图片,音频信息,视频信息等各种类型数据,已经不是以往的关系型数据库可以解决的了。非结构化数据的超大规模和增长,占总数据量的80~90%,比结构化数据增长快10倍到50倍,是传统数据仓库的10倍到50倍。

大数据特点:

海量数据有不同格式,第一种是结构化,我们常见的数据,还有半结据化网页数据,还有非结构化视频音频数据。而且这些数据化他们处理方式是比较大的。数据类型繁多,如网络日志、视频、图片、地理位置信息,等等。

❺ 数据存储形式有哪几种

【块存储】

典型设备:磁盘阵列,硬盘

块存储主要是将裸磁盘空间整个映射给主机使用的,就是说例如磁盘阵列里面有5块硬盘(为方便说明,假设每个硬盘1G),然后可以通过划逻辑盘、做Raid、或者LVM(逻辑卷)等种种方式逻辑划分出N个逻辑的硬盘。(假设划分完的逻辑盘也是5个,每个也是1G,但是这5个1G的逻辑盘已经于原来的5个物理硬盘意义完全不同了。例如第一个逻辑硬盘A里面,可能第一个200M是来自物理硬盘1,第二个200M是来自物理硬盘2,所以逻辑硬盘A是由多个物理硬盘逻辑虚构出来的硬盘。)

接着块存储会采用映射的方式将这几个逻辑盘映射给主机,主机上面的操作系统会识别到有5块硬盘,但是操作系统是区分不出到底是逻辑还是物理的,它一概就认为只是5块裸的物理硬盘而已,跟直接拿一块物理硬盘挂载到操作系统没有区别的,至少操作系统感知上没有区别。

此种方式下,操作系统还需要对挂载的裸硬盘进行分区、格式化后,才能使用,与平常主机内置硬盘的方式完全无异。

优点:

1、 这种方式的好处当然是因为通过了Raid与LVM等手段,对数据提供了保护。

2、 另外也可以将多块廉价的硬盘组合起来,成为一个大容量的逻辑盘对外提供服务,提高了容量。

3、 写入数据的时候,由于是多块磁盘组合出来的逻辑盘,所以几块磁盘可以并行写入的,提升了读写效率。

4、 很多时候块存储采用SAN架构组网,传输速率以及封装协议的原因,使得传输速度与读写速率得到提升。

缺点:

1、采用SAN架构组网时,需要额外为主机购买光纤通道卡,还要买光纤交换机,造价成本高。

2、主机之间的数据无法共享,在服务器不做集群的情况下,块存储裸盘映射给主机,再格式化使用后,对于主机来说相当于本地盘,那么主机A的本地盘根本不能给主机B去使用,无法共享数据。

3、不利于不同操作系统主机间的数据共享:另外一个原因是因为操作系统使用不同的文件系统,格式化完之后,不同文件系统间的数据是共享不了的。例如一台装了WIN7/XP,文件系统是FAT32/NTFS,而Linux是EXT4,EXT4是无法识别NTFS的文件系统的。就像一只NTFS格式的U盘,插进Linux的笔记本,根本无法识别出来。所以不利于文件共享。


【文件存储】

典型设备:FTP、NFS服务器

为了克服上述文件无法共享的问题,所以有了文件存储。

文件存储也有软硬一体化的设备,但是其实普通拿一台服务器/笔记本,只要装上合适的操作系统与软件,就可以架设FTP与NFS服务了,架上该类服务之后的服务器,就是文件存储的一种了。

主机A可以直接对文件存储进行文件的上传下载,与块存储不同,主机A是不需要再对文件存储进行格式化的,因为文件管理功能已经由文件存储自己搞定了。

优点:

1、造价交低:随便一台机器就可以了,另外普通以太网就可以,根本不需要专用的SAN网络,所以造价低。

2、方便文件共享:例如主机A(WIN7,NTFS文件系统),主机B(Linux,EXT4文件系统),想互拷一部电影,本来不行。加了个主机C(NFS服务器),然后可以先A拷到C,再C拷到B就OK了。(例子比较肤浅,请见谅……)

缺点:

读写速率低,传输速率慢:以太网,上传下载速度较慢,另外所有读写都要1台服务器里面的硬盘来承担,相比起磁盘阵列动不动就几十上百块硬盘同时读写,速率慢了许多。


【对象存储】

典型设备:内置大容量硬盘的分布式服务器

对象存储最常用的方案,就是多台服务器内置大容量硬盘,再装上对象存储软件,然后再额外搞几台服务作为管理节点,安装上对象存储管理软件。管理节点可以管理其他服务器对外提供读写访问功能。

之所以出现了对象存储这种东西,是为了克服块存储与文件存储各自的缺点,发扬它俩各自的优点。简单来说块存储读写快,不利于共享,文件存储读写慢,利于共享。能否弄一个读写快,利 于共享的出来呢。于是就有了对象存储。

首先,一个文件包含了了属性(术语叫metadata,元数据,例如该文件的大小、修改时间、存储路径等)以及内容(以下简称数据)。

以往像FAT32这种文件系统,是直接将一份文件的数据与metadata一起存储的,存储过程先将文件按照文件系统的最小块大小来打散(如4M的文件,假设文件系统要求一个块4K,那么就将文件打散成为1000个小块),再写进硬盘里面,过程中没有区分数据/metadata的。而每个块最后会告知你下一个要读取的块的地址,然后一直这样顺序地按图索骥,最后完成整份文件的所有块的读取。

这种情况下读写速率很慢,因为就算你有100个机械手臂在读写,但是由于你只有读取到第一个块,才能知道下一个块在哪里,其实相当于只能有1个机械手臂在实际工作。

而对象存储则将元数据独立了出来,控制节点叫元数据服务器(服务器+对象存储管理软件),里面主要负责存储对象的属性(主要是对象的数据被打散存放到了那几台分布式服务器中的信息),而其他负责存储数据的分布式服务器叫做OSD,主要负责存储文件的数据部分。当用户访问对象,会先访问元数据服务器,元数据服务器只负责反馈对象存储在哪些OSD,假设反馈文件A存储在B、C、D三台OSD,那么用户就会再次直接访问3台OSD服务器去读取数据。

这时候由于是3台OSD同时对外传输数据,所以传输的速度就加快了。当OSD服务器数量越多,这种读写速度的提升就越大,通过此种方式,实现了读写快的目的。

另一方面,对象存储软件是有专门的文件系统的,所以OSD对外又相当于文件服务器,那么就不存在文件共享方面的困难了,也解决了文件共享方面的问题。

所以对象存储的出现,很好地结合了块存储与文件存储的优点。

最后为什么对象存储兼具块存储与文件存储的好处,还要使用块存储或文件存储呢?

1、有一类应用是需要存储直接裸盘映射的,例如数据库。因为数据库需要存储裸盘映射给自己后,再根据自己的数据库文件系统来对裸盘进行格式化的,所以是不能够采用其他已经被格式化为某种文件系统的存储的。此类应用更适合使用块存储。

2、对象存储的成本比起普通的文件存储还是较高,需要购买专门的对象存储软件以及大容量硬盘。如果对数据量要求不是海量,只是为了做文件共享的时候,直接用文件存储的形式好了,性价比高。

热点内容
滑板鞋脚本视频 发布:2025-02-02 09:48:54 浏览:432
群晖怎么玩安卓模拟器 发布:2025-02-02 09:45:23 浏览:557
三星安卓12彩蛋怎么玩 发布:2025-02-02 09:44:39 浏览:743
电脑显示连接服务器错误 发布:2025-02-02 09:24:10 浏览:536
瑞芯微开发板编译 发布:2025-02-02 09:22:54 浏览:146
linux虚拟机用gcc编译时显示错误 发布:2025-02-02 09:14:01 浏览:232
java驼峰 发布:2025-02-02 09:13:26 浏览:651
魔兽脚本怎么用 发布:2025-02-02 09:10:28 浏览:532
linuxadobe 发布:2025-02-02 09:09:43 浏览:212
sql2000数据库连接 发布:2025-02-02 09:09:43 浏览:726