当前位置:首页 » 存储配置 » 存储拓扑

存储拓扑

发布时间: 2022-12-06 22:17:22

Ⅰ 如何画机房存储服务器拓扑图

第一步,打开开始菜单,程序,microsoft office visio。第二步,为了便于绘图,首先我们必须要把需要的绘图菜单调出来。第三步,选择网络里面的服务器、计算机和显示器、网络和外设和网络位置。这是最常用的四项网络绘图功能。第四步,选择好绘图工具,在visio的左侧将会出现你选择的绘图工具栏窗口。第五步,绘图时,根据需要来选择图形。比如说画云:在网络位置的工具栏选择云长按鼠标左键然后拖到右侧的编辑网格中。第六步,为了让图形更加的美观,我们还可以对编辑好的图形做一定的放大缩小改动,点击图形四周的绿色小方块拉动鼠标方向键进行相应的调整。第七步,网络中间的路线我们可以用工具栏里面的连接线工具来代表。第八步,依次把对应的硬件设备和pc编辑上去就好了。
网络拓扑图是指由传输媒体互连各种设备的物理布局。在网络节点设备和通信介质构成的网络结构图,在工作和生活中我们离不开网络,比如我们经常在工作时公司用的网络,常用是总线型网络拓扑结构,网络拓扑图主要由网络节点设备和通信介质构成的网络结构图,在所有的通信介质是通过硬件的接口连接在一根传输总线上。

Ⅱ 采用邻接表存储,拓扑排序算法的时间复杂度为多少

要看使用什么样的拓扑排序,最好的方法是输出DFS的逆序,这样的算法复杂度是O(V+L),V是顶点个数,L是边个数。

Ⅲ 光纤通道存储系统网络拓扑结构中,不包括(  )。

【答案】B
【答案解析】光纤通道存储系统网络拓扑结构主要有直连结构、交换结构和环形结构三类。

Ⅳ 什么是分级的存储体系结构它主要解决了什么问题

分级存储是将数据采取不同的存储方式分别存储在不同性能的存储设备上,减少非重要性数据在一级本地磁盘所占用的空间,还可加快整个系统的存储性能。分级存储是根据数据的重要性、访问频率、保留时间、容量、性能等指标,将数据采取不同的存储方式分别存储在不同性能的存储设备上,通过分级存储管理实现数据客体在存储设备之间的自动迁移。

数据分级存储的工作原理是基于数据访问的局部性。通过将不经常访问的数据自动移到存储层次中较低的层次,释放出较高成本的存储空间给更频繁访问的数据,可以获得更好的性价比。这样,一方面可大大减少非重要性数据在一级本地磁盘所占用的空间,还可加快整个系统的存储性能。

(4)存储拓扑扩展阅读

在分级数据存储结构中,存储设备一般有磁带库、磁盘或磁盘阵列等,而磁盘又可以根据其性能分为FC磁盘、SCSI磁盘、SATA磁盘等多种,而闪存存储介质(非易失随机访问存储器(NVRAM))也因为较高的性能可以作为分级数据存储结构中较高的一级。一般,磁盘或磁盘阵列等成本高、速度快的设备,用来存储经常访问的重要信息,而磁带库等成本较低的存储资源用来存放访问频率较低的信息。

信息生命周期管理(Information Lifecycle Management,ILM)是StorageTek公司针对不断变化的存储环境推出的先进存储管理理念,ILM试图实现根据数据在整个生命周期过程中不断变化的数据访问需求而进行数据的动态分布。

分级存储和ILM在存储体系结构上基本相同,目标也都是使不同级别的数据在给定时间和不同级别的存储资源能够更好的匹配。二者本质差别是数据分级的标准不同:前者标准为数据近期被访问的概率;后者标准为数据近期对企业的价值。

Ⅳ pascal 用连接表存储的拓扑排序程序

type point = ^node;
node = record
i:longint;
n:point;
end;

var i,j,k,n,m,a,b,top:longint;
map:array[1..10000]of point;
ans:array[1..10000]of longint;
stack,indegree:array[1..10000]of longint;
black:array[1..10000]of boolean;
tp:point;

procere push(x:longint);
begin
inc(top);
stack[top]:=x;
end;

function pop:longint;
begin
if(top=0)then exit(0);
pop:=stack[top];
dec(top);
end;

function topo:boolean;
var i,now:longint;
tp:point;
begin
for i:=1 to n do
if(indegree[i]=0)then
push(i);

for i:=1 to n do begin
repeat
now:=pop();
until(now=0)or(not black[now]);

if(now=0)then exit(false);
ans[i]:=now; black[now]:=true;
tp:=map[now];
while(tp<>nil)do begin
if(not black[tp^.i])and(indegree[tp^.i]>0)then begin
dec(indegree[tp^.i]);
if(indegree[tp^.i]=0)then
push(tp^.i);
end;
tp:=tp^.n;
end;
end;

exit(true);end;
begin
readln(n,m);
for i:=1 to m do begin
readln(a,b);

tp:=map[a];
new(map[a]);
map[a]^.i:=b;
map[a]^.n:=tp;

inc(indegree[b]); end;
if(topo())then begin
for i:=1 to n do
write(ans[i],' ');
writeln;
end
else
writeln('Occur loop.');

end.

Ⅵ 存储基础3 存储阵列NAS SAN

存储阵列在IT架构下主要有两种:
盘控一体化架构和盘控分离化架构

管理口的默认IP地址是A控 192.168.128.101 B控 192.168.128.102

存储结构:直接连接存储(DAS)、网络连接存储(NAS)、存储区域网络(SAN)

通过存储的通道不同分为IP SAN 和FC SAN
而无论是IP SAN还是FC SAN都有三种组网结构:
1、直连组网

主机和存储之间通过专用的通道去连接,这个通道可以基于是IP的,也可以是FC。这种通道的实现方式主要是把存储资源通过这个通道提供给上层服务器使用
缺点:所有的存储资源只能为一台服务器提供存储
2、单交换组网

它可以通过网络侧的交换机或者说FC的交换机实现把存储资源共享给多台服务器提供存储
缺点在于应用服务器和交换机以及存储 资源之间只有一条承载链路,任何一条链路出现问题都会导致服务器和应用之间连接失败

3、双交换组网

采用的是两台或主备的方式去实现交换机的连接,所有的应用服务器和存储之间也是通过两条链路去连接,中间断开任何一条链路都不影响整个存储和应用服务之间应用的访问

注意:提到SAN存储,默认指的是FC SAN

无论是IP SAN 还是FC SAN都有以下四个组件:

采用的是光纤作为承载通道。
FC协议栈

我们大多用的是FC-0 FC-1 FC-2这三层,也可以称FC是大二层架构
FC-0主要是定义了物理层的介质,比如:光纤或者铜线、相应的标准、距离等
FC-1主要是定义了协议的编解码的过程
FC-2主要是定义了帧、流控制以及质量控制方面
FC-3主要是加密
FC-4主要是上层协议的封装,比如SCSI,完成SCSI协议到FC协议的转换传输

FC的三种拓扑架构
1、点对点

通过主机侧安装的hub卡以及光纤线缆和设备去连接
缺点:所有的存储只能为一台应用服务器提供服务

2、仲裁环

通过光纤集线器去完成把存储资源共享给多台服务器,提供存储。
缺点:它们都在环路上工作,任何环路上的设备出问题都会导致环路出问题,安全性不高
3、FC-SW

采用交换式的方式去实现FC的组网,这种方式采用FC交换机去实现为更多的上层服务器提供存储资源,同时也可以实现双交换组网的一种方式

它的承载通道采用TCP/IP协议进行承载
实现IP SAN有三种方式:
第一种:

软件主要实现的是从SCSI协议封装成iSCSI的过程
以太网卡主要实现的是把数据传输到外界
第二种:

与第一种的区别就是TOE网卡分担了网卡的一些功能
第三种:

iSCSI卡即完成了数据的封装也完成了数据的发放
不占用任何的主机资源

FC SAN与IP SAN的区别

FC SAN因为距离原因,大多只能在数据中心去做
IP SAN因为是TCP/IP做承载,所以可用于大区域数据

FC SAN速度快,传输效率高
FC SAN成本高
FC SAN采用的是专用的HBA卡 不会被外界攻击

FC SAN更多用在容灾备份的场景

NAS(Network Attached Storage)网络附加存储 :是一种将分布、独立的数据进行整合,集中化管理,以便与对不同主机和应用服务器进行访问的技术。

SAN的所有文件存储都是在主机这侧完成的。
而NAS是把自己的文件系统和自己的操作系统都是在内部实现的,也就是说NAS有自己的文件系统和自己的操作系统去管理自己的内部数据。

NAS对不同操作系统开放的协议不同
Windows是CIFS
Linux是NFS

NAS还支持FTP和HTTP,对外提供文件共享

CIFS(Common Internet File System),通用Internet文件系统,NAS对Windows系统提供文件共享所用的一个协议。
它使程序可以访问远程Internet计算机上的文件并要求此计算机的服务,CIFS可以看做是应用程序协议,如文件传输协议和超文本传输协议的一个实现
架构:C/S
应用:Windows系统共享文件的环境
传输协议:TCP/IP
对网络性能要求较高,如果丢包高的话,会访问失败

NFS (Network File System)网络文件系统。
应用在Linux/Unix文件系统中,通过使用NFS,用户和程序可以像访问本地文件一样访问远端系统上的文件。
架构:C/S
传输:TCP或者UDP
因为支持两种传输协议,所以网络的可靠性安全性方面比CIFS要低
因为Windows上的软件是集成的所以不需要安装,而Linux和Unix则需要安装软件

NAS内部的组成:

NAS文件系统IO与性能影响
主机、网络、NAS本身内部的性能

NAS和SAN的区别:

Ⅶ 什么是存储器的四级存储结构

CPU一级、二级、三级缓存+外部RAM存储器总共是四级存储。

CPU缓存到硬盘,一级比一级快,如果没CPU缓存、内存,直接让CPU读取硬盘的话,CPU会一直等硬盘慢慢地把数据传过来给它处理,这样慢死了。所以先把硬盘上准备处理的数据传到内存等待,最急着处理的就由内存传到CPU缓存里,CPU可以以最高的速度读取要处理的数据。

(7)存储拓扑扩展阅读

目前,闪存阵列已经逐渐普及,新端口的固态硬盘、NVMe网络架构,使存储系统的性能有了大幅提升。未来,随着新技术带来的存储效率大幅提升,将有越来越多的企业选择闪存阵列来满足数据实时性应用需求。

高效、易于扩展的分布式平台引领存储架构新趋势。分布式存储系统采用可扩展的架构,不仅能提高存储的效率和数据的安全性,还可以进行性能和容量的横向扩展,解决大规模、高并发场景下的存储访问问题。

Ⅷ 海量空间数据存储

(一)空间数据存储技术

随着地理信息系统的发展,空间数据库技术也得到了很大的发展,并出现了很多新的空间数据库技术(黄钊等,2003),其中应用最广的就是用关系数据库管理系统(RDBMS)来管理空间数据。

用关系数据库管理系统来管理空间数据,主要解决存储在关系数据库中的空间数据与应用程序之间的数据接口问题,即空间数据库引擎(SpatialDatabase Engine)(熊丽华等,2004)。更确切地说,空间数据库技术是解决空间数据对象中几何属性在关系数据库中的存取问题,其主要任务是:

(1)用关系数据库存储管理空间数据;

(2)从数据库中读取空间数据,并转换为GIS应用程序能够接收和使用的格式;

(3)将GIS应用程序中的空间数据导入数据库,交给关系数据库管理。

空间数据库中数据存储主要有三种模式:拓扑关系数据存储模式、Oracle Spatial模式和ArcSDE模式。拓扑关系数据存储模式将空间数据存在文件中,而将属性数据存在数据库系统中,二者以一个关键字相连。这样分离存储的方式由于存在数据的管理和维护困难、数据访问速度慢、多用户数据并发共享冲突等问题而不适用于大型空间数据库的建设。而OracleSpatial实际上只是在原来的数据库模型上进行了空间数据模型的扩展,实现的是“点、线、面”等简单要素的存储和检索,所以它并不能存储数据之间复杂的拓扑关系,也不能建立一个空间几何网络。ArcSDE解决了这些问题,并利用空间索引机制来提高查询速度,利用长事务和版本机制来实现多用户同时操纵同一类型数据,利用特殊的表结构来实现空间数据和属性数据的无缝集成等(熊丽华等,2004)。

ArcSDE是ESRI公司开发的一个中间件产品,所谓中间件是一个软件,它允许应用元素通过网络连接进行互操作,屏蔽其下的通讯协议、系统结构、操作系统、数据库和其他应用服务。中间件位于客户机/服务器的操作系统之上,管理计算资源和网络通讯,并营造出一个相对稳定的高层应用环境,使开发人员可以集中精力于系统的上层开发,而不用过多考虑系统分布式环境下的移植性和通讯能力。因此,中间件能无缝地连入应用开发环境中,应用程序可以很容易地定位和共享中间件提供的应用逻辑和数据,易于系统集成。在分布式的网络环境下,客户端的应用程序如果要访问网络上某个服务器的信息,而服务器可能运行在不同于客户端的操作系统和数据库系统中。此时,客户机的应用程序中负责寻找数据的部分只需要访问一个数据访问中间件,由该中间件完成网络中数据或服务的查找,然后将查找的信息返回给客户端(万定生等,2003)。因此,本系统实现空间数据库存储的基本思想就是利用ArcSDE实现各类空间数据的存储。

目前,空间数据存储技术已比较成熟,出现了许多类似ArcSDE功能的中间件产品,这些软件基本上都能实现空间数据的数据库存储与管理,但对于海量空间数据的存储,各种软件性能差别较大。随着数据量的增长,计算机在分析处理上会产生很多问题,比如数据不可能一次完全被读入计算机的内存中进行处理。单纯依赖于硬件技术,并不能满足持续增长的数据的处理要求。因此需要在软件上找到处理海量数据的策略,并最终通过软硬件的结合完成对海量数据的处理。在海量数据存储问题上,许多专家从不同侧面进行过研究,Lindstrom在地形简化中使用了外存模型(Out-of-core)技术;钟正采用了基于数据分块、动态调用的策略;汪国平等人在研究使用高速网络进行三维海量地形数据的实时交互浏览中,采用了分块、多分辨率模板建立模型等方法。这些技术、方法已经在各自系统上进行了研究和实现。本系统采用的ArcSDE软件基本上也是采用分块模型的方法,具体存储和操作不需要用户过多了解,已经由ArcSDE软件实现。因此,对海量数据的存储管理,更需要从数据的组织方式等方面进行设计。塔里木河流域生态环境动态监测系统采集了大量的遥感影像、正射影像等栅格结构的数据,这些数据具有很大的数据量,为适应流域空间基础设施的管理需要,采取一种新的方式来管理、分发这些海量数据以适应各部门的快速浏览和管理需要。

(二)影像金字塔结构

影像数据库的组织是影像数据库效率的关键,为了获得高效率的存取速度,在数据的组织上使用了金字塔数据结构和网格分块数据结构。该技术主导思想如下:

(1)将数据库中使用到的纹理处理成为大小一致的纹理块;

(2)为每块纹理生成5个细节等级的纹理,分别为0、1、2、3、4,其中1级纹理通过0级纹理1/4压缩得到,2级纹理通过1级纹理1/4压缩得到,…,以此类推;

(3)在显示每个块数据之前,根据显示比例的大小,并以此决定该使用那一级的纹理;

(4)在内存中建立纹理缓冲池,使用LRU算法进行纹理块的调度,确保使用频率高的纹理调度次数尽可能少。

(三)影像数据压缩

影像数据压缩有无损压缩和有损压缩两个方法,具体采取哪种压缩方法需根据具体情况确定。对于像元值很重要的数据,如分类数据、分析数据等采用无损压缩(即LZ77算法),否则采用有损压缩(即JPEG算法)。通过对影像数据的压缩,一方面可以节约存储空间,另一方面可以加快影像的读取和显示速度。影像数据的压缩一般与构建金字塔同时进行,在构建影像金字塔过程中自动完成数据的压缩。

热点内容
db2新建数据库 发布:2024-09-08 08:10:19 浏览:170
频率计源码 发布:2024-09-08 07:40:26 浏览:778
奥迪a6哪个配置带后排加热 发布:2024-09-08 07:06:32 浏览:100
linux修改apache端口 发布:2024-09-08 07:05:49 浏览:208
有多少个不同的密码子 发布:2024-09-08 07:00:46 浏览:566
linux搭建mysql服务器配置 发布:2024-09-08 06:50:02 浏览:995
加上www不能访问 发布:2024-09-08 06:39:52 浏览:811
银行支付密码器怎么用 发布:2024-09-08 06:39:52 浏览:513
苹果手机清理浏览器缓存怎么清理缓存 发布:2024-09-08 06:31:32 浏览:554
云服务器的优点与缺点 发布:2024-09-08 06:30:34 浏览:734