存储芯片2m
⑴ m12l16161a是什么芯片
M12L16161A 是ESMT公司的 RAM存储芯片,容量为2M
⑵ CPU 缓存4M和2M有什么区别
CPU缓存大小是CPU的重要指标之一,而且缓存的结构和大小对CPU速度的影响非常大,CPU内缓存的运行频率极高,一般是和处理器同频运作,工作效率远远大于系统内存和硬盘。实际工作时,CPU往往需要重复读取同样的数据块,而缓存容量的增大,可以大幅度提升CPU内部读取数据的命中率。直接从缓存中读取,不用再到内存或者硬盘上寻找,因此提高了系统性能。但往往是出于对CPU芯片面积和成本因素的考虑,通常CPU缓存都很小。CPU 缓存具体分为:一级缓存,二级缓存三级缓存。
L1 Cache(一级缓存)是CPU第一层高速缓存,分为数据缓存和指令缓存。内置的L1高速缓存的容量和结构对CPU的性能影响较大,不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。一般服务器CPU的L1缓存的容量通常在32—256KB。
L2 Cache(二级缓存)是CPU的第二层高速缓存,分内部和外部两种芯片。内部的芯片二级缓存运行速度与主频相同,而外部的二级缓存则只有主频的一半。L2高速缓存容量也会影响CPU的性能,原则是越大越好,现在家庭用CPU容量最大的是512KB,而服务器和工作站上用CPU的L2高速缓存更高达256-1MB,有的高达2MB或者3MB。
L3 Cache(三级缓存),分为两种,早期的是外置,现在的都是内置的。而它的实际作用即是,L3缓存的应用可以进一步降低内存延迟,同时提升大数据量计算时处理器的性能。降低内存延迟和提升大数据量计算能力对游戏都很有帮助。而在服务器领域增加L3缓存在性能方面仍然有显着的提升。比方具有较大L3缓存的配置利用物理内存会更有效,故它比较慢的磁盘I/O子系统可以处理更多的数据请求。具有较大L3缓存的处理器提供更有效的文件系统缓存行为及较短消息和处理器队列长度。 其实最早的L3缓存被应用在AMD发布的K6-III处理器上,当时的L3缓存受限于制造工艺,并没有被集成进芯片内部,而是集成在主板上。在只能够和系统总线频率同步的L3缓存同主内存其实差不了多少。后来使用L3缓存的是英特尔为服务器市场所推出的Itanium处理器。接着就是P4EE和至强MP。Intel还打算推出一款9MB L3缓存的Itanium2处理器,和以后24MB L3缓存的双核心Itanium2处理器。但基本上L3缓存对处理器的性能提高显得不是很重要,比方配备1MB L3缓存的Xeon MP处理器却仍然不是Opteron的对手,由此可见前端总线的增加,要比缓存增加带来更有效的性能提升。
关于CPU缓存的详细介绍,建议参考:网络 http://ke..com/link?url=_里面有很详细的说明。希望对你有帮助。
⑶ 选用2M*8位的存储芯片组成一个16M*8位的存储器,该存储器所需的地址码位数最少
你需要8片来组成,一般来说需要24根地址线才能表示16m的地址,但是如果系统是32位的话,一次就能访问4个bytes
,这样的话,22根就够了。
⑷ 主存容量为2M×16位代表什么
16是位宽为16位,乘下来就是容量,单位是小b,除以8就是大B,等于1GB
⑸ 硬盘上面的8M和2M 是什么意思
硬盘的缓存说专业点又叫作硬盘的缓冲区。所谓硬盘的缓冲区 (硬件缓冲)就是指的硬盘碰仔枣本身的高速缓存(Cache),它能够大幅度地提高硬盘整体性能。高速缓存其实就是指硬盘控制器上的一块存取速度极快的DRAM内存,分为写通式和回写式。所谓写通式,就是指在读硬盘时系统先检查请求,寻找所要求的数据是否在高速缓存中。如果在则称为被命中,缓存就会发送出相应的数据,磁头也就不必再向磁盘访问数据,从而大幅度改善硬盘的性能。所谓回写式,指的是在内存中保留写数据,当硬盘空闲时再次写入,从这一点上而言,回写式具有高于写通式的更强大的系统性能。较早期的硬盘大多带有128kB、256kB、512kB等不等的高速缓存,目前的高档硬盘高速缓存大多已经达到1MB、2MB甚至更高至8M,在高速缓存的取材上也采用了速度比DRAM更快的同步内存SDRAM,确保硬盘性能更为卓越。如此观之,一块硬盘其缓存的容量多少可谓是至关重要。而缓存容量不断提升的意义正在于其可以更大地提高硬盘在工作过程中的执行效能,尤其是在运行一些重复硬盘读写工作的时候,效果就会更加明显。
缓存(Cache memory)是硬盘控制器上的一块内存芯片,具有极快的存取速度,它是硬盘内部存储和外界接口之间的缓冲器。由于硬盘的内部数据传输速度和外界接口传输速度不同,缓存在其中起到一个缓冲的作用。缓存的大小与速度是直接关系到硬盘的传输速度的重要因素,能够大幅度地提高硬盘整体性能。当硬盘存取零碎数据时需要不断地在硬盘与内存之间交换数据,如果有大缓存,则可以将那些零碎数据暂存在缓存中,减小外系统的负荷,也提高了数据戚橡的传输速度。
硬盘的缓存主要起三种作用:一是预读取。当硬盘受到CPU指令控制开始读取数据时,硬盘上的控制芯片会控制磁头把正在读取的簇的下一个或者几个簇中的数据读到缓存中(由于硬盘上数据存储时是比较连续的,所以读取命中率较高),当需要读取下一个或者几个簇中的数据的时候,硬盘则不需要再次读取数据,直接把缓存中的数据传输到内存中就可以了,由于缓存的速度远远高于磁头读写的速度,所以能够达到明显改善性能的目的;二是对写入动作进行缓存。当硬盘接到写入数据的指令之后,并不会马上将数据写入到盘片上,而是先暂时存储在缓存里,然后发送一个“数据已写入”的信号给系统,这时系统就会认为数据已经写入,并继续执行下面的工作,而硬盘则在空闲(不进行读取或写入的时候)时再将缓存中的数据写入到盘片上。虽然对于写入数据的性能有一定提升,但也不可避免地带来了安全隐患——如果数据还在缓存里的时候突然掉电,那么这些数据就会丢失。对于这个问题,硬盘厂商们自然也有解决办法:掉电时,磁头会借助惯性将缓存中的数据写入零磁道以外的暂存区域,等到下次启动时再将这些数据写入目的地;第笑拆三个作用就是临时存储最近访问过的数据。有时候,某些数据是会经常需要访问的,硬盘内部的缓存会将读取比较频繁的一些数据存储在缓存中,再次读取时就可以直接从缓存中直接传输。
缓存容量的大小不同品牌、不同型号的产品各不相同,早期的硬盘缓存基本都很小,只有几百KB,已无法满足用户的需求。2MB和8MB缓存是现今主流硬盘所采用,而在服务器或特殊应用领域中还有缓存容量更大的产品,甚至达到了16MB、64MB等。
大容量的缓存虽然可以在硬盘进行读写工作状态下,让更多的数据存储在缓存中,以提高硬盘的访问速度,但并不意味着缓存越大就越出众。缓存的应用存在一个算法的问题,即便缓存容量很大,而没有一个高效率的算法,那将导致应用中缓存数据的命中率偏低,无法有效发挥出大容量缓存的优势。算法是和缓存容量相辅相成,大容量的缓存需要更为有效率的算法,否则性能会大大折扣,从技术角度上说,高容量缓存的算法是直接影响到硬盘性能发挥的重要因素。更大容量缓存是未来硬盘发展的必然趋势。
⑹ 二级缓存 2M 是什么意思
CPU高速缓存(CPU Cache,在本文中简称缓存)是用于减少处理器访问内存所需平均时间的部件。在金字塔式存储体系中它位于自顶向下的第二层,仅次于CPU寄存器。其容量远小于内存,但速度却可以接近处理器的频率。最初缓存只有一级,二级缓存(L2 CACHE)出现是为了协调一级缓存与内存之间的速度。二级缓存比一级缓存速度更慢,容量更大,主要就是做一级缓存和内存之间数据临时交换的地方用。
简单来说,硬盘是装数据的,但是硬盘的传输效率或者说速度已经落后于其他配件的速度,所以其他配件效率再高,硬盘就只能一步步出来那点数据,还是显得慢,尤其使用大型软件的时候会明显感觉慢,比如你要用的CAD或者3D。 所以,系统会在你使用某个程序之前把相关的数据先调出放在内存里,因为内存的读取速度比硬盘快,所以使用的时候可以直接读取内存来加快访问速度。
接下来就更好理解了, 缓存比内存速度更快,但是容量要小,所以把一部分数据放在缓存里,读取起来又比内存更好使,因此,缓存一般来说还是越大越好。
⑺ 存储容量和地址线,数据线的关系
地址线、数据线和存储容量之间的关系:地址线一次确定一个存储单元,地址线上值可能取的所有组合确定了存储单元的个数,所以,存储单元的个数=2^地址线的条数。
地址线用来传输地址信息的,比如,cpu在内存或硬盘里面寻找一个数据时,先通过地址线找到地址,然后再通过数据线将数据取出来。如果有32根,就可以访问2的32次方的字节,也就是4GB。
数据线,其作用是来连接移动设备和电脑,达到数据传递或通信目的。通俗点说,就是连接电脑与移动设备用来传送视频、铃声、图片等文件的通路工具。
(7)存储芯片2m扩展阅读
存储容量的计算
一千个字节是1kb,但是一般说的一千字节实际上是1024字节,只是习惯称为一千字节。1024kb等于一mb,也就是说的一兆。以下是精确的算法:
gigabyte等于1024mb
terabyte等于1024gb
perabyte等于1024tb
exabyte等于1024pb
zettabyte等于1024eb
yottabyte等于1024zb
这些单位都是常用的计算单位,一般用于存储数据的产品通常有这几个容量,1gb、2gb、4gb、8gb等等,都是2的整次方倍。
磁盘的存储容量计算公式:存储容量c=磁盘磁头的数量h*磁道的数量t*扇区的数量s。
⑻ EPROM和EEPROM有什么区别
EPROM和EEPROM有3点不同:
一、两者的含义不同:
1、EPROM的含义:EPROM是一组浮栅晶体管,被一个提供比电子电路中常用电压更高电压的电子器件分别编程。一旦编程完成后,EPROM只能用强紫外线照射来擦除。
通过封装顶部能看见硅片的透明窗口,很容易识别EPROM,这个窗口同时用来进行紫外线擦除。可以将EPROM的玻璃窗对准阳光直射一段时间就可以擦除。
2、EEPROM的含义:EEPROM是指带电可擦可编程只读存储器。是一种掉电后数据不丢失的存储芯片。 EEPROM 可以在电脑上或专用设备上擦除已有信息,重新编程。一般用在即插即用。
二、两者的特点不同:
1、EPROM的特点:EPROM的编程需要使用编程器完成。编程器是用于产生EPROM编程所需要的高压脉冲信号的装置。编程时将EPROM的数据送到随机存储器中,然后启动编程程序,编程器便将数据逐行地写入EPROM中。
一片编程后的EPROM,可以保持其数据大约10~20年,并能无限次读取。擦除窗口必须保持覆盖,以防偶然被阳光擦除。老式电脑的BIOS芯片,一般都是EPROM,擦除窗口往往被印有BIOS发行商名称、版本和版权声明的标签所覆盖。EPROM已经被EEPROM取代(电擦除只读寄存器)。
2、EEPROM的特点:EEPROM一般用于即插即用(Plug & Play);常用在接口卡中,用来存放硬件设置数据;也常用在防止软件非法拷贝的“硬件锁”上面。
三、两者的基本原理不同:
1、EPROM的基本原理:EEPROM的写入过程,是利用了隧道效应,即能量小于能量势垒的电子能够穿越势垒到达另一边。量子力学认为物理尺寸与电子自由程相当时,电子将呈现波动性,这里就是表明物体要足够的小。
EEPROM写入过程,如图3所示,根据隧道效应,包围浮栅的SiO2,必须极薄以降低势垒。源漏极接地,处于导通状态。在控制栅上施加高于阈值电压的高压,以减少电场作用,吸引电子穿越。
2、EEPROM的基本原理:由于EPROM操作的不便,后来出的主板上BIOS ROM芯片大部分都采用EEPROM。EEPROM的擦除不需要借助于其它设备,它是以电子信号来修改其内容的,而且是以Byte为最小修改单位,不必将资料全部洗掉才能写入,彻底摆脱了EPROM Eraser和编程器的束缚。
借助于EEPROM芯片的双电压特性,可以使BIOS具有良好的防毒功能,在升级时,把跳线开关打至“on”的位置,即给芯片加上相应的编程电压,就可以方便地升级。
⑼ 硬盘缓存2M芯片坏了用8M内存颗粒代换可以吗
...硬盘芯片可以换的..?