当前位置:首页 » 存储配置 » 河北企业分布式存储在哪里找

河北企业分布式存储在哪里找

发布时间: 2023-06-27 10:37:06

⑴ IPFS是分布式存储吗,2019国内有哪些好的分布式存储项目

IPFS是基于区块链的,永久的、去中心化保存和共享文件的方法,是一种点对点的分布式协议。可关注杉岩数据,主要做金融、新能源、医疗、大数据等行业的数据存储,提供整体解决方案!

⑵ 国内的分布式存储公司有哪些

杉岩数据,专注软件定义存储,目前,杉岩数据软件定义存储系列产品主要为统一存储平台(SandStoneUSP)、海量对象存储(SandStoneMOS)、超融合一体机(SandStoneHyperCube),已经在政府、企业、医疗、教育、金融和运营商等多个行业近百家用户中成功部署。杉岩数据与Intel、Mellanox和三星等基础架构技术领导厂商均有紧密的研发合作关系,在产品创新、用户体验、性能及可靠性等方面将不断提升和优化,力争成为中国领先的软件定义存储领导厂商。

⑶ 什么是分布式数据存储

什么是分布式存储

分布式存储是一种数据存储技术,它通过网络使用企业中每台机器上的磁盘空间,这些分散的存储资源构成了虚拟存储设备,数据分布存储在企业的各个角落。

分布式存储系统,可在多个独立设备上分发数据。传统的网络存储系统使用集中存储服务器来存储所有数据。存储服务器成为系统性能的瓶颈,也是可靠性和安全性的焦点,无法满足大规模存储应用的需求。分布式网络存储系统采用可扩展的系统结构,使用多个存储服务器共享存储负载,利用位置服务器定位存储信息,不仅提高了系统的可靠性,可用性和访问效率,而且易于扩展。

⑷ 国内的分布式存储公司有哪些

瑞驰凭借自主可控、成熟、稳定的大数据及云计算产品,提供丰富、完善、应需而变的全套解决方案。vCluster分布式存储系列采用先进的分布式架构,将一个任务分给多个存储节点并行处理,大大提高了存储效率。我的答案能否帮你解决问题,如果能希望能采纳下

⑸ 分布式存储系统是做什么的

一句话,是为了解决非分布式存储系统满足不了的存储瓶颈、性能瓶颈而产生的。
对了非分布式存储系统而言,数据量大、访问量大都会导致IO瓶颈,分布式存储通过把一个完整的数据集分片,存储到不同的节点中,每个节点都能对外提供服务来提高整个存储的存储能力、处理能力、快速响应能力。

⑹ 国内一流的分布式存储厂商有哪些

杉岩数据是其中之一。

作为一款国产分布式存储软件产品,技术架构上采用业内领先的全分布式高可用设计,全平台无单点故障,并且可以提供文件存储、块存储和对象存储三种不同类型的存储模块。

这些存储模块可以灵活的组合搭配,提供快速简便的访问方式,满足新一代应用的敏捷开发需求,能够根据应用的发展进行灵活的弹性扩展。

提供了全语义、跨协议数据访问,帮助企业打通数据孤岛、实现传统应用间的数据共享,一体化极简架构与分钟级扩容、秒级数据检索,加速企业上云转型。在数据安全和价值发掘领域,采用全国密算法,确保数据绝对的安全。

(6)河北企业分布式存储在哪里找扩展阅读:

杉岩数据优势

1、多种数据冗余模式

杉岩数据提供多副本和纠删码两种数据冗余策略,多副本策略以数据镜像的方式提供数据冗余,确保冗余数据的完整性,同时也缩短了数据读取路径。

2、完善的容灾体系

存储系统支持多站点容灾机制、数据跨地域存放、延展集群、异步灾备,保证数据的安全性和最高空间利用率,极大的降低RPO和RTO。

3、数据脱敏

USP采用数据脱敏技术,帮助企业提高安全性和保密等级,防止数据被滥用。同时帮助企业符合安全性规范要求,以及由管理/审计机关所要求的隐私标准。

⑺ 分布式存储是什么东西

关于分布式存储实际上并没有一个明确的定义,甚至名称上也没有一个统一的说法,大多数情况下称作 Distributed Data Store 或者 Distributed Storage System。
其中维基网络中给 Distributed data store 的定义是:分布式存储是一种计算机网络,它通常以数据复制的方式将信息存储在多个节点中。
在网络中给出的定义是:分布式存储系统,是将数据分散存储在多台独立的设备上。分布式网络存储系统采用可扩展的系统结构,利用多台存储服务器分担存储负荷,利用位置服务器定位存储信息,它不但提高了系统的可靠性、可用性和存取效率,还易于扩展。
尽管各方对分布式存储的定义并不完全相同,但有一点是统一的,就是分布式存储将数据分散放置在多个节点中,节点通过网络互连提供存储服务。这一点与传统集中式存储将数据集中放置的方式有着明显的区分。

⑻ 如何实现企业数据 大数据平台 分布式存放

Hadoop在可伸缩性、健壮性、计算性能和成本上具有无可替代的优势,事实上已成为当前互联网企业主流的大数据分析平台。本文主要介绍一种基于Hadoop平台的多维分析和数据挖掘平台架构。作为一家互联网数据分析公司,我们在海量数据的分析领域那真是被“逼上梁山”。多年来在严苛的业务需求和数据压力下,我们几乎尝试了所有可能的大数据分析方法,最终落地于Hadoop平台之上。
1. 大数据分析大分类
Hadoop平台对业务的针对性较强,为了让你明确它是否符合你的业务,现粗略地从几个角度将大数据分析的业务需求分类,针对不同的具体需求,应采用不同的数据分析架构。
按照数据分析的实时性,分为实时数据分析和离线数据分析两种。
实时数据分析一般用于金融、移动和互联网B2C等产品,往往要求在数秒内返回上亿行数据的分析,从而达到不影响用户体验的目的。要满足这样的需求,可以采用精心设计的传统关系型数据库组成并行处理集群,或者采用一些内存计算平台,或者采用HDD的架构,这些无疑都需要比较高的软硬件成本。目前比较新的海量数据实时分析工具有EMC的Greenplum、SAP的HANA等。
对于大多数反馈时间要求不是那么严苛的应用,比如离线统计分析、机器学习、搜索引擎的反向索引计算、推荐引擎的计算等,应采用离线分析的方式,通过数据采集工具将日志数据导入专用的分析平台。但面对海量数据,传统的ETL工具往往彻底失效,主要原因是数据格式转换的开销太大,在性能上无法满足海量数据的采集需求。互联网企业的海量数据采集工具,有Facebook开源的Scribe、LinkedIn开源的Kafka、淘宝开源的Timetunnel、Hadoop的Chukwa等,均可以满足每秒数百MB的日志数据采集和传输需求,并将这些数据上载到Hadoop中央系统上。
按照大数据的数据量,分为内存级别、BI级别、海量级别三种。
这里的内存级别指的是数据量不超过集群的内存最大值。不要小看今天内存的容量,Facebook缓存在内存的Memcached中的数据高达320TB,而目前的PC服务器,内存也可以超过百GB。因此可以采用一些内存数据库,将热点数据常驻内存之中,从而取得非常快速的分析能力,非常适合实时分析业务。图1是一种实际可行的MongoDB分析架构。

图1 用于实时分析的MongoDB架构
MongoDB大集群目前存在一些稳定性问题,会发生周期性的写堵塞和主从同步失效,但仍不失为一种潜力十足的可以用于高速数据分析的NoSQL。
此外,目前大多数服务厂商都已经推出了带4GB以上SSD的解决方案,利用内存+SSD,也可以轻易达到内存分析的性能。随着SSD的发展,内存数据分析必然能得到更加广泛的应用。
BI级别指的是那些对于内存来说太大的数据量,但一般可以将其放入传统的BI产品和专门设计的BI数据库之中进行分析。目前主流的BI产品都有支持TB级以上的数据分析方案。种类繁多,就不具体列举了。
海量级别指的是对于数据库和BI产品已经完全失效或者成本过高的数据量。海量数据级别的优秀企业级产品也有很多,但基于软硬件的成本原因,目前大多数互联网企业采用Hadoop的HDFS分布式文件系统来存储数据,并使用MapRece进行分析。本文稍后将主要介绍Hadoop上基于MapRece的一个多维数据分析平台。
数据分析的算法复杂度
根据不同的业务需求,数据分析的算法也差异巨大,而数据分析的算法复杂度和架构是紧密关联的。举个例子,Redis是一个性能非常高的内存Key-Value NoSQL,它支持List和Set、SortedSet等简单集合,如果你的数据分析需求简单地通过排序,链表就可以解决,同时总的数据量不大于内存(准确地说是内存加上虚拟内存再除以2),那么无疑使用Redis会达到非常惊人的分析性能。
还有很多易并行问题(Embarrassingly Parallel),计算可以分解成完全独立的部分,或者很简单地就能改造出分布式算法,比如大规模脸部识别、图形渲染等,这样的问题自然是使用并行处理集群比较适合。
而大多数统计分析,机器学习问题可以用MapRece算法改写。MapRece目前最擅长的计算领域有流量统计、推荐引擎、趋势分析、用户行为分析、数据挖掘分类器、分布式索引等。
2. 面对大数据OLAP大一些问题

OLAP分析需要进行大量的数据分组和表间关联,而这些显然不是NoSQL和传统数据库的强项,往往必须使用特定的针对BI优化的数据库。比如绝大多数针对BI优化的数据库采用了列存储或混合存储、压缩、延迟加载、对存储数据块的预统计、分片索引等技术。

Hadoop平台上的OLAP分析,同样存在这个问题,Facebook针对Hive开发的RCFile数据格式,就是采用了上述的一些优化技术,从而达到了较好的数据分析性能。如图2所示。
然而,对于Hadoop平台来说,单单通过使用Hive模仿出SQL,对于数据分析来说远远不够,首先Hive虽然将HiveQL翻译MapRece的时候进行了优化,但依然效率低下。多维分析时依然要做事实表和维度表的关联,维度一多性能必然大幅下降。其次,RCFile的行列混合存储模式,事实上限制死了数据格式,也就是说数据格式是针对特定分析预先设计好的,一旦分析的业务模型有所改动,海量数据转换格式的代价是极其巨大的。最后,HiveQL对OLAP业务分析人员依然是非常不友善的,维度和度量才是直接针对业务人员的分析语言。
而且目前OLAP存在的最大问题是:业务灵活多变,必然导致业务模型随之经常发生变化,而业务维度和度量一旦发生变化,技术人员需要把整个Cube(多维立方体)重新定义并重新生成,业务人员只能在此Cube上进行多维分析,这样就限制了业务人员快速改变问题分析的角度,从而使所谓的BI系统成为死板的日常报表系统。
使用Hadoop进行多维分析,首先能解决上述维度难以改变的问题,利用Hadoop中数据非结构化的特征,采集来的数据本身就是包含大量冗余信息的。同时也可以将大量冗余的维度信息整合到事实表中,这样可以在冗余维度下灵活地改变问题分析的角度。其次利用Hadoop MapRece强大的并行化处理能力,无论OLAP分析中的维度增加多少,开销并不显着增长。换言之,Hadoop可以支持一个巨大无比的Cube,包含了无数你想到或者想不到的维度,而且每次多维分析,都可以支持成千上百个维度,并不会显着影响分析的性能。


而且目前OLAP存在的最大问题是:业务灵活多变,必然导致业务模型随之经常发生变化,而业务维度和度量一旦发生变化,技术人员需要把整个Cube(多维立方体)重新定义并重新生成,业务人员只能在此Cube上进行多维分析,这样就限制了业务人员快速改变问题分析的角度,从而使所谓的BI系统成为死板的日常报表系统。
3. 一种Hadoop多维分析平台的架构
整个架构由四大部分组成:数据采集模块、数据冗余模块、维度定义模块、并行分 析模块。

数据采集模块采用了Cloudera的Flume,将海量的小日志文件进行高速传输和合并,并能够确保数据的传输安全性。单个collector宕机之后,数据也不会丢失,并能将agent数据自动转移到其他的colllecter处理,不会影响整个采集系统的运行。如图5所示。

数据冗余模块不是必须的,但如果日志数据中没有足够的维度信息,或者需要比较频繁地增加维度,则需要定义数据冗余模块。通过冗余维度定义器定义需要冗余的维度信息和来源(数据库、文件、内存等),并指定扩展方式,将信息写入数据日志中。在海量数据下,数据冗余模块往往成为整个系统的瓶颈,建议使用一些比较快的内存NoSQL来冗余原始数据,并采用尽可能多的节点进行并行冗余;或者也完全可以在Hadoop中执行批量Map,进行数据格式的转化。

维度定义模块是面向业务用户的前端模块,用户通过可视化的定义器从数据日志中定义维度和度量,并能自动生成一种多维分析语言,同时可以使用可视化的分析器通过GUI执行刚刚定义好的多维分析命令。
并行分析模块接受用户提交的多维分析命令,并将通过核心模块将该命令解析为Map-Rece,提交给Hadoop集群之后,生成报表供报表中心展示。
核心模块是将多维分析语言转化为MapRece的解析器,读取用户定义的维度和度量,将用户的多维分析命令翻译成MapRece程序。核心模块的具体逻辑如图6所示。

图6中根据JobConf参数进行Map和Rece类的拼装并不复杂,难点是很多实际问题很难通过一个MapRece Job解决,必须通过多个MapRece Job组成工作流(WorkFlow),这里是最需要根据业务进行定制的部分。图7是一个简单的MapRece工作流的例子。

MapRece的输出一般是统计分析的结果,数据量相较于输入的海量数据会小很多,这样就可以导入传统的数据报表产品中进行展现。

⑼ 集中式存储和分布式存储的区别在哪里如何选择

如今全球数据存储量呈现爆炸式增长,企业及互联网数据以每年50%的速率在增长,据Gartner预测,到2020年,全球数据量将达到35ZB,等于80亿块4TB硬盘。数据结构变化给存储系统带来新的挑战。非结构化数据在存储系统中所占据比例已接近80%。

互联网的发展使得数据创造的主体由企业逐渐转向个人用户,而个人所产生的绝大部分数据均为图片、文档、视频等非结构化数据;企业办公流程更多通过网络实现,表单、票据等都实现了以非结构化为主的数字化存档;同时,基于数据库应用的结构化数据仍然在企业中占据重要地位,存储大量的核心信息。

数据业务的急剧增加,传统单一的SAN存储或NAS存储方式已经不适应业务发展需要。SAN存储:成本高,不适合PB级大规模存储系统。数据共享性不好,无法支持多用户文件共享。NAS存储:共享网络带宽,并发性能差。随系统扩展,性能会进一步下降。因此,集中式存储再次活跃。

那么集中式存储和分布式存储的有缺点分别有哪些呢?在面对二者时我们该如何选择呢?下面我将为大家介绍和分析集中式存储和分布式存储的不同之处以及在应用中我们应做的选择。


分布式和集中式存储的选择

集中存储的优缺点是,物理介质集中布放;视频流上传到中心对机房环境要求高,要求机房空间大,承重、空调等都是需要考虑的问题。

分布存储,集中管理的优缺点是,物理介质分布到不同的地理位置;视频流就近上传,对骨干网带宽没有什么要求;可采用多套低端的小容量的存储设备分布部署,设备价格和维护成本较低;小容量设备分布部署,对机房环境要求低。

热点内容
让linux死机 发布:2025-02-04 20:48:08 浏览:138
单方块生存服务器里如何获取岩浆 发布:2025-02-04 20:48:07 浏览:782
快速指数算法 发布:2025-02-04 20:20:40 浏览:298
python在类中定义函数调用函数 发布:2025-02-04 20:14:47 浏览:595
安卓手机的壁纸是哪个 发布:2025-02-04 20:14:44 浏览:199
java发展前景 发布:2025-02-04 20:10:19 浏览:76
mac登陆密码哪里设置 发布:2025-02-04 19:50:20 浏览:525
手游脚本封号 发布:2025-02-04 19:42:12 浏览:435
玩单机游戏要哪些配置的电脑 发布:2025-02-04 19:17:41 浏览:1003
c语言编程图书 发布:2025-02-04 19:01:52 浏览:898