当前位置:首页 » 存储配置 » 高性能计算与存储

高性能计算与存储

发布时间: 2022-10-03 14:52:57

❶ 浪潮服务器NF5266M5的计算和存储能力怎么样

浪潮服务器NF5266M5的计算和存储能力都十分强劲。首先,浪潮服务器NF5266M5在2U空间内支持2颗最新CLX-R处理器,可容纳24块3.5寸硬盘与4块2.5寸SSD硬盘,内置盘可支持SAS/SATA/NVMe等类型硬盘,构成多层缓冲存储体系,每块硬盘最大存储空间为18TB,单机 432TB 以上的数据存储能力和磁盘热插拔能力,网络层面最高可支持 100Gb 光纤网络,支持了大数据云平台PB 级别的业务场景,实现海量数据的存储及高性能的计算分析。

❷ 大数据、高性能环境对存储的需求

大数据、高性能环境对存储的需求
一直以来,高性能计算的主要目的就是提高运算速度,来解决大规模科学计算和海量数据的处理问题。高性能计算每秒万亿次级的强大计算能力,使其成为石油、生物勘探、气象预测、生命科学研究等领域的重要技术选择。但是随着数据量以及数据价值的不断增长,金融、电信、互联网等领域对高性能计算的需求不断加大。随着技术的发展,高性能计算系统的处理能力越来越强,任务的计算时间越来越短,对业务的价值不断提高。但是,要想实现快速的任务计算处理,高性能计算系统的存储能力是关键。因为在计算开始,要从存储系统中读取数据;计算结束时,要向存储系统中写入计算后的结果。如果这之间的读取和写入速度不匹配,不仅会拖延高性能项目的完成周期,低延迟还会严重影响高性能创造价值的能力。通常,高性能计算要求存储系统能够满足性能、可扩展性要求,保护投资回报:吞吐量达到几个甚至几十个GB/s,容量能扩展至PB级;透明的访问和数据共享;集中式的智能化管理,高性价比;可按需独立扩展容量和性能等。中桥分析师在深圳华大基因研究院实地测试了EMC Isilon 产品在其HPC 环境下的运行情况,并记录下其结果。
背景
高性能计算(High Performance Computing—HPC )指通常使用很多处理器(作为单个机器的一部分)或者某一集群组织中几台计算机(作为单个计算资源操作)的计算系统和环境。长期以来,高性能计算应用的主要领域是科学与工程计算,诸如高能物理、核爆炸模拟、气象预报、石油勘探、地震预报、地球模拟、药品研制、CAD 设计中的仿真与建模、流体力学的计算等。如今,像金融证券、政府信息化、电信行业、教育、企业、网络游戏等领域对HPC的需求也在迅猛增长。
高性能计算的应用
高性能计算有着广泛的行业应用基础,下面列举几个行业对高性能计算的应用需求:
1. 航空航天行业
在航空航天行业,随着中国航空航天事业的快速发展,尤其是载人航天技术的巨大成功,我国科技人员对空气动力学的数值模拟研究提出了越来越多的需求,常规的计算能力远远无法满足复杂的大型飞行器设计所带来的巨大需求。在航空航天企业的设计过程中,研究人员往往需要把飞机表面分成几百万甚至几千万个离散型的网格点,然后通过高性能计算平台求解方程,得出每个网格点的温度、速度、摩擦力等各种参数,并模拟出连续型的曲线,进而为飞机设计提供宝贵的参考资料。对这类计算来说,网格点分割得越细密,计算结果的精确度也就越好。但是这些大规模设计计算问题不但单个作业计算量庞大,且需不断调整、重复计算,因此高性能在航天航空行业中占据着举足轻重的地位。
2. 能源行业
石油能源作为国家战略资源,对于国家经济、安全、军事等各方面都具有非常重要的战略意义。石油勘探承担着寻找储油构造、确定井位的重要任务。目前的主流做法就是人为的制造相应规模的地震(视勘探地区面积与深度不同),同时在相应的地层遍布若干震波收集点。由于不同材料的地质环境对地震波的影响是有规可循的,所以借助这一点,通过相关的算法,即可以通过对地震波的传递演算来“计算出”地质结构,从而找出我们所需要的能源位置。这种计算量无疑是异常庞大的,由于地震波法勘探收集的数据通常都以TB计,近年来海洋油气勘探所采集的数据甚至开始向PB规模发展。为此,只有借助高性能计算,才能在最短的时间内处理这些海量数据。
3. 生命科学
在现代生命科学领域,以数据为驱动力的改变正引发着巨大的变革。海量生物数据的分析将会增强疾病的实时监控能力和对潜在流行病做出反应的能力,但海量数据的挖掘、处理、存储却面临着前所未有的挑战。特别是随着新一代测序技术的迅猛发展,基因组学研究产生的海量数据正以每12- 18个月10倍的速度增长,已远超越着名的摩尔定律,这使得众多生物企业和科研机构面临强大的数据分析和存储需求。
在国内,生物基因行业的发展势头也不可小觑。2011年1 月30日,国家发改委已批复同意深圳依托华大基因研究院组建国家基因库,这是中国首次建立国家级基因库,首期投资为1500万元。深圳国家基因库是一个服务于国家战略需求的国家级公益性创新科研及产业基础设施建设项目,是目前我国唯一一个获批筹建的国家级基因库,是全球仅次美国、日本和欧洲三个国家级基因库之后的世界第四个国家级基因库。现在,该国家基因库已经收集了100万GB的生物数据,包含基因组、转录组、蛋白质组、代谢组及表型的数据,同时也积累了约四十万份生物样本。预计该基因库最终将达到10亿GB级别的数据容量。深圳国家基因库和国际上已有的基因库相比,它的特点是既有“湿库”也有“干库”:前者把千万种实体的动植物、微生物和人类组织细胞等资源和样本纳入网络;后者汇集巨量的核酸、基因表达、蛋白、表型等多类数据信息,成为“大数据”生物学时代研究生物生长发育、疾病、衰老、死亡以及向产业化推广的利器。
4. 金融行业
金融说到底就是数据。在金融市场中,拥有速度就意味着更高的生产力和更多的市场份额。金融计算模型相当复杂,数据收集越多,计算结果越精确。金融分析师都迫切地需要一个能模拟复杂现实环境,并进行精确处理的金融计算程序,以便对每个投资产品及时地评估投资收益,衡量投资风险,以期获得更好的投资回报。也正因此,高性能计算已经越来越多地应用到全球资本市场,以期在最短时间内实现对市场的动态响应与转换。
5. 气象预报
世纪二十年代初,天气预报方程已基本建立。但只有在计算机出现以后,数值天气预报才成为可能。而在使用并行计算机系统之前,由于受处理能力的限制,只能做到24小时天气预报。高性能计算是解决数值预报中大规模科学计算必要手段。采用高性能计算技术,可以从提高分辨率来提高预报精度。
6. 游戏动漫和影视产业
随着3D、4D电影的兴起和高清动漫趋热,由高性能计算(HPC )集群构成的“渲染农场”已经成为三维动画、影视特效公司不可或缺的生产工具。动漫渲染基于一套完整的程序进行计算,从而通过模型、光线、材质、阴影等元素的组合设定,将动漫设计转化为具体图像。以《玩具总动员》为例,如果仅使用单台工作站(单一处理器)进行动画渲染,这部长达77分钟的影片的渲染时间将会是43年,而采用集群渲染系统,只需约80天。

❸ 高性能计算的应用发展

大家已逐渐认同这一观点,高性能计算机是价格在10万元以上的服务器。之所以称为高性能计算机,主要是它跟微机与低档PC服务器相比而言具有性能、功能方面的优势。高性能计算机也有高、中、低档之分,中档系统市场发展最快。从应用与市场角度来划分,中高档系统可分为两种,一种叫超级计算机,主要是用于科学工程计算及专门的设计,如Cray T3E;另一种叫超级服务器,可以用来支持计算、事务处理、数据库应用、网络应用与服务,如IBM的SP和国产的曙光2000。
从市场的角度来讲,高性能计算机是高技术、高利润而且市场份额在不断扩大的一个产业。高性能计算机在政府部门、科研等领域的广泛应用,对增强一个国家的科技竞争力有着不可替代的作用。另外,美国和欧洲的经验已经证明,企业使用高性能计算机能够有效地提高生产率。
高性能计算机的发展趋势主要表现在网络化、体系结构主流化、开放和标准化、应用的多样化等方面。网络化的趋势将是高性能计算机最重要的趋势,高性能计算机的主要用途是网络计算环境中的主机。以后越来越多的应用是在网络环境下的应用,会出现数以十亿计的客户端设备,所有重要的数据及应用都会放在高性能服务器上,Client/Server模式会进入到第二代,即服务器聚集的模式,这是一个发展趋势。
网格(Gird)已经成为高性能计算的一个新的研究热点,是非常重要的新兴技术。网络计算环境的应用模式将仍然是Internet/Web,但5~10年后,信息网格模式将逐渐成为主流。在计算网格方面美国大大领先于其他国家。有一种观点认为,美国当前对于网格研究的支持可与其70年代对Internet研究的支持相比,10年后可望普及到国民经济和社会发展的各个领域。网格与Internet/Web的主要不同是一体化,它将分布于全国的计算机、数据、贵重设备、用户、软件和信息组织成一个逻辑整体。各行业可以在此基础上运行各自的应用网格。美国开始了STAR-TAP计划,试图将网格扩展到全世界。
在体系结构上,一个重要的趋势是超级服务器正取代超级计算机而成为高性能计算的主流体系结构技术。高性能计算机市场的低档产品将主要是SMP(Symmetric MultiProcessor,对称多处理机),中档产品是SMP、CC-NUMA(Cache Coherent-Non Uniform Memory Access,支持缓存一致性的非均匀内存访问)和机群,高档产品则将采用SMP或CC-NUMA节点的机群。在2001年左右,将会出现结合了NUMA(COMA和CC-NUMA)和机群体系结构优点的混合式结构,称之为Cluster-NUMA(C-NUMA)系统。可重构、可分区、可配置特性将变得越来越重要。此外还有一种新兴的称为多线程(Multithreading)体系结构将用于超级计算机中,它的代表是Tera公司的MTA系统,一台8 CPU的MTA已经成功地运行在圣地亚哥超级计算机中心。值得注意的是,所有厂家规划的高档系统都是机群,已经有厂家开始研究C-NUMA结构。
美国一直是世界上最重视高性能计算机、投入最多和受益最大的国家,其研究也领先于世界。美国能源部的加速战略计算ASCI计划,目标是构造100万亿次的超级计算机系统、软件和算法,在2004年真实地模拟核爆炸;白宫直属的HECC(High-End Computing and Computations)计划,对高性能计算的关键技术进行研发,并构建高性能基础设施;Petaflops计划开发构造千万亿次级系统的技术;最新的Ultrascale计划目标在2010年研制万万亿次级系统。日本计划将于2002年研制成40万亿次的并行向量机。欧洲的强项则主要体现在高性能计算机的应用方面。
总的来说,国外的高性能计算机应用已经具有相当的规模,在各个领域都有比较成熟的应用实例。在政府部门大量使用高性能计算机,能有效地提高政府对国民经济和社会发展的宏观监控和引导能力,包括打击走私、增强税收、进行金融监控和风险预警、环境和资源的监控和分析等等。
在发明创新领域,壳牌石油公司通过全球内部网和高性能服务器收集员工的创新建议,加以集中处理。其中产生了一种激光探测地下油床的新技术,为该公司发现了3亿桶原油。在设计领域,好利威尔公司和通用电气公司用网络将全球各地设计中心的服务器和贵重设备连于一体,以便于工程师和客户共同设计产品,设计时间可缩短100倍。对很多大型企业来说,采购成本是总成本的重要组成部分。
福特用高性能计算机构造了一个网上集市,通过网络连到它的3万多个供货商。这种网上采购不仅能降低价格,减少采购费用,还能缩短采购时间。福特估计这样做大约能节省80亿美元的采购成本。此外,制造、后勤运输、市场调查等领域也都是高性能计算机大显身手的领域。
高性能计算机能为企业创造的价值是非凡的,国外的企业和用户已经充分地认识到这一点。一个证明是,20世纪90年代中期以来,国外80%以上企业的信息主管在选购机器时考虑高性能计算机,而在20世纪90年代初,这个数字只有15%。
在国内这方面的宣传教育工作还很不够,没有让企业、政府和社会充分认识到高性能计算机的益处,从而导致了一些观念上的误解。以往一提起高性能计算机,人们马上就会联想到用于尖端科学计算的超级计算机。实际上,高性能计算机90%的用途是非科学计算的数据处理、事务处理和信息服务,它早已不是象牙塔里的阳春白雪。随着“网络计算”和“后PC时代”的到来,全世界将有数十亿的客户端设备,它们需要连到数百万台高性能服务器上。高性能计算机将越来越得到产业界的认同,成为重要的生产工具。
此外,人们一直以来还有这样一个认识误区,认为高性能计算机是面向高新产业和服务业的,而传统产业(尤其是制造业)并不需要使用。事实上,高性能计算机能够广泛应用于生物、信息、电子商务、金融、保险等产业,它同时也是传统产业(包括制造业)实现技术改造、提高生产率——“电子生产率”(e-proctivity)和竞争力的重要工具。高性能计算已从技术计算(即科学计算和工程计算)扩展到商业应用和网络信息服务领域。的曙光2000-Ⅱ就瞄准了技术计算、商业应用和网络服务这3个领域的应用。
应该说,高性能计算机在国内的研究与应用已取得了一些成功,包括曙光2000超级服务器的推出和正在推广的一些应用领域,如航空航天工业中的数字风洞,可以减少实验次数,缩短研制周期,节约研制费用;利用高性能计算机做气象预报和气候模拟,对厄尔尼诺现象及灾害性天气进行预警,国庆50周年前,国家气象局利用国产高性能计算机,对北京地区进行了集合预报、中尺度预报和短期天气预报,取得了良好的预报结果;此外,在生物工程、生物信息学、船舶设计、汽车设计和碰撞模拟以及三峡工程施工管理和质量控制等领域都有高性能计算机成功应用的实例。
但是总的说来,高性能计算机在国内的应用还比较落后,主要原因在于装备不足、联合和配套措施不力及宣传教育力度不够。首先,国内高性能计算机的装机量明显不足。1997年世界高性能计算机的销售额美国约为220亿美元,中国约为7亿美元。美国的微机销售额约占世界市场的38%,高性能计算机占世界的34%,均高于其GDP所占世界份额(25%左右)。中国的微机销售额约占世界市场的3%,高于中国GDP的份额(2.6%);但中国高性能计算机销售额所占世界份额仅为1%左右,低于GDP的份额。从另一个角度看,中国的微机市场接近美国的1/10,但中国的高性能计算机市场不到美国的1/30。
装备不足严重影响了高性能计算机应用的开发和人才的培养,这些反过来又影响了高性能计算机的使用和装备。值得庆幸的是,随着网络化和信息化工作的深入,国内社会已开始意识到高性能计算机的重要性。1999年,中国高性能计算机的市场销售额猛增了50%以上。
除了装备不足之外,我认为社会各行业、各层次的合作和配合不力也是阻碍高性能计算机应用发展的重要原因。应用市场的扩展关键要靠联合,在中国高性能计算机领域,系统厂商、应用软件厂商与最终用户和服务商之间并没有结成有效的战略联盟,形成优势互补的局面。我希望看到的是,曙光、联想、浪潮的服务器,运行着东大阿尔派、用友、同创等厂家的软件,在新浪网、8848网上为各行业的用户提供各种服务。国家正在实施一个“国家高性能计算环境”的计划,正朝着这方面努力。
国家863计划主题正在实施一个“国家高性能计算环境”的项目,计划到2000年年底在全国建设10个左右的高性能计算中心,这些中心将通过千兆位网络互连。目标就是尽量让全国用户免费共享全国的计算资源、信息资源和人才资源。这只是一个初期的项目,估计在2000年下半年会规划更大的项目。值得注意的是,已经规划的应用包括生物信息学、数字图书馆、科学数据库、科普数据库、汽车碰撞、船舶设计、石油油藏模拟、数字风洞、气象预报、自然资源考察和远程教育等领域。
2000年5月14~17日,国内将在北京组织一个“亚太地区高性能计算国际会议及展览”,届时全球二十几个国家和地区的代表以及国内外主流的服务器厂商将参加会议,会议计划围绕一些课题做特邀报告:美国工程院院士、Microsoft资深科学家Gordon Bell将讨论“后PC时代:当计算、存储和带宽都免费时,我们面临什么样的挑战?”,自由软件创始人Richard Stallman 将讨论“自由软件运动及GNU/Linux”,俄罗斯科学院院士Boris Babayan将介绍俄罗斯花了6年功夫新近发明的一种电脑芯片,据称它比Intel的Pentium Ⅲ和Itanium快几倍,而且具有安全、防病毒功能。
IBM深度计算研究所所长Pulley Blank将介绍“深蓝、基因蓝以及IBM的深度计算战略”。从会议的内容上我们能够看出,高性能计算的范围已超出了高端科学计算的领域。相信这次会议对国内高性能产业的发展将起到一定的推动作用。
此外,国家还有一个重大基础研究计划(也叫973项目)。高性能计算已经成为科技创新的主要工具,能够促成理论或实验方法不能取得的科学发现和技术创新。973项目中的很多项目(尤其是其中的“高性能软件”和“大规模科学计算”项目)都与高性能计算机有着密切的关系。

❹ 什么是高性能计算集群

作为一个在高性能计算领域十多年的老兵,大概回答下

高性能计算是一个非常大的领域,总的来看,可以分为三个层面:

硬件层面,包括高性能网络,高性能处理器,高性能服务器,高性能存储器件等。高性能网络层面,目前超级计算机主要基于两种高性能网络,一种是Infiniband,一种是RoCE。高性能处理器层面,包括高性能CPU,如AMD、Intel的高性能服务器CPU。高性能协处理器,如NV的GPU,Intel之前的MIC等。国产的申威处理器也是高性能处理器。高性能服务器,主要是散热。因为机器性能高,功耗自然也就大,散热一般是大问题,目前国内在这块做的比较好的是曙光,PUE可以做到1.1以下。高性能存储器件发展也非常迅速,Intel的内存存储已经开始实用。但是存储因为他对计算性能影响有限,之前在高性能领域关注不是太多,随着AI对高性能计算的需求越来越强烈,而AI又是基于数据的,存储对于高性能计算的重要性在逐步体现。

基础软件层面,包括调度、存储、通信、编译、计算等各种基础软件。常用的调度包括slurm,PBS,存储包括Lustre、Gluster,通信如MPI,以及各种开源或者芯片厂商提供的编译、计算库,如blas库,fft库,稀疏矩阵计算库,元算子库等等。这些基础软件和高性能硬件一起,组成了高性能计算的核心部分,也是非常有技术挑战的部分。以及一些基础算法,如七个小矮人:结构性网格、非结构性网格、快速傅立叶变化、Dense Linear Algebra、Sparse Linear Algebra、粒子动力学、Monte Carlo。

应用软件层面,这个主要是高性能计算在各个行业的应用,比如前面同学提到的大规模科学问题、天气预报、生物制药、地形分析、数据挖掘、图像处理、基因测序、人工智能、密码破译、核爆模拟、飞机制造、量化交易等各个领域的应用。这些应用往往都需要有行业专家来参与,高性能计算的专家提供1,2提到的软件和基础库,行业专家一起,配合把行业对应应用进行并行化,进行性能优化,最后提供一个可以在超级计算机上大规模运行的软件。

以上3个层面,每一个层面都有大量的工作可以做,比如软件层面,其中任何一个方向,都值得深入。蓝海大脑主要是做计算,提供高性能的计算库,一个实验室上百人,就专门只做这个事情,为国产的、商用的处理器,提供高性能计算库,提出新的计算算法,提出新的优化方法。

❺ 如何在高性能计算系统中进行存储的选

来越多的企业开始使用Hadoop来对大数据进行处理分析,但Hadoop集群的整体性能却取决于CPU、内存、网络以及存储之间的性能平衡。而在这篇文章中,我们将探讨如何为Hadoop集群构建高性能网络,这是对大数据进行处理分析的关键所在。

❻ 对象存储什么版本作为市场主推版本

ANSI推出了基于对象的存储设备(OSD)的1.0版本规范
它定义了基于对象的存储设备的通讯协议。OSD规范描述了一个SCSI命令集合,由他提供一个高水平的OSD接口。这个接口允许客户端,比如文件系统和数据库存放和索引数据。SNIA’S技术工作组当前正在开发OSD规范的2.0版本,这个版本年内完成。
“对象存储设备并不适合所有的用户。”Panasas公司的CTOGarthGibson博士说。经过几年的努力,Panasas在政府,科研,能源,媒体和金融服务有了很多非常成功的案例。“Panasas是使用面向对象的存储集群,来解决计算集群的并行存储的问题”。高性能计算和存储专家胡家鎏教授说。

❼ 高性能计算集群hp 使用什么集群软件

越来越多的企业开始使用Hadoop来对大数据进行处理分析,但Hadoop集群的整体性能却取决于CPU、内存、网络以及存储之间的性能平衡。而在这篇文章中,我们将探讨如何为Hadoop集群构建高性能网络,这是对大数据进行处理分析的关键所在。关于Hadoop“大数据”是松散的数据集合,海量数据的不断增长迫使企业需要通过一种新的方式去管理。大数据是结构化或非结构化的多种数据类型的大集合。而Hadoop则是Apache发布的软件架构,用以分析PB级的非结构化数据,并将其转换成其他应用程序可管理处理的形式。Hadoop使得对大数据处理成为可能,并能够帮助企业可从客户数据之中发掘新的商机。如果能够进行实时处理或者接近实时处理,那么其将为许多行业的用户提供强大的优势。Hadoop是基于谷歌的MapRece和分布式文件系统原理而专门设计的,其可在通用的网络和服务器硬件上进行部署,并使之成为计算集群。Hadoop模型Hadoop的工作原理是将一个非常大的数据集切割成一个较小的单元,以能够被查询处理。同一个节点的计算资源用于并行查询处理。当任务处理结束后,其处理结果将被汇总并向用户报告,或者通过业务分析应用程序处理以进行进一步分析或仪表盘显示。为了最大限度地减少处理时间,在此并行架构中,Hadoop“movesjobstodata”,而非像传统模式那样“movingdatatojobs”。这就意味着,一旦数据存储在分布式系统之中,在实时搜索、查询或数据挖掘等操作时,如访问本地数据,在数据处理过程中,各节点之间将只有一个本地查询结果,这样可降低运营开支。Hadoop的最大特点在于其内置的并行处理和线性扩展能力,提供对大型数据集查询并生成结果。在结构上,Hadoop主要有两个部分:Hadoop分布式文件系统(HDFS)将数据文件切割成数据块,并将其存储在多个节点之内,以提供容错性和高性能。除了大量的多个节点的聚合I/O,性能通常取决于数据块的大小——如128MB。而传统的Linux系统下的较为典型的数据块大小可能是4KB。MapRece引擎通过JobTracker节点接受来自客户端的分析工作,采用“分而治之”的方式来将一个较大的任务分解成多个较小的任务,然后分配给各个TaskTrack节点,并采用主站/从站的分布方式(具体如下图所示):Hadoop系统有三个主要的功能节点:客户机、主机和从机。客户机将数据文件注入到系统之中,从系统中检索结果,以及通过系统的主机节点提交分析工作等。主机节点有两个基本作用:管理分布式文件系统中各节点以及从机节点的数据存储,以及管理Map/Rece从机节点的任务跟踪分配和任务处理。数据存储和分析处理的实际性能取决于运行数据节点和任务跟踪器的从机节点性能,而这些从机节点则由各自的主机节点负责沟通和控制。从节点通常有多个数据块,并在作业期间被分配处理多个任务。部署实施Hadoop各个节点硬件的主要要求是市县计算、内存、网络以及存储等四个资源的平衡。目前常用的并被誉为“最佳”的解决方案是采用相对较低成本的旧有硬件,部署足够多的服务器以应对任何可能的故障,并部署一个完整机架的系统。Hadoop模式要求服务器与SAN或者NAS进行直接连接存储(DAS)。采用DAS主要有三个原因,在标准化配置的集群中,节点的缩放数以千计,随着存储系统的成本、低延迟性以及存储容量需求不断提高,简单配置和部署个主要的考虑因素。随着极具成本效益的1TB磁盘的普及,可使大型集群的TB级数据存储在DAS之上。这解决了传统方法利用SAN进行部署极其昂贵的困境,如此多的存储将使得Hadoop和数据存储出现一个令人望而却步的起始成本。有相当大一部分用户的Hadoop部署构建都是采用大容量的DAS服务器,其中数据节点大约1-2TB,名称控制节点大约在1-5TB之间,具体如下图所示:来源:BradHedlund,DELL公司对于大多数的Hadoop部署来说,基础设施的其他影响因素可能还取决于配件,如服务器内置的千兆以太网卡或千兆以太网交换机。上一代的CPU和内存等硬件的选择,可根据符合成本模型的需求,采用匹配数据传输速率要求的千兆以太网接口来构建低成本的解决方案。采用万兆以太网来部署Hadoop也是相当不错的选择。万兆以太网对Hadoop集群的作用千兆以太网的性能是制约Hadoop系统整体性能的一个主要因素。使用较大的数据块大小,例如,如果一个节点发生故障(甚至更糟,整个机架宕机),那么整个集群就需要对TB级的数据进行恢复,这就有可能会超过千兆以太网所能提供的网络带宽,进而使得整个集群性能下降。在拥有成千上万个节点的大型集群中,当运行某些需要数据节点之间需要进行中间结果再分配的工作负载时,在系统正常运行过程中,某个千兆以太网设备可能会遭遇网络拥堵。每一个Hadoop数据节点的目标都必须实现CPU、内存、存储和网络资源的平衡。如果四者之中的任意一个性能相对较差的话,那么系统的潜在处理能力都有可能遭遇瓶颈。添加的CPU和内存组建,将影响存储和网络的平衡,如何使Hadoop集群节点在处理数据时更有效率,减少结果,并在Hadoop集群内添加的HDFS存储节点。幸运的是,影响CPU和内存发展的摩尔定律,同样也正影响着存储技术(TB级容量的磁盘)和以太网技术(从千兆向万兆甚至更高)的发展。预先升级系统组件(如多核处理器、每节点5-20TB容量的磁盘,64-128GB内存),万兆以太网卡和交换机等网络组件是重新平衡资源最合理的选择。万兆以太网将在Hadoop集群证明其价值,高水平的网络利用率将带来效益更高的带宽。下图展示了Hadoop集群与万兆以太网的连接:许多企业级数据中心已经迁移到10GbE网络,以实现服务器整合和服务器虚拟化。随着越来越多企业开始部署Hadoop,他们发现他们完全不必要大批量部署1U的机架服务器,而是部署更少,但性能更高的服务器,以方便扩展每个数据节点所能运行的任务数量。很多企业选择部署2U或4U的服务器(如戴尔PowerEdgeC2100),每个节点大约12-16个核心以及24TB存储容量。在这种环境下的合理选择是充分利用已经部署的10GbE设备和Hadoop集群中的10GbE网卡。在日常的IT环境中构建一个简单的Hadoop集群。可以肯定的是,尽管有很多细节需要微调,但其基础是非常简单的。构建一个计算、存储和网络资源平衡的系统,对项目的成功至关重要。对于拥有密集节点的Hadoop集群而言,万兆以太网能够为计算和存储资源扩展提供与之相匹配的能力,且不会导致系统整体性能下降。

❽ 高性能的网格计算,是云计算的未来发展方向。对吗

高性能的网格计算是云计算的未来发展方向。

这句话是对的。首先先理解高性能网络计算:一般而言,并行计算、分布式计算、网格计算与云计算都属于高性能计算(High PerformanceComputing,HPC)的范畴。

主要目的在于对大数据的分析与处理。所以,高性能计算体系结构是海量电子海图数据存储与处理的技术基础,也是顺利进行云服务原型系统开发的保证,所以是未来的发展方向。

云计算的特点:

云计算提供了基本的网络框架支持。网格计算的焦点在于计算与存储能力的提供,而云计算更注重于资源与服务能力的抽象,这就是网格计算向云计算的演化。与分布式计算比较,云计算是一种成熟稳定的流式商业资源,它为用户提供可量算的抽象服务就如同水电厂提供可量算的水电资源一样便捷可靠。

❾ 服务器到底是什么东西啊什么叫高性能计算说的通俗点,不能理解,谢谢

从广义上讲,服务器是指网络中能对其它机器提供某些服务的计算机系统(如果一个PC对外提供ftp服务,也可以叫服务器)。
从狭义上讲,服务器是专指某些高性能计算机,能通过网络,对外提供服务。相对于普通PC来说,稳定性、安全性、性能等方面都要求更高,因此在CPU、芯片组、内存、磁盘系统、网络等硬件和普通PC有所不同。
服务器作为网络的节点,存储、处理网络上80%的数据、信息,因此也被称为网络的灵魂。做一个形象的比喻:服务器就像是邮局的交换机,而微机、笔记本、PDA、手机等固定或移动的网络终端,就如散落在家庭、各种办公场所、公共场所等处的电话机。我们与外界日常的生活、工作中的电话交流、沟通,必须经过交换机,才能到达目标电话;同样如此,网络终端设备如家庭、企业中的微机上网,获取资讯,与外界沟通、娱乐等,也必须经过服务器,因此也可以说是服务器在“组织”和“领导”这些设备。
它是网络上一种为客户端计算机提供各种服务的高性能的计算机,它在网络操作系统的控制下,将与其相连的硬盘、磁带、打印机、Modem及各种专用通讯设备提供给网络上的客户站点共享,也能为网络用户提供集中计算、信息发表及数据管理等服务。它的高性能主要体现在高速度的运算能力、长时间的可靠运行、强大的外部数据吞吐能力等方面。
服务器的构成与微机基本相似,有处理器、硬盘、内存、系统总线等,它们是针对具体的网络应用特别制定的,因而服务器与微机在处理能力、稳定性、可靠性、安全性、可扩展性、可管理性等方面存在差异很大。尤其是随着信息技术的进步,网络的作用越来越明显,对自己信息系统的数据处理能力、安全性等的要求也越来越高,如果您在进行电子商务的过程中被黑客窃走密码、损失关键商业数据;如果您在自动取款机上不能正常的存取,您应该考虑在这些设备系统的幕后指挥者————服务器,而不是埋怨工作人员的素质和其他客观条件的限制。

热点内容
scratch少儿编程课程 发布:2025-04-16 17:11:44 浏览:639
荣耀x10从哪里设置密码 发布:2025-04-16 17:11:43 浏览:368
java从入门到精通视频 发布:2025-04-16 17:11:43 浏览:84
php微信接口教程 发布:2025-04-16 17:07:30 浏览:310
android实现阴影 发布:2025-04-16 16:50:08 浏览:793
粉笔直播课缓存 发布:2025-04-16 16:31:21 浏览:344
机顶盒都有什么配置 发布:2025-04-16 16:24:37 浏览:212
编写手游反编译都需要学习什么 发布:2025-04-16 16:19:36 浏览:812
proteus编译文件位置 发布:2025-04-16 16:18:44 浏览:366
土压缩的本质 发布:2025-04-16 16:13:21 浏览:592