存储的需求分析
㈠ 数据库设计中,确定数据库存储结构,即确定关系、索引、聚簇、日志、备份等数据的存储安排和存储结构,这
选D。E-R图表示的概念模型;设计关系模式是逻辑设计阶段
㈡ 需求分析怎么写
1、功能分解方法。
将新系统作为多功能模块的组合。各功能义可分解为若干子功能及接口,子功能再继续分解。便可得到系统的雏形,即功能分解——功能、子功能、功能接口。
2、结构化分析方法。
结构化分析方法是一种从问题空间到某种表示的映射方法,是结构化方法中重要且被普遍接受的表示系统,由数据流图和数据词典构成并表示。此分析法又称为数据流法。
其基本策略是跟踪数据流,即研究问题域中数据流动方式及在各个环节上所进行的处理,从而发现数据流和加工。结构化分析可定义为数据流、数据处理或加工、数据存储、端点、处理说明和数据字典。
3、信息建模方法。
它从数据角度对现实世界建立模型。大型软件较复杂;很难直接对其分析和设计,常借助模型。模型是开发中常用工具,系统包括数据处理、事务管理和决策支持。
实质上,也可看成由一系列有序模型构成,其有序模型通常为功能模型、信息模型、数据模型、控制模型和决策模型。有序是指这些模型是分别在系统的不同开发阶段及开发层次一同建立的。
(2)存储的需求分析扩展阅读:
需求分析的特点
1、确定问题难。主要原因:一是应用领域的复杂性及业务变化,难以具体确定;二是用户需求所涉及的多因素引起的,比如运行环境和系统功能、性能、可靠性和接口等。
2、需求时常变化。软件的需求在整个软件生存周期,常会随着时间和业务而有所变化。有的用户需求经常变化,一些企业可能正处在体制改革与企业重组的变动期和成长期,其企业需求不成熟、不稳定和不规范,致使需求具有动态性。
3、交流难以达到共识。需求分析涉及的人事物及相关因素多,与用户、业务专家、需求工程师和项目管理员等进行交流时,不同的背景知识、角色和角度等,使交流共识较难。
㈢ 什么是云存储你如何看待云存储
云存储的几十年发展历程,其计算架构模型,也从Scale Up走向Scale Out。但是展望未来数字世界的海量需求,目前流行的模型还能够持续满足吗?本文通过对云存储 历史 的回顾,及对Scale Up和Scale Out两种扩展模型的诠释,来揭开云存储的未来模式。
1. 云存储及其 历史
简而言之,云存储(cloud storage)就是将数字内容安全的存储在服务器上,从而任何连接互联网的设备可以方便的获取。首先让我们简单回顾一下云存储的 历史 。
云存储的早期雏形要回溯到上个世纪的90年代,也就是互联网泡沫时期(dot-com boom),当时有许多家公司,例如EVault, NetMass, Arkeia和CommVault等等[1]均提供在线数据备份服务,当然它们绝大部分也随着互联网泡沫的破碎而烟消云散了。少数幸存下来的有一家叫Veritas NetBackup最后也被Symantec收购,现在依旧提供Symantec NetBackup的在线存储服务。
而真正让大家耳熟能详的云存储是2006年由Amazon提供的AWS S3云存储服务,其最具有革命意义的变革是,提出了即买即用(pay-per-use)的价格模型,使得云存储的使用像水电一样可计算衡量。从此云存储以S3为标准一路绝尘,我们所熟悉的大厂,比如Netflix, Pinterest, Dropbox也是S3的顾客。尾随的Microsoft和Google也于2010年分别发布了类似的Azure Blob Storage和Google Storage的存储服务。
云存储真正发展的十几年中,见证了移动互联网的崛起,大数据的生机勃发,人工智能的再次复兴,并能够展望到未来物联网,无人驾驶及各类机器人自动化的世界。海量数据的产生,存储,分析,预测及应用,快速以正反馈循环方式,推进着人类 社会 向数字世界大步迈进。所以,为了适应数据存储新的需求,各家云存储产品的应用场景及价格模型,已从单一向多元发展,比如AWS S3就有Standard,Intelligent-Tiering, Standard-IA,One Zone-IA,Glacier和Glacier Deep Archive六类存储产品来满足各类使用场景,我会在未来的文章里针对性的细讲一下。而本文重点所探讨的是,目前云存储的基础架构体系是否能够适应未来数据存储的要求和挑战?为了回答这个问题,让我们先简单回顾一下计算机体系架构里的Scale Up和Scale Out扩展模型。
2. Scale Up和Scale Out?
Scale Up又称为垂直扩展(scale vertically)[2],意为在单节点上添加资源,如CPU,内存和存储,在纵向上扩展从而获得更多计算或存储能力;Scale Up初期能够快速达到升级目的,操作起来相对比较简单,但随着计算或存储的要求越来越高,硬件资源的添加可能已经达到极限,不仅单节点的造价非常昂贵,维护成本很高,而且更容易留下单点故障的隐患。传统的RAID(Rendant Array of Inexpensive Disks)存储就是此种模式。
Scale Out又称为水平扩展(scale horizontally)[2],意为在分布式环境下,通过添加节点计算或存储资源,在横向上满足更多的计算存储需求;随着计算和存储单位价格的降低和效率的提升,使用低端的商用(commodity)系统,利用分布式技术可以搭建起“超级计算”中心,以及后来衍生出来的私有或公有云平台解决方案。虽然分布式系统会带来一定程度上的软件复杂度和管理困难,但由软件定义的计算和存储解决方案,能够以较低的价格和较高的鲁棒性,优雅的解决了海量增长的计算存储需求,也是目前云平台的主流技术。但它就一定能够承载未来的更加海量的需求吗?云存储的未来是什么?方向是向左还是向右?
3. 未来向左还是向右?
话说天下大势, 分久必合, 合久必分,事物发展的规律似乎从来就没有什么绝对。当下,云平台内部似乎已完全是Scale Out模式了,但当我们把镜头再拉远一点,从云平台在全球部署的每一个可用区来看,整体上它又是一个Scale Up模型,不是吗?单点投入巨大,耗费能源,使用成本高昂。而相反,随着强大的计算,存储和带宽能力能够进入寻常家庭、工作和生活等边缘节点,资源闲置或者不均衡使用也变得越来越明显。
那么,是否能够将这些边缘节点的计算存储能力结合起来,组成一个真正意义上的Scale Out平台,提供人们日益增长的计算存储需求?
可否将浪费或者不对等的资源重新组合,提供一个更加节能环保的绿色Scale Out平台?
可否摒弃中心化的单点故障和数据安全隐患,真正做到廉价高效,零数据泄露的Scale Out平台?
答案是应该可以而且必须可以!
纵观云存储平台的发展 历史 ,从单节点的Scale Up模式走向可用区内部的Scale Out模式,又从内部的Scale Out模式走向整体上相对的Scale Up模式。而未来数字世界的海量计算和存储需求的满足,一定需要真正意义上的全球Scale Out模型,那就是把边缘节点和半中心化节点高效且系统的组织起来,减少浪费,提高效率,节省成本,去除中心。将天空中几块为数不多的白云,变成漫天遍布的朵朵白云,让人们自由定价、自由选择、自由组合。
挑战虽然巨大,但未来很美好,让我们一起努力迎接云存储的明天!
[1]: History of Online Storage
[2]: Wiki Scalability
文章作者:Bruce Lee(http://PP.IO总架构师)
转载请注明出处
如果有关于PPIO的交流,可以通过下面的方式联系我:
加我微信,注意备注来源
wechat:omnigeeker
云存储服务平台,很精练吧
网络解释:云存储是在云计算(cloud computing)概念上延伸和发展出来的一个新的概念,是一种新兴的网络存储技术,是指通过集群应用、网络技术或分布式文件系统等功能,将网络中大量各种不同类型的存储设备通过应用软件集合起来协同工作,共同对外提供数据存储和业务访问功能的系统。
云存储可以简单的理解为将数据保存在一个第三方空间,随时取用和处理。云存储也可以说是一个以数据存储和管理为核心的云计算系统。云存储对用户来讲,不只是一个简单的设备,而是整个云存储系统的一种数据访问服务。
通过集群应用,网络技术等功能把网络中不同类型的存储设备通过应用软件集合起来工作。
云储存就是企业的公用空间(服务器),定期有人维护不用自己操心不怕数据丢失,但是数据都会在企业无保密可言,
就是网上的存储空间,不占自身内存,要用时联网下载
云存储是指通过集群应用、网格技术或分布式文件系统或类似网格计算等功能联合起来协同工作,并通过一定的应用软件或应用接口,对用户提供一定类型的存储服务和访问服务。
云存储的优势楼主有需要的话可以了解一下企业共享办公系统,可支持手机端、云端、公司服务器存储、为企业独立搭建维护企业网盘,从而实现文件归档存储、文档管理、协同办公等功能。
云存储就是将文件内存存储在云端的一种方式,不占用自己本身电脑或者手机的内存,海量存储轻松搞定,解决了很多的存储难与存储传输难的问题。
使用呆猫云盘的几大好处,企业存储资产更安全:1、使用呆猫远程桌面时可直接挂载云盘,轻松上传下载文件,支持在线修改文件。
2、项目资源统一集中管理,释放本地存储空间;支持弹性扩容,按需使用,降低本地硬件使用成本;
3、呆猫同一账号内存储互通,资源可异地共享,减少传输成本。
4、呆猫云盘与渲云网盘存储互通,使用渲云提交渲染任务时,内网同步,文件秒传,节省传输时间。
5、支持高并发读取资产文件,可同一账号最多可支持上千台机器同时读取云盘文件,提高工作效率。
6、高性能存储,百万级IOPS,超高算力助力设计行业发展。
7、云盘基于域控的安全策略,免受病毒攻击;提供多副本可靠性机制,即使机器出现故障,也不会引起数据丢失。
把你需要存储的数据放到网上,不占用你自己设备的内存,当你需要使用时从网上下载。这之间会产生数据流量。
云存储其实我们都经历过,2013年-2016年蓬勃发展,而后被玩坏的云盘,就是典型代表,虽然我们控制权益不多,只能上传下载,离线,共享,基本当作网络硬盘和交流工具使用,但却解决了人们的燃眉之急。我们现在部分手机上还有云端保存照片的功能。
实际的云存储并不是这么简单,引用一下网络:
云存储是建立在云计算的基础上,为云计算服务。对于我们似乎太深奥,但又息息相关,我们只需要知道它是好东西就行了。不单单能当作个人网络上的储存空间。
㈣ 大数据存储与应用特点及技术路线分析
大数据存储与应用特点及技术路线分析
大数据时代,数据呈爆炸式增长。从存储服务的发展趋势来看,一方面,对数据的存储量的需求越来越大;另一方面,对数据的有效管理提出了更高的要求。大数据对存储设备的容量、读写性能、可靠性、扩展性等都提出了更高的要求,需要充分考虑功能集成度、数据安全性、数据稳定性,系统可扩展性、性能及成本各方面因素。
大数据存储与应用的特点分析
“大数据”是由数量巨大、结构复杂、类型众多数据构成的数据集合,是基于云计算的数据处理与应用模式,通过数据的整合共享,交叉复用形成的智力资源和知识服务能力。其常见特点可以概括为3V:Volume、Velocity、Variety(规模大、速度快、多样性)。
大数据具有数据规模大(Volume)且增长速度快的特性,其数据规模已经从PB级别增长到EB级别,并且仍在不断地根据实际应用的需求和企业的再发展继续扩容,飞速向着ZB(ZETA-BYTE)的规模进军。以国内最大的电子商务企业淘宝为例,根据淘宝网的数据显示,至2011年底,淘宝网最高单日独立用户访问量超过1.2亿人,比2010年同期增长120%,注册用户数量超过4亿,在线商品数量达到8亿,页面浏览量达到20亿规模,淘宝网每天产生4亿条产品信息,每天活跃数据量已经超过50TB.所以大数据的存储或者处理系统不仅能够满足当前数据规模需求,更需要有很强的可扩展性以满足快速增长的需求。
(1)大数据的存储及处理不仅在于规模之大,更加要求其传输及处理的响应速度快(Velocity)。
相对于以往较小规模的数据处理,在数据中心处理大规模数据时,需要服务集群有很高的吞吐量才能够让巨量的数据在应用开发人员“可接受”的时间内完成任务。这不仅是对于各种应用层面的计算性能要求,更加是对大数据存储管理系统的读写吞吐量的要求。例如个人用户在网站选购自己感兴趣的货物,网站则根据用户的购买或者浏览网页行为实时进行相关广告的推荐,这需要应用的实时反馈;又例如电子商务网站的数据分析师根据购物者在当季搜索较为热门的关键词,为商家提供推荐的货物关键字,面对每日上亿的访问记录要求机器学习算法在几天内给出较为准确的推荐,否则就丢失了其失效性;更或者是出租车行驶在城市的道路上,通过GPS反馈的信息及监控设备实时路况信息,大数据处理系统需要不断地给出较为便捷路径的选择。这些都要求大数据的应用层可以最快的速度,最高的带宽从存储介质中获得相关海量的数据。另外一方面,海量数据存储管理系统与传统的数据库管理系统,或者基于磁带的备份系统之间也在发生数据交换,虽然这种交换实时性不高可以离线完成,但是由于数据规模的庞大,较低的数据传输带宽也会降低数据传输的效率,而造成数据迁移瓶颈。因此大数据的存储与处理的速度或是带宽是其性能上的重要指标。
(2)大数据由于其来源的不同,具有数据多样性的特点。
所谓多样性,一是指数据结构化程度,二是指存储格式,三是存储介质多样性。对于传统的数据库,其存储的数据都是结构化数据,格式规整,相反大数据来源于日志、历史数据、用户行为记录等等,有的是结构化数据,而更多的是半结构化或者非结构化数据,这也正是传统数据库存储技术无法适应大数据存储的重要原因之一。所谓存储格式,也正是由于其数据来源不同,应用算法繁多,数据结构化程度不同,其格式也多种多样。例如有的是以文本文件格式存储,有的则是网页文件,有的是一些被序列化后的比特流文件等等。所谓存储介质多样性是指硬件的兼容,大数据应用需要满足不同的响应速度需求,因此其数据管理提倡分层管理机制,例如较为实时或者流数据的响应可以直接从内存或者Flash(SSD)中存取,而离线的批处理可以建立在带有多块磁盘的存储服务器上,有的可以存放在传统的SAN或者NAS网络存储设备上,而备份数据甚至可以存放在磁带机上。因而大数据的存储或者处理系统必须对多种数据及软硬件平台有较好的兼容性来适应各种应用算法或者数据提取转换与加载(ETL)。
大数据存储技术路线最典型的共有三种:
第一种是采用MPP架构的新型数据库集群,重点面向行业大数据,采用Shared Nothing架构,通过列存储、粗粒度索引等多项大数据处理技术,再结合MPP架构高效的分布式计算模式,完成对分析类应用的支撑,运行环境多为低成本 PC Server,具有高性能和高扩展性的特点,在企业分析类应用领域获得极其广泛的应用。
这类MPP产品可以有效支撑PB级别的结构化数据分析,这是传统数据库技术无法胜任的。对于企业新一代的数据仓库和结构化数据分析,目前最佳选择是MPP数据库。
第二种是基于Hadoop的技术扩展和封装,围绕Hadoop衍生出相关的大数据技术,应对传统关系型数据库较难处理的数据和场景,例如针对非结构化数据的存储和计算等,充分利用Hadoop开源的优势,伴随相关技术的不断进步,其应用场景也将逐步扩大,目前最为典型的应用场景就是通过扩展和封装 Hadoop来实现对互联网大数据存储、分析的支撑。这里面有几十种NoSQL技术,也在进一步的细分。对于非结构、半结构化数据处理、复杂的ETL流程、复杂的数据挖掘和计算模型,Hadoop平台更擅长。
第三种是大数据一体机,这是一种专为大数据的分析处理而设计的软、硬件结合的产品,由一组集成的服务器、存储设备、操作系统、数据库管理系统以及为数据查询、处理、分析用途而特别预先安装及优化的软件组成,高性能大数据一体机具有良好的稳定性和纵向扩展性。
以上是小编为大家分享的关于大数据存储与应用特点及技术路线分析的相关内容,更多信息可以关注环球青藤分享更多干货
㈤ 大数据、高性能环境对存储的需求
大数据、高性能环境对存储的需求
一直以来,高性能计算的主要目的就是提高运算速度,来解决大规模科学计算和海量数据的处理问题。高性能计算每秒万亿次级的强大计算能力,使其成为石油、生物勘探、气象预测、生命科学研究等领域的重要技术选择。但是随着数据量以及数据价值的不断增长,金融、电信、互联网等领域对高性能计算的需求不断加大。随着技术的发展,高性能计算系统的处理能力越来越强,任务的计算时间越来越短,对业务的价值不断提高。但是,要想实现快速的任务计算处理,高性能计算系统的存储能力是关键。因为在计算开始,要从存储系统中读取数据;计算结束时,要向存储系统中写入计算后的结果。如果这之间的读取和写入速度不匹配,不仅会拖延高性能项目的完成周期,低延迟还会严重影响高性能创造价值的能力。通常,高性能计算要求存储系统能够满足性能、可扩展性要求,保护投资回报:吞吐量达到几个甚至几十个GB/s,容量能扩展至PB级;透明的访问和数据共享;集中式的智能化管理,高性价比;可按需独立扩展容量和性能等。中桥分析师在深圳华大基因研究院实地测试了EMC Isilon 产品在其HPC 环境下的运行情况,并记录下其结果。
背景
高性能计算(High Performance Computing—HPC )指通常使用很多处理器(作为单个机器的一部分)或者某一集群组织中几台计算机(作为单个计算资源操作)的计算系统和环境。长期以来,高性能计算应用的主要领域是科学与工程计算,诸如高能物理、核爆炸模拟、气象预报、石油勘探、地震预报、地球模拟、药品研制、CAD 设计中的仿真与建模、流体力学的计算等。如今,像金融证券、政府信息化、电信行业、教育、企业、网络游戏等领域对HPC的需求也在迅猛增长。
高性能计算的应用
高性能计算有着广泛的行业应用基础,下面列举几个行业对高性能计算的应用需求:
1. 航空航天行业
在航空航天行业,随着中国航空航天事业的快速发展,尤其是载人航天技术的巨大成功,我国科技人员对空气动力学的数值模拟研究提出了越来越多的需求,常规的计算能力远远无法满足复杂的大型飞行器设计所带来的巨大需求。在航空航天企业的设计过程中,研究人员往往需要把飞机表面分成几百万甚至几千万个离散型的网格点,然后通过高性能计算平台求解方程,得出每个网格点的温度、速度、摩擦力等各种参数,并模拟出连续型的曲线,进而为飞机设计提供宝贵的参考资料。对这类计算来说,网格点分割得越细密,计算结果的精确度也就越好。但是这些大规模设计计算问题不但单个作业计算量庞大,且需不断调整、重复计算,因此高性能在航天航空行业中占据着举足轻重的地位。
2. 能源行业
石油能源作为国家战略资源,对于国家经济、安全、军事等各方面都具有非常重要的战略意义。石油勘探承担着寻找储油构造、确定井位的重要任务。目前的主流做法就是人为的制造相应规模的地震(视勘探地区面积与深度不同),同时在相应的地层遍布若干震波收集点。由于不同材料的地质环境对地震波的影响是有规可循的,所以借助这一点,通过相关的算法,即可以通过对地震波的传递演算来“计算出”地质结构,从而找出我们所需要的能源位置。这种计算量无疑是异常庞大的,由于地震波法勘探收集的数据通常都以TB计,近年来海洋油气勘探所采集的数据甚至开始向PB规模发展。为此,只有借助高性能计算,才能在最短的时间内处理这些海量数据。
3. 生命科学
在现代生命科学领域,以数据为驱动力的改变正引发着巨大的变革。海量生物数据的分析将会增强疾病的实时监控能力和对潜在流行病做出反应的能力,但海量数据的挖掘、处理、存储却面临着前所未有的挑战。特别是随着新一代测序技术的迅猛发展,基因组学研究产生的海量数据正以每12- 18个月10倍的速度增长,已远超越着名的摩尔定律,这使得众多生物企业和科研机构面临强大的数据分析和存储需求。
在国内,生物基因行业的发展势头也不可小觑。2011年1 月30日,国家发改委已批复同意深圳依托华大基因研究院组建国家基因库,这是中国首次建立国家级基因库,首期投资为1500万元。深圳国家基因库是一个服务于国家战略需求的国家级公益性创新科研及产业基础设施建设项目,是目前我国唯一一个获批筹建的国家级基因库,是全球仅次美国、日本和欧洲三个国家级基因库之后的世界第四个国家级基因库。现在,该国家基因库已经收集了100万GB的生物数据,包含基因组、转录组、蛋白质组、代谢组及表型的数据,同时也积累了约四十万份生物样本。预计该基因库最终将达到10亿GB级别的数据容量。深圳国家基因库和国际上已有的基因库相比,它的特点是既有“湿库”也有“干库”:前者把千万种实体的动植物、微生物和人类组织细胞等资源和样本纳入网络;后者汇集巨量的核酸、基因表达、蛋白、表型等多类数据信息,成为“大数据”生物学时代研究生物生长发育、疾病、衰老、死亡以及向产业化推广的利器。
4. 金融行业
金融说到底就是数据。在金融市场中,拥有速度就意味着更高的生产力和更多的市场份额。金融计算模型相当复杂,数据收集越多,计算结果越精确。金融分析师都迫切地需要一个能模拟复杂现实环境,并进行精确处理的金融计算程序,以便对每个投资产品及时地评估投资收益,衡量投资风险,以期获得更好的投资回报。也正因此,高性能计算已经越来越多地应用到全球资本市场,以期在最短时间内实现对市场的动态响应与转换。
5. 气象预报
世纪二十年代初,天气预报方程已基本建立。但只有在计算机出现以后,数值天气预报才成为可能。而在使用并行计算机系统之前,由于受处理能力的限制,只能做到24小时天气预报。高性能计算是解决数值预报中大规模科学计算必要手段。采用高性能计算技术,可以从提高分辨率来提高预报精度。
6. 游戏动漫和影视产业
随着3D、4D电影的兴起和高清动漫趋热,由高性能计算(HPC )集群构成的“渲染农场”已经成为三维动画、影视特效公司不可或缺的生产工具。动漫渲染基于一套完整的程序进行计算,从而通过模型、光线、材质、阴影等元素的组合设定,将动漫设计转化为具体图像。以《玩具总动员》为例,如果仅使用单台工作站(单一处理器)进行动画渲染,这部长达77分钟的影片的渲染时间将会是43年,而采用集群渲染系统,只需约80天。
㈥ 云存储和传统硬盘存储有哪些优缺点
给个水一点的回答,考虑到刻录机的老化和兼容性之类的问题,普通光盘的存储时间应该不如硬盘,机械硬盘不如u盘和ssd,光盘当然是避光低温保存最好。云存储的优点就是存储方便分享也方便,共有部分的数据冗余度低,缺点就是对网络依赖大,对政策依赖大,安全性值得担忧。
采纳哦
㈦ 需求分析有哪两种主要分析方法
从系统分析出发,可将需求分析方法大致分为功能分解方法、结构化分析方法、信息建模法和面向对象的分析方法。
(1)功能分解方法。
将新系统作为多功能模块的组合。各功能义可分解为若干子功能及接口,子功能再继续分解。便可得到系统的雏形,即功能分解——功能、子功能、功能接口。
(2)结构化分析方法。
结构化分析方法是一种从问题空间到某种表示的映射方法,是结构化方法中重要且被普遍接受的表示系统,由数据流图和数据词典构成并表示。此分析法又称为数据流法。其基本策略是跟踪数据流,即研究问题域中数据流动方式及在各个环节上所进行的处理,从而发现数据流和加工。结构化分析可定义为数据流、数据处理或加工、数据存储、端点、处理说明和数据字典。
(3)信息建模方法。
它从数据角度对现实世界建立模型。大型软件较复杂;很难直接对其分析和设计,常借助模型。模型是开发中常用工具,系统包括数据处理、事务管理和决策支持。实质上,也可看成由一系列有序模型构成,其有序模型通常为功能模型、信息模型、数据模型、控制模型和决策模型。有序是指这些模型是分别在系统的不同开发阶段及开发层次一同建立的。建立系统常用的基本工具是E—R图。经过改进后称为信息建模法,后来又发展为语义数据建模方法,并引入了许多面向对象的特点。
信息建模可定义为实体或对象、属性、关系、父类型/子类型和关联对象。此方法的核心概念是实体和关系,基本工具是E-R图,其基本要素由实体、属性和联系构成。该方法的基本策略是从现实中找出实体,然后再用属性进行描述。
㈧ 如何做好埋点的需求分析
开始这个题目之前,我想有必要简单明确一下以下2个问题:
1.为什么要做埋点?
2.如果确实要做埋点,为什么要做好需求分析?
我想明确了以上两个问题后,才能正式进入本文。
关于1.为什么要做埋点,可以换个思维来回答这个:埋点能为我带来什么?毋庸置疑,埋点能带来你想要的数据;当你需要进行决策或者评价某个活动效果时,常常会有数据诉求,而有的数据可能已经具备并且质量达标,但有的数据可能质量不达标,或者是空白,当你存在数据空白或已有数据不能满足需求时,埋点将是拯救你的一大利器;
关于2.如果确实要做埋点,为什么要做好需求分析?我能不能全埋点,跟随产品发版一次性全量采集所有数据(虽然有的数据现在不一定能用到,但谁敢保证将来一定不能用到呢,干脆一次性把能埋的地方能采集的地方全部埋点、采集了,省得将来再被人提需求)?全埋点确实也是埋点的一个形式,如果数据量不大,可以考虑全埋点,但就算全埋点也需要把所有内容梳理清楚;与全埋点不同,很多公司还是在针对性根据需求进行埋点,以降低计算、存储成本以及提升系统响应速度。总之,不管是全埋点还是针对性地进行埋点,需求分析都非常重要,如同一类型的埋点需求,为什么有的同学能一下找到问题本质,埋点上线后即皆大欢喜了;而有个埋点上线后,却是炼狱的开始,紧随着的是打不完的补丁,改不完的需求...
关于如何最好需求分析,不知道大家是否也和曾经的我一样犯过嘀咕:有没有一种需求分析的方法或者套路,我按部就班一步一步操作就能达到理想预期的效果?还是这件事情就是需要天赋异禀,必须天生拥有某项技能的人才能完成?关于这个问题,我的理解是套路肯定是有的,通过学习以及练习套路的使用,我想应该都能比较容易拿到80分,但如果想要拿到满分100分,确实需要一些天赋加持,如你天生就比别人思考的深度更深、同理心更强,那你需求分析时,你确实会占很大的优势,如果运用得当,那么也很容易和相同工作经验的人拉开差距;当然,如果你也和我一样,自始至终也没发现,自身有啥天赋异禀,那么也不用灰心,书上说通过后天的刻意训练,也可以拉近差距。
针对需求分析,个人常用的方法是5w2h和kano模型:
1.5w2h
5w2h即:why(为什么要做,理由?),what(目的是什么),who(谁来做),when(什么时候开始、完成),where(从哪儿入手?),how(如何去做),how mach(花多少钱)
2.kano模型
KANO模型是东京理工大学教授狩野纪昭(Noriaki Kano)发明的对用户需求分类和排序的有用工具通过分析用户对产品功能的满意程度,对产品功能进行分级,从而确定产品实现过程中的优先级。
KANO模型是一个典型的定性分析模型,一般不直接用来测量用户的满意度,常用于识别用户对新功能的接受度。
在KANO模型中,根据不同类型的需求与用户满意度之间的关系,可将影响用户满意度的因素分为五类:基本型需求、期望型需求、兴奋型需求、无差异需求、反向型需求。
针对本次埋点需求分析,相比较而言,5w2h相较kano模型更适合,所以下文将以京东首页排行榜为例、结合5w2h说明如何做好京东首页排行榜埋点需求分析。
对京东首页排行榜进行埋点要达到的目的:通过数据论证本模块是否真正达到了“跟榜购好物”的目标,同时为后续排行榜相关优化(如位置调整、算法优化等)提供数据支撑。
京东首页排行榜入口为首页,见下图
京东首页排行榜页面,见下图:
(1)产品功能架构
本排行榜涉及的功能包括返回上一页、排行榜分享、活动推荐、分类标签、上榜商品列表、分类标签、进入商品详情页等内容,完整功能架构详见下图:
(2)产品信息架构
本排行榜涉及活动、分类、商品等信息,完整信息架构如下图:
(3)核心业务流程
核心业务流程为:1.通过首页或者别人的分享进入排行榜页面—2.浏览榜单及商品信息—3.找到感兴趣的商品进入详情页—4.加购或者下单,从而完成交易。
京东排行榜要达到的目标是“跟榜购好物”,为了监控该目标的实现情况,我们需要关注以及埋点的指标如下(因用户及设备相关信息属于通用埋点需求,本模块不赘述):
1.从首页或者其他分享渠道进入排行榜页面
A.从首页进入:从首页切换到排行榜花费的时间;(用该指标衡量排行榜的位置是否合适);
B.从分享进入:各个渠道进入数量;(哪个渠道的分享更有效)
2.进入排行榜页面
本排行榜页面相关指标:uv、停留时间、榜单商品进入商品详情转化率、榜单商品加购转化率、榜单商品下单转化率、榜单商品距离上次购买时间间距、榜单页面分享次数、详情页面uv、详情页面分享次数、推荐的主题榜单进入次数(评价推荐的主题榜单的质量)、进入详情商品对应的分类(衡量分类顺序是否合理等)
3.从排行榜进入商品详情页
uv、停留时长、详情页面分享次数
4.加购以及下单
加购次数、订单数、笔单价、GMV
本模块改版后者相关内容改版时,需要重新检查、审视需要埋点的内容是否合理
京东首页排行榜及商品详情页
本埋点需求涉及PD、RD、运营、BI、boss等人员。
具体成本以及排期需要需求进一步细化提供给RD后,有RD进行工期评估。
㈨ 如何进行管理信息系统需求调研分析
进行管理信息系统需求分析:
1、明确系统管理目标;
2、确定信息系统总体结构;
3、明确系统的模块构架;
4、明确系统实施方案.
㈩ 数据库设计的四个阶段是:需求分析、概念设计、逻辑设计和()。
数据库设计的四个阶段是:需求分析、概念设计、逻辑设计和 D
A) 编码设计 B)测试阶段 C)运行阶段 D)物理设计