当前位置:首页 » 存储配置 » 海量文件存储

海量文件存储

发布时间: 2022-10-03 12:42:40

❶ 自动驾驶下的海量数据,业界如何安全高效存储

近几年来,各行业纷纷跨界加入造车行列,不说传了多年要造车的国外手机巨头、出资纯电动汽车的科技互联网大厂,国内的科技企业也在跃跃欲试,比如阿里巴巴、华为、网络、小米和滴滴出行。

除了这些高科技企业,还有小马智行、文远知行、AutoX、赢彻科技和主线科技等新兴的自动驾驶初创企业;超星未来、奥特贝睿、宏景智驾等专注于私家车高阶自动驾驶研发的新型一级供应商;以及纯电动车起家的蔚来,小鹏,理想等造车新势力,都纷纷加入汽车产业链,推动了汽车电动化和智能化的进程。

西部数据资深产品市场经理额日特

也正是这些新玩家的加入,使得传统汽车产业链受到了前所未有的压力,同时也推动了传统汽车厂商加速新技术和新应用的落地。在西部数据资深产品市场经理额日特看来,随着汽车智能网联的不断推进,汽车的电子电气架构(E/E)也随之变化,从最初的分布式架构向域融合和中央控制单元过渡。

轮子上的智能手机,对存储架构提出更多要求

如今,不少人业内人士都认可汽车在向“轮子上的智能手机”演变,这个转变,让厂商开始将越来越多的摄像头、雷达、激光雷达等传感器、电动机,甚至以太网、人工智能等技术都引入汽车。

额日特认为,更多传感器的引入,网联技术、人工智能技术的增加,以及汽车电子电气架构的改变,对汽车内存储产品的要求发生了很大的变化。

“在汽车存储领域,单车存储的 数量将会显着降低,容量则会显着提升 。”额日特在不久前广州举办的Auto Tech 2021上演讲时指出。

Counterpoint的报告也印证了这一点,该分析机构预计,未来十年内,汽车单车的存储容量将会达到2TB左右。“目前车内存储主要用在智能座舱和中控系统,且燃油车以32GB为主,电动汽车一般使用64GB,或128GB,相对于2TB来说,还有一个巨大的提升空间。”额日特表示。

他分析称,为了应对汽车电动化、智能化、网联化,及自动化方向的发展,存储产品也面临这很多挑战,主要有四个比较重大的挑战:

一是数据 的可靠性 和 安全性 ,这是存储厂商所面临最基本和最严苛的挑战,也是相关法规及保险责任靠量的关键因素。因为对于自动驾驶来说,数据的可靠性和安全性意味着生命的安全。

存储厂商在数据可靠性和安全性方面也做了不少工作,额日特拿e.MMC、UFS和SSD来说,存储单元是由两个部分组成的,一部分是存储介质Raw NAND,另一部分是控制器和固件。

为了保证更好的TBW(Total Bytes Written),即产品生命周期里能承受的总写入数据量,存储厂商一般都会 通过控制器和固件对底层做一个读写均衡 。“TBW通俗地讲就是耐擦写,意思是NAND Flash是有寿命的,如果数据手册里规定了NAND Flash的擦写次数是3,000次,客户就需要考量该TBW是否满足自己的应用需求。”

还有一个是主机锁定 ,即在汽车主机上焊上一个内存,加了主机锁的内存放到另外一个主机上是没有用的,因为它已经与原来的主机做了锁定,这样也可以确保数据的安全。

另外,写保护也是一个很重要的功能 ,比如汽车如果出事故了,有的用户担心数据会被汽车厂商篡改,“我们存储厂商在与主机厂商、Tier 1企业一起共同努力,协商一个有效的协同保护机制,确保车辆在发生事故后,在警察没有查看数据之前,没有任何一家,包括内存厂商都无法篡改存储器内的数据,以确保司法监管在调查的时候的公正性和严肃性。”额日特表示。

二是复杂的应用场景 ,随着电子电气架构向域及中央控制单元转变,应用的融合对存储的要求也变得更加复杂,不再是单一的读或写。比如导航是一个读密集型操作,行车记录仪是一个写密集型操作。

特别是随着电子电气架构的改变,融合中央控制单元的使用,使得内存需要承受更加复杂的操作系统环境。比如高通的8155平台把智能座舱、数字仪表和中控融合到了一起,此时就需要使用Hypervisor,以允许多个操作系统和应用共享同一个硬件。 但实际上,现在的内存结构,只能做到逻辑分区,不能做到物理分区。

“举一个简单的例子,我们现在所使用的电脑有C盘、D盘、或者E盘,实际上C、D、E盘只是逻辑分区,底层的内存是没有做到物理分区的,这些盘存储的数据都是打散存储在一块内存里,不论是哪个盘坏掉,代表的就是整个内存盘都坏了。”额日特指出。

因此,这就会带来一个问题,比如行车记录仪是一个需要高擦写支持的应用,如果把行车记录仪也融合到智能座舱内的话,做起来很容易。但要是不做物理分区,由于行车记录仪的高擦写,可能整个内存很快就会坏掉。

为了适应这个改变,也为了数据的更加安全,“西部数据现在可以提供一种解决方案,那就是在底层做读写均衡的隔离,比如 一块内存里面,可以分别使用 TLC 和S LC 两种N AND F lash ,由于SLC可以支持高擦写,因此,SLC部分就可以作为行车记录仪的存储。”额日特表示。

三是海量数据存储 ,为了适应自动驾驶的需求,越来越多的雷达和摄像头被部署在汽车上,行车过程中会产生大量的数据。

特别是自动驾驶出租车的企业对数据的存储容量需求是很大的,现在单车一天生成的数据量在8GB左右,但实际上,现在主流汽车的存储容量在2GB到4GB之间。

额日特以西部数据与Waymo的合作为例,西部数据在Waymo自动驾驶出租车上安装了10块2TB的工业级SSD,也就是说Waymo的单车存储容量要求是20TB。其实这也是大部分自动驾驶汽车的存储需求。

四是高性能, 雷达和摄像头会在行车过程中产生大量的数据,为了防止数据丢失,必然需要高性能、大带宽存储的支持。

其实存储产品也在通过不停地创新来获得更高的传输速率。在嵌入式存储器方面,目前汽车领域使用的主流存储产品是e.MMC,比e.MMC更快的是UFS产品,目前汽车领域主要采用的还是UFS2.1。实际上,消费类电子已经在大规模采用UFS3.0的产品了。额日特预计汽车级UFS3.1的产品,应该会在两年内面市。

另外,在SSD方面,目前汽车领域的SSD主要还是采用SATA接口,未来带宽更高、速度更快的NVMe接口的SSD产品也可能会在汽车上得到应用。使用SSD的好处就是容量可以做得更大,比如UFS接口能做到的最大容量可能是512GB,但SSD可以轻松做到4TB、8TB,甚至更大。

满足汽车需求的解决方案

据额日特介绍,西部数据可以提供从端到云的完整解决方案,以支持当前和未来的车辆系统要求,它为多样的应用场景和数据中心,提供了小尺寸嵌入式终端存储和可移动存储,用于获取和分析从车辆收集的大量数据。他特意强调,西部数据的汽车级闪存产品通过了IATF16949认证,符合AEC-Q100标准。

产品方面,有iNAND汽车级嵌入式存闪存盘(EFD),支持UFS和e.MMC接口,具有多种容量,采用11.5×13mm的小包装,可为汽车OEM和一级供应商提供符合其需求的选择。比如iNAND AT EU312 是一款基于 3D NAND 技术的汽车级UFS(通用闪存存储),具有高数据传输速度的UFS 2.1接口和额外的UFS 3.0汽车功能,可提供最高256GB的容量,性能是前代基于e.MMC的产品的2.5倍。AT EU312利用第5代SmartSLC 技术,可提供高性能和可靠的写入。

其e.MMC 嵌入式闪存盘基于e.MMC 5.1 标准,采用2D或3D NAND技术。具体产品有EM122已经获得许多汽车设计的认证并投入生产,EM132在汽车市场中容量达到了256GB。

在PCIe SSD方面,有CL SN720和CL SN520等产品,采用了PCIe Gen3 NVMe接口,容量高达2TB,耐久性高达1600 TBW。

与合作伙伴的成功案例

在本次Auto Tech 2021展会上,西部数据不仅展示了自己家的汽车存储解决方案,也带来了合作伙伴的一些成功案例。

有为信息展示的“主动安全智能防控车载视频终端K5-P”解决方案。

在车载监控方面,其合作伙伴有为信息展示了“主动安全只能防控车载视频终端K5-P”解决方案,该解决方案支持ADAS、DSM只能监控,采用了记录仪、视频功能、主动安全功能一体化设计。同时支持硬盘(2.5” HDD)+ SD卡(西部数据WD Purple micro SD存储卡),双重存储保证数据安全;且具有硬盘防震保护机制;此外,有为信息的专利的存储介质保护装置,可防止任意拆卸硬盘及插拔存储卡。加上其独特流媒体文件系统存储方式,保证了数据安全不被篡改。

车载信息娱乐系统方面,其合作伙伴掌锐展示了“前装车规模组”解决方案------CS199 MT8666AV模组,该模组基于联发科 MT8666AV芯片封装的前装车规级带4G通信模组,具有功能丰富,集成度高、尺寸小、低功耗、性能优、品质稳定的特点,可满足汽车智能化、连网化的前装需求,帮助客户缩短项目开发周期,减少研发投入并降低品控风险。存储方面,采用的是西部数据iNAND AT EM132产品,是汽车市场首个基于3D TLC NAND e.MMC接口产品,采用了标准BGA封装,容量涵盖了从32GB到256GB,具有快速启动、自动刷新、增强型运行健康状态监测,支持固件在线升级和100%预烧录,有AEC-Q100温度2级(-40°C 至105°C)和3级(-40°C至85°C)两种选择。

铱斯电子展示的智能驾驶辅助系统解决方案。

此外,西部数据现场还展示了采用iNAND AT EM122的智能驾舱、智能驾驶、以及车联网等丰富的解决方案。

西部数据公司中国区嵌入式产品销售部门销售总监文芳女士

西部数据公司中国区嵌入式产品销售部门销售总监文芳表示:“车联网、自动驾驶等新技术的商业化落地,对汽车新四化的发展起到了巨大的推动作用,同时也对车载存储解决方案的安全性、可靠性、大容量、高性能以及复杂的场景应用提出了更严苛的要求。西部数据作为数据基础架构的领导者,提供覆盖8GB-18TB容量,包括e.MMC/UFS/micro SD/SSD/HDD等不同规格的车规级及企业级存储产品,支持端-边-云新型数据架构在汽车领域的应用,满足当前和未来单车智能及车路协同的多样化需求。”

未来,西部数据将不断突破创新,以卓越的产品及解决方案赋能汽车领域的改革与发展,为人们带来更安全、优质的驾驶体验。

结语

近年来,汽车行业正在经历前所未有的变革,自动驾驶不断发展,高清3D地图、高级辅助驾驶系统(ADAS)、自主计算机、AI、大数据、增强型信息娱乐系统、无线更新、以及V2X技术等等逐步在汽车上得到普及,而这些功能都需要板载数据存储,未来汽车的存储需求将会越来越大,如何满足汽车市场的特殊需求,是存储企业必须要考虑的,抓住汽车市场,就意味着抓住了未来。

转载自电子发烧友 @2019

❷ 海量小文件用什么存储好

海量小文件优先选择对象存储,不用考虑元数据管理的问题,如果是老系统的话需要改造支持对象存储。我们公司现在用的元核云的YC-DOS分布式对象存储,稳定性和性能都还不错。

❸ 计算机的海量存储主要依托什么设备实现

计算机的海量存储主要依托磁带、光盘、硬盘三大类。
虚拟存储主要依托硬盘实现;虚拟硬盘和虚拟缓存,主要依托内存和U盘实现。虚拟内存是主机运行所必须的;虚拟硬盘可用于存放TEMP文件夹、网页等临时文件,关机即自动清除,避免垃圾堆积;虚拟缓存可避免硬盘频繁写入。
当下载大量文件比如视频时,能有效保护机械硬盘;对于固盘,寿命主要取决于写入数据量,使用虚拟缓存可以将需写入固盘的数据都只是写入缓存中,能大大减少固盘写入量,以致完全无需写入。
虚拟存储是指将多个不同类型、独立存在的物理存储体,通过软、硬件技术,集成转化为一个逻辑上的虚拟的存储单元,集中管理供用户统一使用。
这个虚拟逻辑存储单元的存储容量是它所集中管理的各物理存储体的存储量的总和,而它具有的访问带宽则在一定程度上接近各个物理存储体的访问带宽之和。

❹ 海量数据存储有哪些方式与方法

杉岩海量对象存储MOS,针对海量非结构化数据存储的最优化解决方案,采用去中心化、分布式技术架构,支持百亿级文件及EB级容量存储,

具备高效的数据检索、智能化标签和分析能力,轻松应对大数据和云时代的存储挑战,为企业发展提供智能决策。

1、容量可线性扩展,单名字空间达EB级

SandStone MOS可在单一名字空间下实现海量数据存储,支持业务无感知的存储服务器横向扩容,为爆炸式增长的视频、音频、图片、文档等不同类型的非结构化数据提供完美的存储方案,规避传统NAS存储的单一目录或文件系统存储空间无法弹性扩展难题

2、海量小文件存储,百亿级文件高效访问

SandStone MOS基于完全分布式的数据和元数据存储架构,为海量小文件存储而生,将企业级NAS存储的千万文件量级提升至互联网规模的百亿级别,帮助企业从容应对几何级增长的海量小文件挑战。

3、中心灵活部署,容灾汇聚分发更便捷

SandStone MOS支持多数据中心灵活部署,为企业数据容灾、容灾自动切换、多分支机构、数据就近访问等场景提供可自定义的灵活解决方案,帮助企业实现跨地域多活容灾、数据流转、就近读写等,助力业务高速发展。

4、支持大数据和AI,统一数据存储和分析

SandStone MOS内置文件智能化处理引擎,实现包括语音识别、图片OCR识别、文件格式转换等批量处理功能,结合标签检索能力还可实现语音、证件照片检索,从而帮助企业更好地管理非结构化数据。同时,SandStone MOS还支持与Hadoop、Spark等大数据分析平台对接,一套存储即可满足企业数据存储、管理和挖掘的需求。

❺ 文件系统中用什么来管理文件

文件系统中用目录来管理文件。

文件管理系统作为一个统一的信息管理机制,可以解决海量文件存储,管理困难;查找缓慢,效率低下;文件版本管理混乱;文件安全缺乏保障;文件无法有效协作共享;知识管理举步维艰等问题。

随着信息化进程,文件管理越来越受到企业的重视,但是企业在进行文件管理的过程中,经常会碰到问题有:海量文件存储,管理困难;查找缓慢,效率低下;文件版本管理混乱;文件安全缺乏保障;文件无法有效协作共享;知识管理举步维艰等。所以文件管理逐渐成为国内外业界研究的热点。

具体功能

1、统一管理文件存储空间(即外存),实施存储空间的分配与回收。

2、确定文件信息的存放位置及存放形式。

3、实现文件从名字空间到外存地址空间的映射,即实现文件的按名存取。

4、有效实现对文件的各种控制操作(如建立、撤销、打开、关闭文件等)和存取操作(如读、写、修改、复制、转储等)。

❻ 80T的海量资料,如何永久保存,移动硬盘成本高,且超过10年后,基本上就有毛病了,有没其它办法

对于海量图片数据的存储问题,杉岩海量对象存储(SandStone MOS)解决方案采用去中心化分布式架构,同时利用软件定义的方式实现了单一名字空间条件下数百PB级规模的容量扩展,业务可以随时随地访问而不受数据存储位置的限制。

在提升海量小文件访问性能方面,SandStone MOS利用哈希计算实现了数亿级文件的高效访问。针对文件检索困难,SandStone MOS支持标签功能,文件存储时会自动设置标签,从而更好地与业务结合,满足高效检索。

此外,SandStone MOS在易用性与可维护性方面也超越了同级别产品,其采用“x86通用服务器+存储软件”的分布式解耦架构,将底层存储空间与上层业务逻辑空间进行分离,软硬件的升级不会影响到整个系统的正常运行。

即使系统有再多应用更新,也不会影响存储空间的使用。值得一提的是,SandStone MOS首创的分布式存储数据盘漫游功能,可以帮助企业用户渐进式的进行老旧硬件设备更换,不影响业务的正常运行。

❼  海量数据存储与管理

正如上述,在国土资源遥感综合调查信息中,既包含有多源、多时相、多尺度、多分辨率、多类型的遥感图像数据和基础地理数据,也包括在项目开展过程中衍生的许多观测和分析资料,数据量十分庞大。因此,根据数据共享的要求,在数据生产、管理、应用服务以及更新和维护过程中,如何组织和管理好这些海量数据,如何快速、全面有效地访问和获得所需数据,成为面临的突出问题。在这里,采用何种方式利用现有的大型商业化关系数据库系统高效地存储与管理这些数据,成为能否发挥系统最大性能的关键所在。

传统的GIS系统对空间数据(与空间位置、空间关系有关的数据)的存储与管理大多采用这些商业软件特定的文件方式,如:ArcInfo的Coverage、MapInfo的Tab、MAPGIS的WL等。如果数据量越多,这些文件就会越大,数据的处理就会越复杂,其存储、检索、管理也就越困难,而且其最大的缺点还在于不能进行多用户并发操作。由此可见,用以往传统的存储机制去管理像遥感综合调查这样的海量数据,显然难以满足要求。而近年来发展起来的空间数据库引擎技术则是解决海量数据存储管理的途径之一。

本系统建设过程中,采用了空间数据库引擎ArcSDE+大型关系数据库Oracle组合技术,较理想地实现了遥感综合调查海量数据的存储、检索、查询、处理。众所周知,Oracle提供了大型数据库环境,能够很好地处理海量数据,而ArcSDE可将具有地理特征的空间数据和非空间数据统一加载到Oracle中去,因此,通过ArcSDE空间数据库引擎,可将Oracle海量数据管理功能加载到GIS系统中,并可利用Oracle的强大管理机制进行高效率的事务处理、记录锁定、并发控制等服务操作。

❽ 什么由许多机器组成可以存储海量数据文件

Hadoop。
Hadoop实现了一个 分布式文件系统(Hadoop Distributed File System),简称HDFS。HDFS有高 容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上;而且它提供高吞吐量(high throughput)来访问 应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。HDFS放宽了(relax)POSIX的要求,可以以流的形式访问(streaming access)文件系统中的数据。
Hadoop的框架最核心的设计就是:HDFS和MapRece。HDFS为海量的数据提供了存储,则MapRece为海量的数据提供了计算。

❾ 基于mogileFS搭建分布式文件系统--海量小文件的存储利器

1.简介

分布式文件系统(Distributed File System)是指文件系统管理的物理存储资源不一定直接连接在本地节点上,而是通过计算机网络与节点相连。分布式文件系统的设计基于客户机/服务器模式。一个典型的网络可能包括多个供多用户访问的服务器。另外,对等特性允许一些系统扮演客户机和服务器的双重角色。例如,用户可以“发表”一个允许其他客户机访问的目录,一旦被访问,这个目录对客户机来说就像使用本地驱动器一样。

当下我们处在一个互联网飞速发展的信息 社会 ,在海量并发连接的驱动下每天所产生的数据量必然以几何方式增长,随着信息连接方式日益多样化,数据存储的结构也随着发生了变化。在这样的压力下使得人们不得不重新审视大量数据的存储所带来的挑战,例如:数据采集、数据存储、数据搜索、数据共享、数据传输、数据分析、数据可视化等一系列问题。

传统存储在面对海量数据存储表现出的力不从心已经是不争的事实,例如:纵向扩展受阵列空间限制、横向扩展受交换设备限制、节点受文件系统限制。

然而分布式存储的出现在一定程度上有效的缓解了这一问题,之所以称之为缓解是因为分布式存储在面对海量数据存储时也并非十全十美毫无压力,依然存在的难点与挑战例如:节点间通信、数据存储、数据空间平衡、容错、文件系统支持等一系列问题仍处在不断摸索和完善中。

2.分布式文件系统的一些解决方案

Google Filesystem适合存储海量大个文件,元数据存储与内存中

HDFS(Hadoop Filesystem)GFS的山寨版,适合存储大量大个文件

TFS(Taobao Filesystem)淘宝的文件系统,在名称节点上将元数据存储与关系数据库中,文件数量不在受限于名称节点的内容空间,可以存储海量小文件LustreOracle开发的企业级分布式系统,较重量级MooseFS基于FUSE的格式,可以进行挂载使用MogileFS

擅长存储海量的小数据,元数据存储与关系型数据库中

1.简介

MogileFS是一个开源的分布式文件系统,用于组建分布式文件集群,由LiveJournal旗下DangaInteractive公司开发,Danga团队开发了包括 Memcached、MogileFS、Perlbal等不错的开源项目:(注:Perlbal是一个强大的Perl写的反向代理服务器)。MogileFS是一个开源的分布式文件系统。

目前使用 MogileFS 的公司非常多,比如国外的一些公司,日本前几名的公司基本都在使用这个.

国内所知道的使用 MogileFS 的公司有图片托管网站 yupoo又拍,digg, 薯仔, 豆瓣,1 号店, 大众点评,搜狗,安居客等等网站.基本很多网站容量,图片都超过 30T 以上。

2.MogileFS特性

1) 应用层提供服务,不需要使用核心组件

2)无单点失败,主要有三个组件组成,分为tracker(跟踪节点)、mogstore(存储节点)、database(数据库节点)

3)自动复制文件,复制文件的最小单位不是文件,而是class

4)传输中立,无特殊协议,可以通过NFS或HTTP实现通信

5)简单的命名空间:没有目录,直接存在与存储空间上,通过域来实现

6)不用共享任何数据

3.MogileFS的组成

1)Tracker--跟踪器,调度器

MogileFS的核心,是一个调度器,mogilefsd进程就是trackers进程程序,trackers的主要职责有:删除数据、复制数据、监控、查询等等.这个是基于事件的( event-based ) 父进程/消息总线来管理所有来之于客户端应用的交互(requesting operations to be performed), 包括将请求负载平衡到多个"query workers"中,然后让 mogilefs的子进程去处理.

mogadm,mogtool的所有操作都要跟trackers打交道,Client的一些操作也需要定义好trackers,因此最好同时运行多个trackers来做负载均衡.trackers也可以只运行在一台机器上,使用负载均衡时可以使用搞一些简单的负载均衡解决方案,如haproxy,lvs,nginx等,

tarcker的配置文件为/etc/mogilefs/mogilefsd.conf,监听在TCP的7001端口

2)Database--数据库部分

主要用来存储mogilefs的元数据,所有的元数据都存储在数据库中,因此,这个数据相当重要,如果数据库挂掉,所有的数据都不能用于访问,因此,建议应该对数据库做高可用

3)mogstored--存储节点

数据存储的位置,通常是一个HTTP(webDAV)服务器,用来做数据的创建、删除、获取,任何 WebDAV 服务器都可以, 不过推荐使用 mogstored . mogilefsd可以配置到两个机器上使用不同端口… mogstored 来进行所有的 DAV 操作和流量,IO监测, 并且你自己选择的HTTP服务器(默认为 perlbal)用来做 GET 操作给客户端提供文件.

典型的应用是一个挂载点有一个大容量的SATA磁盘. 只要配置完配置文件后mogstored程序的启动将会使本机成为一个存储节点.当然还需要mogadm这个工具增加这台机器到Cluster中.

配置文件为/etc/mogilefs/mogstored.conf,监听在TCP的7500端口

4.基本工作流程

应用程序请求打开一个文件 (通过RPC 通知到 tracker, 找到一个可用的机器). 做一个 “create_open” 请求.

tracker 做一些负载均衡(load balancing)处理,决定应该去哪儿,然后给应用程序一些可能用的位置。

应用程序写到其中的一个位置去 (如果写失败,他会重新尝试并写到另外一个位置去).

应用程序 (client) 通过”create_close” 告诉tracker文件写到哪里去了.

tracker 将该名称和域命的名空间关联 (通过数据库来做的)

tracker, 在后台, 开始复制文件,知道他满足该文件类别设定的复制规则

然后,应用程序通过 “get_paths” 请求 domain+key (key == “filename”) 文件, tracker基于每一位置的I/O繁忙情况回复(在内部经过 database/memcache/etc 等的一些抉择处理), 该文件可用的完整 URLs地址列表.

应用程序然后按顺序尝试这些URL地址. (tracker’持续监测主机和设备的状态,因此不会返回死连接,默认情况下他对返回列表中的第一个元素做双重检查,除非你不要他这么做..)

1.拓扑图

说明:1.用户通过URL访问前端的nginx

2.nginx根据特定的挑选算法,挑选出后端一台tracker来响应nginx请求

3.tracker通过查找database数据库,获取到要访问的URL的值,并返回给nginx

4.nginx通过返回的值及某种挑选算法挑选一台mogstored发起请求

5.mogstored将结果返回给nginx

6.nginx构建响应报文返回给客户端

2.ip规划

角色运行软件ip地址反向代理nginx192.168.1.201存储节点与调度节点1

mogilefs192.168.1.202存储节点与调度节点2

mogilefs192.168.1.203数据库节点

MariaDB192.168.1.204

3.数据库的安装操作并为授权

关于数据库的编译安装,请参照本人相关博文http://wangfeng7399.blog.51cto.com/3518031/1393146,本处将不再累赘,本处使用的为yum源的安装方式安装mysql

4.安装mogilefs. 安装mogilefs,可以使用yum安装,也可以使用编译安装,本处通过yum安装

5.初始化数据库

可以看到在数据库中创建了一些表

6.修改配置文件,启动服务

7.配置mogilefs

添加存储主机

添加存储设备

添加域

添加class

8.配置192.168.1.203的mogilefs 。切记不要初始化数据库,配置应该与192.168.1.202一样

9.尝试上传数据,获取数据,客户端读取数据

上传数据,在任何一个节点上传都可以

获取数据

客户端查看数据

我们可以通过任何一个节点查看到数据

要想nginx能够实现对后端trucker的反向代理,必须结合第三方模块来实现

1.编译安装nginx

2.准备启动脚本

3.nginx与mofilefs互联

查看效果

5.配置后端truckers的集群

查看效果

大功告成了,后续思路,前段的nginx和数据库都存在单点故障,可以实现高可用集群

❿ 大量小文件存储,如何选择存储方案

1、Raid0
2、固态硬盘
3、Fat32:拷贝大量小文件(如拷贝照片、文档转移等)速度很快,但不支持存储单个大于4GB的文件。
NTFS:支持大文件存储,管理性能比Fat32强很多,但是拷贝大量小文件时速度较慢。

热点内容
scratch少儿编程课程 发布:2025-04-16 17:11:44 浏览:637
荣耀x10从哪里设置密码 发布:2025-04-16 17:11:43 浏览:366
java从入门到精通视频 发布:2025-04-16 17:11:43 浏览:82
php微信接口教程 发布:2025-04-16 17:07:30 浏览:308
android实现阴影 发布:2025-04-16 16:50:08 浏览:789
粉笔直播课缓存 发布:2025-04-16 16:31:21 浏览:339
机顶盒都有什么配置 发布:2025-04-16 16:24:37 浏览:210
编写手游反编译都需要学习什么 发布:2025-04-16 16:19:36 浏览:810
proteus编译文件位置 发布:2025-04-16 16:18:44 浏览:364
土压缩的本质 发布:2025-04-16 16:13:21 浏览:590