当前位置:首页 » 存储配置 » 全流量存储性能

全流量存储性能

发布时间: 2023-06-28 14:40:14

1. 存储性能和空间利用率哪个重要

最大限度地挖掘存储系统的性能潜力是用户永远的追求,但是,面对众多性能优化技术,还必须考虑到底是性能重要还是空间利用率重要。
在当前经济形势低迷的大背景下,挖掘现有存储系统的性能潜力成为用户的必然选择,不过追求性能只是一个方面。
看到的现象是大多数存储系统的空间利用率还不到50%,而且存储控制器的处理能力也只用到一小部分,这些都是让用户不可接受的事实。
在数据中心应用领域,通过服务器整合以及虚拟化技术,物理服务器的资源已经被最大化的利用起来,与此相反的是,存储效率低下的问题却成为用户的痛点。
若要实现服务器虚拟化的高效率,存储系统就必须跟得上,这是一个必要的前提,因此服务器虚拟化应用推动着存储技术向更高效的方向发展。
在虚拟化环境中,当前端服务器数量不断增加,后端存储阵列的不足便暴露出来,尤其表现在缺乏细粒度的分配和调动空间资源的能力方面。
因此,如果用户希望对数据中心进行高度整合,那么服务器虚拟化技术和高效的存储技术二者缺一不可。
存储效率是一个综合性的指标,实现最佳的存储效率意味着要在有效存储空间以及可用处理资源两方面都有出色表现,通常也是各产品之间相互竞争的重点。
StorageIO高级分析师GregSchulz说,“为了达到应用所需的IOPS能力,有些存储系统被设计得很大,通过大量磁盘的并发来提升IOPS,可是空间利用率却非常低,反之,追求空间利用率的最大化往往需要借助存储精简技术,比如压缩和重复数据删除等等,但是这些功能会对系统性能带来负面的影响“。
因此,达成高效的存储就需要在容量和性能之间寻找一个平衡点,根据应用需求的不同,对容量、处理能力、性能以及成本进行控制和优化。
保证存储效率有哪些基本条件优化存储系统的性能,本质上就是要尽可能地提高存储处理资源的利用率,同时尽量消除系统的瓶颈或阻塞。
随着处理资源利用率的增加,剩余的处理资源以及响应额外处理请求的能力相应的就会降低。
而且如果缓冲区太小,那么系统达到性能上限(瓶颈)的可能性就非常大。
举个例子来说,一个平均处理资源利用率在50%的磁盘阵列不太可能触及性能上限(瓶颈),而对于一个利用率达到80%的系统来说,这个可能性就要大得多。
高效存储技术及其对性能、容量和成本的影响由存储厂商或第三方公司提供的内嵌在存储系统内部或在外部附加的运行报告、监控以及存储分析功能是十分重要的,它们可以帮助用户更好的了解系统的运行情况,避免系统过度(过高)配置,并减少很多后期维护工作。
尤其是当用户需要优化性能或者按需增加处理资源时,这些组件的作用就会体现的非常明显。
对此,StorageIO高级分析师GregSchulz评价道:“无论是性能问题还是容量问题,好好利用存储厂商或第三方公司提供的工具都是十分重要的。
”这些工具不仅能够帮助用户定位性能的问题,更重要的方面在于它们可以帮助用户选择出最恰当的解决方案。
衡量一套存储系统的性能并不能依赖某个单一指标,而要考虑多种组合因素,它们每一项都对应用程序访问数据的速度有所影响。
其中,IOPS、吞吐带宽和访问延迟这三项指标是最关键的。
不过,指标数据究竟是好是坏还要考虑应用环境的差异,包括工作负载的类型(随机请求或者顺序请求)、数据块的大小、交易类型(读或是写),以及其他相关的能够影响性能的因素都依赖于应用程序本身的特点。
比方说,如果是流媒体视频应用,那么大文件快速顺序读性能和大数据块是最重要的;
而如果是虚拟化应用环境,那么随机读性能通常是最主要的考察指标。
下面的部分,将纵览那些可以优化性能并且提高存储资源利用率的技术,这里没有独门秘籍,因为每一种方法都有其优点和缺点。
通过堆砌磁盘数量来提高性能磁盘驱动器是一种机械装置,读写磁头通过在高速旋转盘片的内道和外道之间往复移动来寻找并读写数据。
即使是转速最快的15000转磁盘,其磁头机械臂的重定位时间延迟都会有数毫秒之多,因此每个磁盘的IOPS值最多只有几百个,吞吐带宽则局限在100MB/秒以内。
通过将数据分布在多个磁盘上,然后对多个磁盘同步进行读写访问是一种常见的扩展性能的方法。
通过增加磁盘的个数,系统整体的IOPS和带宽值也会等比例提升。
加之,有些存储厂商还提供shortstr好ing这样的可以缩短磁头机械臂移动距离的技术。
此类技术可以将数据集中放置在磁盘盘片的外道区域,结果是磁头移动的距离大大缩短,对数据访问的性能具有十分明显的提升作用。
可是,当通过利用大量的磁盘并发以及short-str好ing磁头短距离移动技术达成既定的性能目标之后,会发现其代价是非常高昂的,此外,由于仅仅使用了盘片的外道空间,所以存储的空间利用率会非常差。
早在SSD固态盘技术出现之前,利用大量的磁盘并发以及short-str好ing磁头短距离移动技术来满足应用的性能要求是最普遍的办法,即使在今天,这种方案依然被大量使用,原因是SSD固态盘的成本太高,所以用户依然青睐磁盘而不是SSD。
NatApp技术和战略总监MikeRiley就说:“对于顺序访问大数据块和大文件这样的应用,使用磁盘通常性价比更高。
”RAID及wide-striping技术对效率的影响很多用户容易忽视一点,即RAID和RAID级别其实都会对性能和容量产生影响。
通过改变RAID级别来提升存储性能或者空间的利用率是一种很现实的选择。
校验盘的数量、条带的大小、RAID组的尺寸以及RAID组内数据块大小都会影响性能和容量。
RAID技术对性能和容量的影响都熟悉那些常见的RAID级别及其特点,但还有一些不常见的技术趋势值得关注,这些都与讨论的存储效率有关。
首先,RAID组的尺寸会影响性能、可用性以及容量。
通常,大的RAID组包含的磁盘数量更多,速度也更快,但是,当出现磁盘故障后,大RAID组也需要更多的时间用来重建。
每隔几年,磁盘的容量都会翻一番,其结果是RAID重建的时间也相应变的更长,在数据重建期间出现其他磁盘故障的风险也变得更大。
即使是带有双校验机制,允许两块磁盘同时出现故障的RAID6也存在风险增加的问题,况且,RAID6对性能的影响还比较大。
有一个更好的办法是完全打破传统RAID组和私有校验盘的概念,比如,NetApp的DynamicDiskPools(DDP)技术,该技术将数据、校验信息以及闲置空间块分散放置在一个磁盘池中,池中所有的磁盘会并发处理RAID重建工作。
另一个有代表性的产品是HP的3PAR存储系统,3PAR采用了一种叫做widestriping的技术,将数据条块化之后散布在一大堆磁盘上,同时磁盘自身的裸容量又细分成若干小的存储块(chunklet)。
3PAR的卷管理器将这些小的chunklet组织起来形成若干个micro-RAID(微型RAID组),每个微型RAID组都有自己的校验块。
对于每一个单独的微型RAID组来说,其成员块(chunklet)都分布在不同的磁盘上,而且chunklet的尺寸也很小,因此数据重建时对性能的冲击和风险都是最小的。
固态存储毫无疑问,SSD固态存储的出现是一件划时代的“大事儿“,对于存储厂商来说,在优化性能和容量这两个方面,SSD技术都是一种全新的选择。
与传统的磁盘技术相比,SSD固态盘在延迟指标方面有数量级上的优势(微秒对毫秒),而在IOPS性能上,SSD的优势甚至达到了多个数量级(10000以上对数百)。
Flash技术(更多的时候是磁盘与flash的结合)为存储管理员提供了一种更具性价比的解决方案,不必像过去那样,为了满足应用对性能的高要求而不得不部署大批量的磁盘,然后再将数据分散在磁盘上并发处理。
SSD固态盘最佳的适用场景是大量数据的随机读操作,比如虚拟化hypervisor,但如果是大数据块和大文件的连续访问请求,SSD的优势就没有那么明显了。
EMC统一存储部门负责产品管理与市场的高级副总裁EricHerzog说:“Flash的价格仍然10倍于最高端的磁盘,因此,用户只能酌情使用,而且要用在刀刃上。
”目前,固态存储有三种不同的使用方式:第一种方式,用SSD固态盘完全代替机械磁盘。
用SSD替换传统的磁盘是最简单的提升存储系统性能的方法。
如果选择这个方案,关键的一点是用户要协同存储厂商来验证SSD固态盘的效果,并且遵循厂商提供的建议。
如果存储系统自身的处理能力无法承载固态存储的高性能,那么SSD有可能会将整个系统拖垮。
因为,如果SSD的速度超出了存储控制器的承受范围,那么很容易出现性能(I/O阻塞)问题,而且会越来越糟。
另一个问题涉及到数据移动的机制,即的数据在什么时候、以何种方式迁移到固态存储上,或从固态存储上移走。
最简单但也最不可取的方法是人工指定,比如通过手动设定将数据库的日志文件固定存放在SSD固态存储空间,对于比较老的存储系统来说,这也许是唯一的方式。
在这里推荐用户使用那些自动化的数据分层移动技术,比如EMC的FAST(FullyAutomatedStorageTiering)。
第二种方式,用Flash(固态存储芯片)作为存储系统的缓存
传统意义上的DRAM高速缓存容量太小,因此可以用Flash作为DRAM的外围扩展,而这种利用Flash的方式较之第一种可能更容易实现一些。
Flash缓存本身是系统架构的一个组成部分,即使容量再大,也是由存储控制器直接管理。
而用Flash作缓存的设计也很容易解决数据分层的难题,根据一般的定义,最活跃的数据会一直放置在高速缓存里,而过期的数据则驻留在机械磁盘上。
与第一种方式比较,存储系统里所有的数据都有可能借助Flash高速缓存来提升访问性能,而第一种方式下,只有存放在SSD固态盘中的数据才能获得高性能。
初看起来,用Flash做高速缓存的方案几乎没有缺陷,可问题是只有新型的存储系统才支持这种特性,而且是选件,因此这种模式的发展受到一定的制约。
与此相反,看到用Flash做大容量磁盘的高速缓存(而不是系统的高速缓存)反而成为更普遍的存储架构设计选择,因为它可以将高容量和高性能更好的融合。
IBM存储软件业务经理RonRiffe说:“在一套磁盘阵列中,只需要增加2-3%的固态存储空间,几乎就可以让吞吐带宽提高一倍。
”在服务器中使用Flash存储卡。
数据的位置离CPU和内存越近,存储性能也就越好。
在服务器中插入PCIeFlash存储卡,比如Fusion-IO,就可以获得最佳的存储性能。
不太有利的一面是,内置的Flash存储卡无法在多台服务器之间共享,只有单台服务器上的应用程序才能享受这一好处,而且价格非常昂贵。
尽管如此,仍然有两个厂商对此比较热衷,都希望将自己的存储系统功能向服务器内部扩展。
一个是NetApp,正在使其核心软件DataOntap能够在虚拟机hypervisor上运行;
另一个是EMC,推出的功能叫做VFCache(原名叫ProjectLightning)。
显而易见,这两家公司的目标是通过提供服务器端的Flash存储分级获得高性能,而这种方式又能让用户的服务器与提供的外部存储系统无缝集成。
存储加速装置存储加速装置一般部署在服务器和存储系统之间,既可以提高存储访问性能,又可以提供附加的存储功能服务,比如存储虚拟化等等。
多数情况下,存储加速装置后端连接的都是用户已有的异构存储系统,包括各种各样的型号和品牌。
异构环境的问题是当面临存储效率低下或者性能不佳的困扰时,分析与评估的过程就比较复杂。
然而,存储加速装置能够帮助已有磁盘阵列改善性能,并将各种异构的存储系统纳入一个统一的存储池,这不但可以提升整个存储环境的整体性能、降低存储成本,而且还可以延长已有存储的服役时间。
最近由IBM发布的是此类产品的代表,它将IBM的存储虚拟化软件SVC(SANVolumeController)以及存储分析和管理工具集成在一个单独的产品中。
可以将各种异构的物理存储阵列纳入到一个虚拟存储池中,在这个池之上创建的卷还支持自动精简配置。
该装置不但可以管理连接在其后的存储阵列中的Flash固态存储空间,而且自身内部也可以安装Flash固态存储组件。
通过实时存储分析功能,能够识别出I/O访问频繁的数据以及热点区域,并能够自动地将数据从磁盘迁移到Flash固态存储上,反向亦然。
用户可以借助的这些功能大幅度的提高现有的异构混合存储系统环境的性能和空间利用率。
与IBM类似的产品还有Alacritech和Avere,它们都是基于块或基于文件的存储加速设备。
日益增加的存储空间利用率利用存储精简技术,可以最大化的利用起可用的磁盘空间,存储精简技术包括自动精简配置、瘦克隆、压缩以及重复数据删除等等。
这些技术都有一个共同的目标,即最大程度的引用已经存在的数据块,消除或避免存储重复的数据。
然而存储精简技术对系统的性能稍有影响,所以对于用户来说,只有在明确了性能影响程度并且能够接受这种影响的前提下,才应该启动重复数据删除或数据压缩的功能。
性能和容量:密不可分存储系统的性能和空间利用率是紧密相关的一对参数,提升或改进其中的一个,往往会给另一个带来负面的影响。
因此,只有好好的利用存储分析和报表工具,才能了解存储的真实性能表现,进而发现系统瓶颈并采取适当的补救措施,这是必要的前提。
总之,提高存储效率的工作其实就是在性能需求和存储成本之间不断的寻找平衡。

2. 浪潮存储产品性能好吗

不错啊,存储产品方面一直用浪潮存储提供的方案,性能强劲而且稳定又可靠。

3. 互联网如何海量存储数据

目前存储海量数据的技术主要包括NoSQL、分布式文件系统、和传统关系型数据库。随着互联网行业不断的发展,产生的数据量越来越多,并且这些数据的特点是半结构化和非结构化,数据很可能是不精确的,易变的。这样传统关系型数据库就无法发挥它的优势。因此,目前互联网行业偏向于使用NoSQL和分布式文件系统来存储海量数据。

下面介绍下常用的NoSQL和分布式文件系统。
NoSQL
互联网行业常用的NoSQL有:HBase、MongoDB、Couchbase、LevelDB。

HBase是Apache Hadoop的子项目,理论依据为Google论文 Bigtable: A Distributed Storage System for Structured Data开发的。HBase适合存储半结构化或非结构化的数据。HBase的数据模型是稀疏的、分布式的、持久稳固的多维map。HBase也有行和列的概念,这是与RDBMS相同的地方,但却又不同。HBase底层采用HDFS作为文件系统,具有高可靠性、高性能。

MongoDB是一种支持高性能数据存储的开源文档型数据库。支持嵌入式数据模型以减少对数据库系统的I/O、利用索引实现快速查询,并且嵌入式文档和集合也支持索引,它复制能力被称作复制集(replica set),提供了自动的故障迁移和数据冗余。MongoDB的分片策略将数据分布在服务器集群上。

Couchbase这种NoSQL有三个重要的组件:Couchbase服务器、Couchbase Gateway、Couchbase Lite。Couchbase服务器,支持横向扩展,面向文档的数据库,支持键值操作,类似于SQL查询和内置的全文搜索;Couchbase Gateway提供了用于RESTful和流式访问数据的应用层API。Couchbase Lite是一款面向移动设备和“边缘”系统的嵌入式数据库。Couchbase支持千万级海量数据存储
分布式文件系统
如果针对单个大文件,譬如超过100MB的文件,使用NoSQL存储就不适当了。使用分布式文件系统的优势在于,分布式文件系统隔离底层数据存储和分布的细节,展示给用户的是一个统一的逻辑视图。常用的分布式文件系统有Google File System、HDFS、MooseFS、Ceph、GlusterFS、Lustre等。

相比过去打电话、发短信、用彩铃的“老三样”,移动互联网的发展使得人们可以随时随地通过刷微博、看视频、微信聊天、浏览网页、地图导航、网上购物、外卖订餐等,这些业务的海量数据都构建在大规模网络云资源池之上。当14亿中国人把衣食住行搬上移动互联网的同时,也给网络云资源池带来巨大业务挑战。

首先,用户需求动态变化,传统业务流量主要是端到端模式,较为稳定;而互联网流量易受热点内容牵引,数据流量流向复杂和规模多变:比如双十一购物狂潮,电商平台订单创建峰值达到58.3万笔,要求通信网络提供高并发支持;又如优酷春节期间有超过23亿人次上网刷剧、抖音拜年短视频增长超10倍,需要通信网络能够灵活扩充带宽。面对用户动态多变的需求,通信网络需要具备快速洞察和响应用户需求的能力,提供高效、弹性、智能的数据服务。

“随着通信网络管道十倍百倍加粗、节点数从千万级逐渐跃升至百亿千亿级,如何‘接得住、存得下’海量数据,成为网络云资源池建设面临的巨大考验”,李辉表示。一直以来,作为新数据存储首倡者和引领者,浪潮存储携手通信行业用户,不断 探索 提速通信网络云基础设施的各种姿势。

早在2018年,浪潮存储就参与了通信行业基础设施建设,四年内累计交付约5000套存储产品,涵盖全闪存储、高端存储、分布式存储等明星产品。其中在网络云建设中,浪潮存储已连续两年两次中标全球最大的NFV网络云项目,其中在网络云二期建设中,浪潮存储提供数千节点,为上层网元、应用提供高效数据服务。在最新的NFV三期项目中,浪潮存储也已中标。

能够与通信用户在网络云建设中多次握手,背后是浪潮存储的持续技术投入与创新。浪潮存储6年内投入超30亿研发经费,开发了业界首个“多合一”极简架构的浪潮并行融合存储系统。此存储系统能够统筹管理数千个节点,实现性能、容量线性扩展;同时基于浪潮iTurbo智能加速引擎的智能IO均衡、智能资源调度、智能元数据管理等功能,与自研NVMe SSD闪存盘进行系统级别联调优化,让百万级IO均衡落盘且路径更短,将存储系统性能发挥到极致。

“为了确保全球最大规模的网络云正常上线运行,我们联合用户对存储集群展开了长达数月的魔鬼测试”,浪潮存储工程师表示。网络云的IO以虚拟机数据和上层应用数据为主,浪潮按照每个存储集群支持15000台虚机进行配置,分别对单卷随机读写、顺序写、混合读写以及全系统随机读写的IO、带宽、时延等指标进行了360无死角测试,达到了通信用户提出的单卷、系统性能不低于4万和12万IOPS、时延小于3ms的要求,产品成熟度得到了验证。

以通信行业为例,2020年全国移动互联网接入流量1656亿GB,相当于中国14亿人每人消耗118GB数据;其中春节期间,移动互联网更是创下7天消耗36亿GB数据流量的记录,还“捎带”打了548亿分钟电话、发送212亿条短信……海量实时数据洪流,在网络云资源池(NFV)支撑下收放自如,其中分布式存储平台发挥了作用。如此样板工程,其巨大示范及拉动作用不言而喻。

4. 硬盘的数据吞吐量性能是什么意思

  1. 性能评价指标:SAN(Storage Area Network, 存储区域网络)和NAS存储(Network Attached Storage,网络附加存储)一般都具备2个评价指标:IOPS和带宽(throughput),两个指标互相独立又相互关联。体现存储系统性能的最主要指标是IOPS。下面,将介绍一下这两个参数的含义。

  2. IOPS(Input/Output Per Second)即每秒的输入输出量(或读写次数),是衡量磁盘性能的主镇扮要指标之一。IOPS是指单位时间内系统能处理的I/O请求数量,I/O请求通常为读或写数据操作请求。随机读写频繁的应用,如OLTP(Online Transaction Processing),IOPS是关键衡量指标。另一个重要指标是数据吞吐量(Throughput),指单位时间内可以成功传输的数据数量。对于大量顺序读写的应用,如VOD(Video On Demand),则更关注吞吐量指标。

  3. 简而言之:磁盘的 IOPS,也就是在一秒内,磁盘进行多少次 I/O 读写。

  4. 磁盘的吞吐量,也就是每秒磁盘 I/O 的流量,即磁盘写入加上读出的数据的大小。

  5. IOPS 与吞吐量的关系:

  6. 每秒 I/O 吞吐量= IOPS* 平均 I/O SIZE。从公式可以看出: I/O SIZE 越信念大,IOPS 越高,那么每秒 I/O 的吞吐量就越高。因此,我们会认为 IOPS 和吞吐量的数值越高越好。实际上,对于一个磁盘来讲,这两个参数均有其最大值,而且这两个参数也存在着一定的关系。

  7. IOPS可细分为如下几个指标:

  • Toatal IOPS,混滑旅困合读写和顺序随机I/O负载情况下的磁盘IOPS,这个与实际I/O情况最为相符,大多数应用关注此指标。

  • Random Read IOPS,100%随机读负载情况下的IOPS。

  • Random Write IOPS,100%随机写负载情况下的IOPS。

  • Sequential Read IOPS,100%顺序读负载情况下的IOPS。

  • Sequential Write IOPS,100%顺序写负载情况下的IOPS

5. 浅谈区块链存储和流量技术积累—真正WEB3的时代即将来临

现代 社会 对存储和流量技术有哪些突破进步呢?下面简单给大家梳理一下。

目前的互联网都是中心化的流量和存储。随着世界发展,诞生了bt网络,bt网络是一套分布式的存储和流量系统。但是也有它的局限性,第一,bt网络只能对单个文件进行传输和分享。第二,bt网络并没有激励机制,简单来说就是大家加入bt网络,但是并没有主动去保存,分发文件的意愿,因为这对于参与者来说是没有好处的。

随着bt网络缺陷的暴露,诞生了IPFS。也就是Filecoin项目方协议实验室研发的IPFS系统。IPFS是bt网络的升级版。它于bt网络的基础上加入了文件夹系统。在IPFS系统中,可以直接传输和分享文件夹。其他人也可以直接从文件夹里浏览相关数据和文件等等。

但是IPFS和bt网络一样,存在几个方面的问题。第一:没有激励体系。第二:文件在传输的初期,由于存储文件的节点非常少,效率非常低下。比如A上传一个文件,B需要检索,只能从A检索。因此效率很低,如果C要检索,只能从A,B这两个节点检索。如果A,B都关机的话,文件将不会被检索到。这就是IPFS和bt网络存在的问题,它们初期传输效率及其低下,只有文件被无数次检索,在节点中广泛分布的时候,传输速度才会变得非常快速。所以bt网络和IPFS系统,它们都是一个由慢到快的过程。如果检索一个在节点中分布比较少的文件的话,检索能力是非常弱的,传输速度也很慢。为了解决这个激励机制的问题,协议实验室他们开发了Filecoin这一条供应链。

Filecoin和IPFS是两个概念,Filecoin其实是将现实中的IPFS搬上区块链。而区块链特点是去中心化,节点之间是互不信任的,节点间传输的数据,都要重新验算一遍。这导致区块链的性能非常低下。IPFS上链以后就形成了Filecoin。因此Filecoin也受制于区块链性能的影响,导致无法对有效数据进行撮合,也没有办法实行高效检索。而Filecoin实现了数据在区块链上的存储,这个是一个非常重大的贡献。随后又出现了SWARM和BZZ,但BZZ由于没有爆块激励机制,只有一个流量的结算系统,目前看来是失败的。但是BZZ相对比IPFS和Filecoin,也做出了一定改进:一套主动分发的机制。举个例子:当我上传一个视频,该视频会被节点主动分发。视频就会迅速缓存到多个节点。因此BZZ在流量的结算以及高效的检索上都有非常突出的贡献。虽然它留下了技术贡献,但它仍然是一个失败的项目。

从目前来看,流量和存储在区块链领域都已经解决了大部分的问题。其次就是区块链性能的问题。经过多年的进化,Layer0,Layer1,Layer2也经过不断的实验。近几年在Layer1领域的研究已经取得了非常多的成果与包括专利。相信高性能公链的突破很快就会出现。

因此,想要建立一套真正类似于web3这样的区块链网络,应该实现三个方面的突破:第一:高效的检索。第二:对存储和流量分别进行激励。第三则是一定要有授权的访问体系。授权的访问体系就类似于大家在看视频网站时需要支付费用才能获得数据。在传统互联网的世界有很多变现的渠道。而区块链的互联网世界刚刚成型。因此生态建设者能够直接获得一定的收益。这样才能够促进生态的繁荣,也能够让生态的建设者能够持续贡献更多有用的应用,最后,高性能公链的突破也是必不可缺的一环。因此具备了以上的四个条件,web3也就离我们越来越近了。

本内容由原创曾波老师授权,未经允许不得擅自修改与转载

6. Kubernetes 几种存储方式性能对比 (转载)

原文来自:

https://blog.fleeto.us/post/kubernetes-storage-performance-comparison/

摘要

本文展示了一个简单的存储对比,使用未经性能优化的多种存储提供的存储卷进行测试和比较。

忽略 Azure 的原生 PVC 或hostPath,我们可以得出如下测试结果:

1. Portworx 是 AKS 上最快的容器存储。

2. Ceph 是私有云集群上最快的开源存储后端。对公有云来说,其操作太过复杂,这些多余的复杂性并没有能提供更好的测试表现。

3. OpenEBS 的概念很棒,但是其后端需要更多优化。

如果你正在运行 Kubernetes,你可能正在使用,或者准备使用动态供给的块存卷 ,而首当其冲的问题就是为集群选择合适的存储技术。这个事情并不能用一个简单的测试来做出简单的回答,告诉你目前市面上最好的技术是什么。存储技术的选择过程中,集群上运行的负载类型是一个重要的输入。对于裸金属集群来说,需要根据实际用例进行选择,并集成到自己的硬件之中。公有云中的托管 K8s,例如 AKS、EKS 或者 GKE,都具有开箱可用的块存储能力,然而这也不见得就是最好的选择。有很多因素需要考虑,比如说公有云的 StorageClass 的故障转移时间太长。例如在 一个针对 AWS EBS 的故障测试中,加载了卷的 Pod 用了超过五分钟才成功的在另一个节点上启动。Portworx 或者 OpenEBS 这样的云原生存储产品,正在尝试解决这类问题。

本文的目标是使用最常见的 Kubernetes 存储方案,进行基本的性能对比。我觉得在 Azure AKS 上使用下列后端:

AKS 原生 Storageclass:

1.Azure native premium

2.使用 cStor 后端的 OpenEBS

3.Portworx

4.Heketi 管理的 Gluster

5.Rook 管理的 Ceph

热点内容
快速指数算法 发布:2025-02-04 20:20:40 浏览:297
python在类中定义函数调用函数 发布:2025-02-04 20:14:47 浏览:594
安卓手机的壁纸是哪个 发布:2025-02-04 20:14:44 浏览:197
java发展前景 发布:2025-02-04 20:10:19 浏览:76
mac登陆密码哪里设置 发布:2025-02-04 19:50:20 浏览:525
手游脚本封号 发布:2025-02-04 19:42:12 浏览:435
玩单机游戏要哪些配置的电脑 发布:2025-02-04 19:17:41 浏览:1003
c语言编程图书 发布:2025-02-04 19:01:52 浏览:898
在哪里开启密码显示 发布:2025-02-04 18:38:30 浏览:791
怎么查询qq密码 发布:2025-02-04 18:20:10 浏览:515