dcn存储
1. 云科数据企业级存储产品DCN NCS1800怎么样
产品亮点
l 高可靠性,保障业务连续性
NCS1800系列存储系统采用双冗余设计和A/A工作模式(Active-Active Mode)。在正常情况下,2个部件同时工作,处理存储业务。当其中1个部件出现故障或离线时,另外1个部件就会及时接管其工作,不影响现有任务。提供99.999%的高可用性,有效地保障业务连续性,提升企业的核心竞争力。
采用创新的RAID PX技术,可提供三重数据校验技术,同一RAID组三块磁盘同时损坏的情况下数据不丢失,且实现了硬盘自动负载均衡,当存储系统某一硬盘发生故障时,硬盘域内的所有正常硬盘参与数据重构,而且仅重构业务数据,数据重构速度相对传统RAID提升20倍,极大降低了多盘失效概率。
l 高性能,领先的存储硬件平台
NCS1800系列存储产品采用Intel全新多核处理器,支持16Gbps FC/10Gbps FCoE/56Gbps InfiniBand等主机接口;内部采用新一代PCI-E 3.0总线,并采用12Gbps SAS 3.0高速硬盘接口,可提供高达10GB/s的系统带宽,满足视频、大文件等高带宽应用场景需求;提供百万级IOPS,性能及规格全面领先。
l 自主可控,轻松管理海量数据
NCS1800系列存储采用自主可控的操作系统,实现精简卷管理、高效数据快照、一键快照恢复、数据克隆、在线据据重删、在线数据压缩、法规遵从WORM等功能,企业借助这些功能可轻松应对数据爆炸式增长所带来的烦恼,便捷管理海量数据。
l 创新架构,助力企业应用加速
存储虚拟化异构平台,通过系统内置的异构虚拟化功能,高效接管其它主流厂商存储阵列,并整合成统一资源池,实现资源的统一、灵活分配,有效地保护用户原有的投资。
SSD与大容量磁盘的完美融合,既能利用SSD的高性能优势,同时又能兼顾大容量磁盘的容量优势,二者合一将存储的性能与容量发挥到极致,满足用户在性能和成本上的最优均衡。
全系列设备之间数据的自由流动,无需借助第三方系统,通过系统内置的数据镜像功能,灵活的实现用户对数据的备份和容灾需求,有效地保障数据的安全性。
内核的SMB3.0原生协议,将Windows文件访问性能提升至149%,全面提速影视后期特效制作进程。
l 易管理性,全方位掌控设备运行状况
NCS1800系列存储管理平台,可统一管理多型号产品,并提供全局拓扑展示、容量分析、性能分析、故障定位和端到端业务可视等强大功能;全面简洁的GUI管理界面,便捷的管理模式,方便客户日常维护和存储扩容; 提供多种故障预警方式,自动Email预警、SNMP、在线故障诊断等,方便企业实时掌控设备运行状况。
2. 神经网络模型-27种神经网络模型们的简介
【1】Perceptron(P) 感知机
【1】感知机
感知机是我们知道的最简单和最古老的神经元模型,它接收一些输入,然后把它们加总,通过激活函数并传递到输出层。
【2】Feed Forward(FF)前馈神经网络
【2】前馈神经网络
前馈神经网络(FF),这也是一个很古老的方法——这种方法起源于50年代。它的工作原理通常遵循以下规则:
1.所有节点都完全连接
2.激活从输入层流向输出,无回环
3.输入和输出之间有一层(隐含层)
在大多数情况下,这种类型的网络使用反向传播方法进行训练。
【3】Radial Basis Network(RBF) RBF神经网络
【3】RBF神经网络
RBF 神经网络实际上是 激活函数是径向基函数 而非逻辑函数的FF前馈神经网络(FF)。两者之间有什么区别呢?
逻辑函数--- 将某个任意值映射到[0 ,... 1]范围内来,回答“是或否”问题。适用于分类决策系统,但不适用于连续变量。
相反, 径向基函数--- 能显示“我们距离目标有多远”。 这完美适用于函数逼近和机器控制(例如作为PID控制器的替代)。
简而言之,RBF神经网络其实就是, 具有不同激活函数和应用方向的前馈网络 。
【4】Deep Feed Forword(DFF)深度前馈神经网络
【4】DFF深度前馈神经网络
DFF深度前馈神经网络在90年代初期开启了深度学习的潘多拉盒子。 这些依然是前馈神经网络,但有不止一个隐含层 。那么,它到底有什么特殊性?
在训练传统的前馈神经网络时,我们只向上一层传递了少量的误差信息。由于堆叠更多的层次导致训练时间的指数增长,使得深度前馈神经网络非常不实用。 直到00年代初,我们开发了一系列有效的训练深度前馈神经网络的方法; 现在它们构成了现代机器学习系统的核心 ,能实现前馈神经网络的功能,但效果远高于此。
【5】Recurrent Neural Network(RNN) 递归神经网络
【5】RNN递归神经网络
RNN递归神经网络引入不同类型的神经元——递归神经元。这种类型的第一个网络被称为约旦网络(Jordan Network),在网络中每个隐含神经元会收到它自己的在固定延迟(一次或多次迭代)后的输出。除此之外,它与普通的模糊神经网络非常相似。
当然,它有许多变化 — 如传递状态到输入节点,可变延迟等,但主要思想保持不变。这种类型的神经网络主要被使用在上下文很重要的时候——即过去的迭代结果和样本产生的决策会对当前产生影响。最常见的上下文的例子是文本——一个单词只能在前面的单词或句子的上下文中进行分析。
【6】Long/Short Term Memory (LSTM) 长短时记忆网络
【6】LSTM长短时记忆网络
LSTM长短时记忆网络引入了一个存储单元,一个特殊的单元,当数据有时间间隔(或滞后)时可以处理数据。递归神经网络可以通过“记住”前十个词来处理文本,LSTM长短时记忆网络可以通过“记住”许多帧之前发生的事情处理视频帧。 LSTM网络也广泛用于写作和语音识别。
存储单元实际上由一些元素组成,称为门,它们是递归性的,并控制信息如何被记住和遗忘。
【7】Gated Recurrent Unit (GRU)
【7】GRU是具有不同门的LSTM
GRU是具有不同门的LSTM。
听起来很简单,但缺少输出门可以更容易基于具体输入重复多次相同的输出,目前此模型在声音(音乐)和语音合成中使用得最多。
实际上的组合虽然有点不同:但是所有的LSTM门都被组合成所谓的更新门(Update Gate),并且复位门(Reset Gate)与输入密切相关。
它们比LSTM消耗资源少,但几乎有相同的效果。
【8】Auto Encoder (AE) 自动编码器
【8】AE自动编码器
Autoencoders自动编码器用于分类,聚类和特征压缩。
当您训练前馈(FF)神经网络进行分类时,您主要必须在Y类别中提供X个示例,并且期望Y个输出单元格中的一个被激活。 这被称为“监督学习”。
另一方面,自动编码器可以在没有监督的情况下进行训练。它们的结构 - 当隐藏单元数量小于输入单元数量(并且输出单元数量等于输入单元数)时,并且当自动编码器被训练时输出尽可能接近输入的方式,强制自动编码器泛化数据并搜索常见模式。
【9】Variational AE (VAE) 变分自编码器
【9】VAE变分自编码器
变分自编码器,与一般自编码器相比,它压缩的是概率,而不是特征。
尽管如此简单的改变,但是一般自编码器只能回答当“我们如何归纳数据?”的问题时,变分自编码器回答了“两件事情之间的联系有多强大?我们应该在两件事情之间分配误差还是它们完全独立的?”的问题。
【10】Denoising AE (DAE) 降噪自动编码器
【10】DAE降噪自动编码器
虽然自动编码器很酷,但它们有时找不到最鲁棒的特征,而只是适应输入数据(实际上是过拟合的一个例子)。
降噪自动编码器(DAE)在输入单元上增加了一些噪声 - 通过随机位来改变数据,随机切换输入中的位,等等。通过这样做,一个强制降噪自动编码器从一个有点嘈杂的输入重构输出,使其更加通用,强制选择更常见的特征。
【11】Sparse AE (SAE) 稀疏自编码器
【11】SAE稀疏自编码器
稀疏自编码器(SAE)是另外一个有时候可以抽离出数据中一些隐藏分组样试的自动编码的形式。结构和AE是一样的,但隐藏单元的数量大于输入或输出单元的数量。
【12】Markov Chain (MC) 马尔科夫链
【12】Markov Chain (MC) 马尔科夫链
马尔可夫链(Markov Chain, MC)是一个比较老的图表概念了,它的每一个端点都存在一种可能性。过去,我们用它来搭建像“在单词hello之后有0.0053%的概率会出现dear,有0.03551%的概率出现you”这样的文本结构。
这些马尔科夫链并不是典型的神经网络,它可以被用作基于概率的分类(像贝叶斯过滤),用于聚类(对某些类别而言),也被用作有限状态机。
【13】Hopfield Network (HN) 霍普菲尔网络
【13】HN霍普菲尔网络
霍普菲尔网络(HN)对一套有限的样本进行训练,所以它们用相同的样本对已知样本作出反应。
在训练前,每一个样本都作为输入样本,在训练之中作为隐藏样本,使用过之后被用作输出样本。
在HN试着重构受训样本的时候,他们可以用于给输入值降噪和修复输入。如果给出一半图片或数列用来学习,它们可以反馈全部样本。
【14】Boltzmann Machine (BM) 波尔滋曼机
【14】 BM 波尔滋曼机
波尔滋曼机(BM)和HN非常相像,有些单元被标记为输入同时也是隐藏单元。在隐藏单元更新其状态时,输入单元就变成了输出单元。(在训练时,BM和HN一个一个的更新单元,而非并行)。
这是第一个成功保留模拟退火方法的网络拓扑。
多层叠的波尔滋曼机可以用于所谓的深度信念网络,深度信念网络可以用作特征检测和抽取。
【15】Restricted BM (RBM) 限制型波尔滋曼机
【15】 RBM 限制型波尔滋曼机
在结构上,限制型波尔滋曼机(RBM)和BM很相似,但由于受限RBM被允许像FF一样用反向传播来训练(唯一的不同的是在反向传播经过数据之前RBM会经过一次输入层)。
【16】Deep Belief Network (DBN) 深度信念网络
【16】DBN 深度信念网络
像之前提到的那样,深度信念网络(DBN)实际上是许多波尔滋曼机(被VAE包围)。他们能被连在一起(在一个神经网络训练另一个的时候),并且可以用已经学习过的样式来生成数据。
【17】Deep Convolutional Network (DCN) 深度卷积网络
【17】 DCN 深度卷积网络
当今,深度卷积网络(DCN)是人工神经网络之星。它具有卷积单元(或者池化层)和内核,每一种都用以不同目的。
卷积核事实上用来处理输入的数据,池化层是用来简化它们(大多数情况是用非线性方程,比如max),来减少不必要的特征。
他们通常被用来做图像识别,它们在图片的一小部分上运行(大约20x20像素)。输入窗口一个像素一个像素的沿着图像滑动。然后数据流向卷积层,卷积层形成一个漏斗(压缩被识别的特征)。从图像识别来讲,第一层识别梯度,第二层识别线,第三层识别形状,以此类推,直到特定的物体那一级。DFF通常被接在卷积层的末端方便未来的数据处理。
【18】Deconvolutional Network (DN) 去卷积网络
【18】 DN 去卷积网络
去卷积网络(DN)是将DCN颠倒过来。DN能在获取猫的图片之后生成像(狗:0,蜥蜴:0,马:0,猫:1)一样的向量。DNC能在得到这个向量之后,能画出一只猫。
【19】Deep Convolutional Inverse Graphics Network (DCIGN) 深度卷积反转图像网络
【19】 DCIGN 深度卷积反转图像网络
深度卷积反转图像网络(DCIGN),长得像DCN和DN粘在一起,但也不完全是这样。
事实上,它是一个自动编码器,DCN和DN并不是作为两个分开的网络,而是承载网路输入和输出的间隔区。大多数这种神经网络可以被用作图像处理,并且可以处理他们以前没有被训练过的图像。由于其抽象化的水平很高,这些网络可以用于将某个事物从一张图片中移除,重画,或者像大名鼎鼎的CycleGAN一样将一匹马换成一个斑马。
【20】Generative Adversarial Network (GAN) 生成对抗网络
【20】 GAN 生成对抗网络
生成对抗网络(GAN)代表了有生成器和分辨器组成的双网络大家族。它们一直在相互伤害——生成器试着生成一些数据,而分辨器接收样本数据后试着分辨出哪些是样本,哪些是生成的。只要你能够保持两种神经网络训练之间的平衡,在不断的进化中,这种神经网络可以生成实际图像。
【21】Liquid State Machine (LSM) 液体状态机
【21】 LSM 液体状态机
液体状态机(LSM)是一种稀疏的,激活函数被阈值代替了的(并不是全部相连的)神经网络。只有达到阈值的时候,单元格从连续的样本和释放出来的输出中积累价值信息,并再次将内部的副本设为零。
这种想法来自于人脑,这些神经网络被广泛的应用于计算机视觉,语音识别系统,但目前还没有重大突破。
【22】Extreme Learning Machine (ELM) 极端学习机
【22】ELM 极端学习机
极端学习机(ELM)是通过产生稀疏的随机连接的隐藏层来减少FF网络背后的复杂性。它们需要用到更少计算机的能量,实际的效率很大程度上取决于任务和数据。
【23】Echo State Network (ESN) 回声状态网络
【23】 ESN 回声状态网络
回声状态网络(ESN)是重复网络的细分种类。数据会经过输入端,如果被监测到进行了多次迭代(请允许重复网路的特征乱入一下),只有在隐藏层之间的权重会在此之后更新。
据我所知,除了多个理论基准之外,我不知道这种类型的有什么实际应用。。。。。。。
【24】Deep Resial Network (DRN) 深度残差网络
【24】 DRN 深度残差网络
深度残差网络(DRN)是有些输入值的部分会传递到下一层。这一特点可以让它可以做到很深的层级(达到300层),但事实上它们是一种没有明确延时的RNN。
【25】Kohonen Network (KN) Kohonen神经网络
【25】 Kohonen神经网络
Kohonen神经网络(KN)引入了“单元格距离”的特征。大多数情况下用于分类,这种网络试着调整它们的单元格使其对某种特定的输入作出最可能的反应。当一些单元格更新了, 离他们最近的单元格也会更新。
像SVM一样,这些网络总被认为不是“真正”的神经网络。
【26】Support Vector Machine (SVM)
【26】 SVM 支持向量机
支持向量机(SVM)用于二元分类工作,无论这个网络处理多少维度或输入,结果都会是“是”或“否”。
SVM不是所有情况下都被叫做神经网络。
【27】Neural Turing Machine (NTM) 神经图灵机
【27】NTM 神经图灵机
神经网络像是黑箱——我们可以训练它们,得到结果,增强它们,但实际的决定路径大多数我们都是不可见的。
神经图灵机(NTM)就是在尝试解决这个问题——它是一个提取出记忆单元之后的FF。一些作者也说它是一个抽象版的LSTM。
记忆是被内容编址的,这个网络可以基于现状读取记忆,编写记忆,也代表了图灵完备神经网络。
3. 分布式存储有哪些
问题一:当前主流分布式文件系统有哪些?各有什么优缺点 目前几个主流的分布式文件系统除GPFS外,还有PVFS、Lustre、PanFS、GoogleFS等。
1.PVFS(Parallel Virtual File System)项目是Clemson大学为了运行linux集群而创建的一个开源项目,目前PVFS还存在以下不足:
1)单一管理节点:只有一个管理节点来管理元数据,当集群系统达到一定的规模之后,管理节点将可能出现过度繁忙的情况,这时管理节点将成为系统瓶颈;
2)对数据的存储缺乏容错机制:当某一I/O节点无法工作时,数据将出现不可用的情况;
3)静态配置:对PVFS的配置只能在启动前进行,一旦系统运行则不可再更改原先的配置。
2.Lustre文件系统是一个基于对象存储的分布式文件系统,此项目于1999年在Carnegie Mellon University启动,Lustre也是一个开源项目。它只有两个元数据管理节点,同PVFS类似,当系统达到一定的规模之后,管理节点会成为Lustre系统中的瓶颈。
3.PanFS(Panasas File System)是Panasas公司用于管理自己的集群存储系统的分布式文件系统。
4.GoogleFS(Google File System)是Google公司为了满足公司内部的数据处理需要而设计的一套分布式文件系统。
5.相对其它的文件系统,GPFS的主要优点有以下三点:
1)使用分布式锁管理和大数据块策略支持更大规模的集群系统,文件系统的令牌管理器为块、inode、属性和目录项建立细粒度的锁,第一个获得锁的客户将负责维护相应共享对象的一致性管理,这减少了元数据服务器的负担;
2)拥有多个元数据服务器,元数据也是分布式,使得元数据的管理不再是系统瓶颈;
3)令牌管理以字节作为锁的最小单位,也就是说除非两个请求访问的是同一文件的同一字节数据,对于数据的访问请求永远不会冲突.
问题二:分布式存储是什么?选择什么样的分布式存储更好? 分布式存储系统,是将数据分散存储在多 *** 立的设备上。传统的网络存储系统采用集中的存储服务器存放所有数据,存储服务器成为系统性能的瓶颈,也是可靠性和安全性的焦点,不能满足大规模存储应用的需要。分布式网络存储系统采用可扩展的系统结构,利用多台存储服务器分担存储负荷,利用位置服务器定位存储信息,它不但提高了系统的可靠性、可用性和存取效率,还易于扩展。
联想超融合ThinkCloud AIO超融合云一体机是联想针对企业级用户推出的核心产品。ThinkCloud AIO超融合云一体机实现了对云管理平台、计算、网络和存储系统的无缝集成,构建了云计算基础设施即服务的一站式解决方案,为用户提供了一个高度简化的一站式基础设施云平台。这不仅使得业务部署上线从周缩短到天,而且与企业应用软件、中间件及数据库软件完全解耦,能够有效提升企业IT基础设施运维管理的效率和关键应用的性能
问题三:什么是分布式存储系统? 就是将数据分散存储在多 *** 立的设备上
问题四:什么是分布式数据存储 定义:
分布式数据库是指利用高速计算机网络将物理上分散的多个数据存储单元连接起来组成一个逻辑上统一的数据库。分布式数据库的基本思想是将原来集中式数据库中的数据分散存储到多个通过网络连接的数据存储节点上,以获取更大的存储容量和更高的并发访问量。近年来,随着数据量的高速增长,分布式数据库技术也得到了快速的发展,传统的关系型数据库开始从集中式模型向分布式架构发展,基于关系型的分布式数据库在保留了传统数据库的数据模型和基本特征下,从集中式存储走向分布式存储,从集中式计算走向分布式计算。
特点:
1.高可扩展性:分布式数据库必须具有高可扩展性,能够动态地增添存储节点以实现存储容量的线性扩展。
2 高并发性:分布式数据库必须及时响应大规模用户的读/写请求,能对海量数据进行随机读/写。
3. 高可用性:分布式数据库必须提供容错机制,能够实现对数据的冗余备份,保证数据和服务的高度可靠性。
问题五:分布式文件系统有哪些主要的类别? 分布式存储在大数据、云计算、虚拟化场景都有勇武之地,在大部分场景还至关重要。munity.emc/message/655951 下面简要介绍*nix平台下分布式文件系统的发展历史:
1、单机文件系统
用于操作系统和应用程序的本地存储。
2、网络文件系统(简称:NAS)
基于现有以太网架构,实现不同服务器之间传统文件系统数据共享。
3、集群文件系统
在共享存储基础上,通过集群锁,实现不同服务器能够共用一个传统文件系统。
4、分布式文件系统
在传统文件系统上,通过额外模块实现数据跨服务器分布,并且自身集成raid保护功能,可以保证多台服务器同时访问、修改同一个文件系统。性能优越,扩展性很好,成本低廉。
问题六:分布式文件系统和分布式数据库有什么不同 分布式文件系统(dfs)和分布式数据库都支持存入,取出和删除。但是分布式文件系统比较暴力,可以当做key/value的存取。分布式数据库涉及精炼的数据,传统的分布式关系型数据库会定义数据元组的schema,存入取出删除的粒度较小。
分布式文件系统现在比较出名的有GFS(未开源),HDFS(Hadoop distributed file system)。分布式数据库现在出名的有Hbase,oceanbase。其中Hbase是基于HDFS,而oceanbase是自己内部实现的分布式文件系统,在此也可以说分布式数据库以分布式文件系统做基础存储。
问题七:分布式存储有哪些 华为的fusionstorage属于分布式 您好,很高兴能帮助您,首先,FusionDrive其实是一块1TB或3TB机械硬盘跟一块128GB三星830固态硬盘的组合。我们都知道,很多超极本同样采用了混合型硬盘,但是固态硬盘部分的容量大都只有8GB到32GB之间,这个区间无法作为系统盘来使用,只能作
问题八:linux下常用的分布式文件系统有哪些 这他妈不是腾讯今年的笔试题么
NFS(tldp/HOWTO/NFS-HOWTO/index)
网络文件系统是FreeBSD支持的文件系统中的一种,也被称为NFS。
NFS允许一个系统在网络上与它人共享目录和文件。通过使用NFS, 用户和程序可以象访问本地文件一样访问远端系统上的文件。它的好处是:
1、本地工作站使用更少的磁盘空间,因为通常的数据可以存放在一台机器上而且可以通过网络访问到。
2、用户不必在每个网络上机器里面都有一个home目录。home目录可以被放在NFS服务器上并且在网络上处处可用。
3、诸如软驱、CDROM、和ZIP之类的存储设备可以在网络上面被别的机器使用。可以减少整个网络上的可移动介质设备的数量。
开发语言c/c++,可跨平台运行。
OpenAFS(openafs)
OpenAFS是一套开放源代码的分布式文件系统,允许系统之间通过局域网和广域网来分享档案和资源。OpenAFS是围绕一组叫做cell的文件服务器组织的,每个服务器的标识通常是隐藏在文件系统中,从AFS客户机登陆的用户将分辨不出他们在那个服务器上运行,因为从用户的角度上看,他们想在有识别的Unix文件系统语义的单个系统上运行。
文件系统内容通常都是跨cell复制,一便一个硬盘的失效不会损害OpenAFS客户机上的运行。OpenAFS需要高达1GB的大容量客户机缓存,以允许访问经常使用的文件。它是一个十分安全的基于kerbero的系统,它使用访问控制列表(ACL)以便可以进行细粒度的访问,这不是基于通常的Linux和Unix安全模型。开发协议IBM Public,运行在linux下。
MooseFs(derf.homelinux)
Moose File System是一个具备容错功能的网路分布式文件统,它将数据分布在网络中的不同服务器上,MooseFs通过FUSE使之看起来就 是一个Unix的文件系统。但有一点问题,它还是不能解决单点故障的问题。开发语言perl,可跨平台操作。
pNFS(pnfs)
网络文件系统(Network FileSystem,NFS)是大多数局域网(LAN)的重要的组成部分。但NFS不适用于高性能计算中苛刻的输入书橱密集型程序,至少以前是这样。NFS标准的罪行修改纳入了Parallel NFS(pNFS),它是文件共享的并行实现,将传输速率提高了几个数量级。
开发语言c/c++,运行在linu下。
googleFs
据说是一个比较不错的一个可扩展分布式文件系统,用于大型的,分布式的,对大量数据进行访问的应用。它运行于廉价的普通硬件上,但可以提供容错功能,它可以给大量的用户提供性能较高的服务。google自己开发的。
问题九:分布式存储都有哪些,并阐述其基本实现原理 神州云科 DCN NCS DFS2000(简称DFS2000)系列是面向大数据的存储系统,采用分布式架构,真正的分布式、全对称群集体系结构,将模块化存储节点与数据和存储管理软件相结合,跨节点的客户端连接负载均衡,自动平衡容量和性能,优化集群资源,3-144节点无缝扩展,容量、性能岁节点增加而线性增长,在 60 秒钟内添加一个节点以扩展性能和容量。
问题十:linux 分布式系统都有哪些? 常见的分布式文件系统有,GFS、HDFS、Lustre 、Ceph 、GridFS 、mogileFS、TFS、FastDFS等。各自适用于不同的领域。它们都不是系统级的分布式文件系统,而是应用级的分布式文件存储服务。
GFS(Google File System)
--------------------------------------
Google公司为了满足本公司需求而开发的基于Linux的专有分布式文件系统。。尽管Google公布了该系统的一些技术细节,但Google并没有将该系统的软件部分作为开源软件发布。
下面分布式文件系统都是类 GFS的产品。
HDFS
--------------------------------------
Hadoop 实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS。 Hadoop是Apache Lucene创始人Doug Cutting开发的使用广泛的文本搜索库。它起源于Apache Nutch,后者是一个开源的网络搜索引擎,本身也是Luene项目的一部分。Aapche Hadoop架构是MapRece算法的一种开源应用,是Google开创其帝国的重要基石。
Ceph
---------------------------------------
是加州大学圣克鲁兹分校的Sage weil攻读博士时开发的分布式文件系统。并使用Ceph完成了他的论文。
说 ceph 性能最高,C++编写的代码,支持Fuse,并且没有单点故障依赖, 于是下载安装, 由于 ceph 使用 btrfs 文件系统, 而btrfs 文件系统需要 Linux 2.6.34 以上的内核才支持。
可是ceph太不成熟了,它基于的btrfs本身就不成熟,它的官方网站上也明确指出不要把ceph用在生产环境中。
Lustre
---------------------------------------
Lustre是一个大规模的、安全可靠的,具备高可用性的集群文件系统,它是由SUN公司开发和维护的。
该项目主要的目的就是开发下一代的集群文件系统,可以支持超过10000个节点,数以PB的数据量存储系统。
目前Lustre已经运用在一些领域,例如HP SFS产品等。
4. 分布式存储是什么
什么是分布式存储系统?
就是将数据分散存储在多 *** 立的设备上
分布式存储是什么?选择什么样的分布式存储更好?
分布式存储系统,是将数据分散存储在多 *** 立的设备上。传统的网络存储系统采用集中的存储服务器存放所有数据,存储服务器成为系统性能的瓶颈,也是可靠性和安全性的焦点,不能满足大规模存储应用的需要。分布式网络存储系统采用可扩展的系统结构,利用多台存储服务器分担存储负荷,利用位置服务器定位存储信息,它不但提高了系统的可靠性、可用性和存取效率,还易于扩展。
联想超融合ThinkCloud AIO超融合云一体机是联想针对企业级用户推出的核心产品。ThinkCloud AIO超融合云一体机实现了对云管理平台、计算、网络和存储系统的无缝集成,构建了云计算基础设施即服务的一站式解决方案,为用户提供了一个高度简化的一站式基础设施云平台。这不仅使得业务部署上线从周缩短到天,而且与企业应用软件、中间件及数据库软件完全解耦,能够有效提升企业IT基础设施运维管理的效率和关键应用的性能
什么是分布式数据存储
定义:
分布式数据库是指利用高速计算机网络将物理上分散的多个数据存储单元连接起来组成一个逻辑上统一的数据库。分布式数据库的基本思想是将原来集中式数据库中的数据分散存储到多个通过网络连接的数据存储节点上,以获取更大的存储容量和更高的并发访问量。近年来,随着数据量的高速增长,分布式数据库技术也得到了快速的发展,传统的关系型数据库开始从集中式模型向分布式架构发展,基于关系型的分布式数据库在保留了传统数据库的数据模型和基本特征下,从集中式存储走向分布式存储,从集中式计算走向分布式计算。
特点:
1.高可扩展性:分布式数据库必须具有高可扩展性,能够动态地增添存储节点以实现存储容量的线性扩展。
2 高并发性:分布式数据库必须及时响应大规模用户的读/写请求,能对海量数据进行随机读/写。
3. 高可用性:分布式数据库必须提供容错机制,能够实现对数据的冗余备份,保证数据和服务的高度可靠性。
分布式块存储和 分布式文件存储有是什么区别
分布式文件系统(dfs)和分布式数据库都支持存入,取出和删除。但是分布式文件系统比较暴力,可以当做key/value的存取。分布式数据库涉及精炼的数据,传统的分布式关系型数据库会定义数据元组的schema,存入取出删除的粒度较小。
分布式文件系统现在比较出名的有GFS(未开源),HDFS(Hadoop distributed file system)。分布式数据库现在出名的有Hbase,oceanbase。其中Hbase是基于HDFS,而oceanbase是自己内部实现的分布式文件系统,在此也可以说分布式数据库以分布式文件系统做基础存储。
统一存储和融合存储以及分布式存储的区别
统一存储具体概念:
统一存储,实质上是一个可以支持基于文件的网络附加存储(NAS)以及基于数据块的SAN的网络化的存储架构。由于其支持不同的存储协议为主机系统提供数据存储,因此也被称为多协议存储。
基本简介:
统一存储(有时也称网络统一存储或者NUS)是一个能在单一设备上运行和管理文件和应用程序的存储系统。为此,统一存储系统在一个单一存储平台上整合基于文件和基于块的访问,支持基于光纤通道的SAN、基于IP的SAN(iSCSI)和NAS(网络附加存储)。
工作方式:
既然是一个集中化的磁盘阵列,那么就支持主机系统通过IP网络进行文件级别的数据访问,或通过光纤协议在SAN网络进行块级别的数据访问。同样,iSCSI亦是一种非常通用的IP协议,只是其提供块级别的数据访问。这种磁盘阵列配置多端口的存储控制器和一个管理接口,允许存储管理员按需创建存储池或空间,并将其提供给不同访问类型的主机系统。最通常的协议一般都包括了NAS和FC,或iSCSI和FC。当然,也可以同时支持上述三种协议的,不过一般的存储管理员都会选FC或iSCSI中的一种,它们都提供块级别的访问方式,和文件级别的访问方式(NAS方式)组成统一存储。
分布式存储支持多节点,节点是什么,一个磁盘还是一个主控?
一个节点是存储节点的简称,存储节点一般是一个存储服务器(必然带控制器),服务器之间通过高速网络互连。
现在越来越多的存储服务器使用arm CPU+磁盘阵列节省能耗,提高“容量能耗比”。
分布式文件系统有哪些主要的类别?
分布式存储在大数据、云计算、虚拟化场景都有勇武之地,在大部分场景还至关重要。munity.emc/message/655951 下面简要介绍*nix平台下分布式文件系统的发展历史:
1、单机文件系统
用于操作系统和应用程序的本地存储。
2、网络文件系统(简称:NAS)
基于现有以太网架构,实现不同服务器之间传统文件系统数据共享。
3、集群文件系统
在共享存储基础上,通过集群锁,实现不同服务器能够共用一个传统文件系统。
4、分布式文件系统
在传统文件系统上,通过额外模块实现数据跨服务器分布,并且自身集成raid保护功能,可以保证多台服务器同时访问、修改同一个文件系统。性能优越,扩展性很好,成本低廉。
分布式存储都有哪些,并阐述其基本实现原理
神州云科 DCN NCS DFS2000(简称DFS2000)系列是面向大数据的存储系统,采用分布式架构,真正的分布式、全对称群集体系结构,将模块化存储节点与数据和存储管理软件相结合,跨节点的客户端连接负载均衡,自动平衡容量和性能,优化集群资源,3-144节点无缝扩展,容量、性能岁节点增加而线性增长,在 60 秒钟内添加一个节点以扩展性能和容量。
什么是Hadoop分布式文件系统 10分
分布式文件系统(Distributed File System)是指文件系统管理的物理存储资源不一定直接连接在本地节点上,而是通浮计算机网络与节点相连。
Hadoop是Apache软件基金会所研发的开放源码并行运算编程工具和分散式档案系统,与MapRece和Google档案系统的概念类似。
HDFS(Hadoop 分布式文件系统)是其中的一部分。
分布式文件存储系统采用什么方式
一。分布式Session的几种实现方式1.基于数据库的Session共享2.基于NFS共享文件系统3.基于memcached 的session,如何保证 memcached 本身的高可用性?4. 基于resin/tomcat web容器本身的session复制机制5. 基于TT/Redis 或 jbosscache 进行 session 共享。6. 基于cookie 进行session共享或者是:一、Session Replication 方式管理 (即session复制) 简介:将一台机器上的Session数据广播复制到集群中其余机器上 使用场景:机器较少,网络流量较小 优点:实现简单、配置较少、当网络中有机器Down掉时不影响用户访问 缺点:广播式复制到其余机器有一定廷时,带来一定网络开销二、Session Sticky 方式管理 简介:即粘性Session、当用户访问集群中某台机器后,强制指定后续所有请求均落到此机器上 使用场景:机器数适中、对稳定性要求不是非常苛刻 优点:实现简单、配置方便、没有额外网络开销 缺点:网络中有机器Down掉时、用户Session会丢失、容易造成单点故障三、缓存集中式管理 简介:将Session存入分布式缓存集群中的某台机器上,当用户访问不同节点时先从缓存中拿Session信息 使用场景:集群中机器数多、网络环境复杂优点:可靠性好 缺点:实现复杂、稳定性依赖于缓存的稳定性、Session信息放入缓存时要有合理的策略写入二。Session和Cookie的区别和联系以及Session的实现原理1、session保存在服务器,客户端不知道其中的信息;cookie保存在客户端,服务器能够知道其中的信息。 2、session中保存的是对象,cookie中保存的是字符串。 3、session不能区分路径,同一个用户在访问一个网站期间,所有的session在任何一个地方都可以访问到。而cookie中如果设置了路径参数,那么同一个网站中不同路径下的cookie互相是访问不到的。 4、session需要借助cookie才能正常 工作 。如果客户端完全禁止cookie,session将失效。是无状态的协议,客户每次读取web页面时,服务器都打开新的会话......
5. 基于云计算的分布式存储怎么实现的
拿神州云科的DCN NCS DFS2000来说:
横向扩展体系结构:真正的分布式、全对称群集体系结构,将模块化存储节点与数据和存储管理软件相结合
内部高速互连:后端采用10GE或40GE Infiniband网络互联
智能负载均衡:跨节点的客户端连接负载均衡,自动平衡容量和性能,优化集群资源
按需扩展:3-144节点无缝扩展,容量、性能岁节点增加而线性增长,在 60 秒钟内添加一个节点以扩展性能和容量;
全局命名空间:最大20.7PB的单一文件系统,完全日志式、完全分布式全局连贯写/读缓存