当前位置:首页 » 存储配置 » 相变存储器三星

相变存储器三星

发布时间: 2022-09-23 10:30:53

㈠ SDRM PSRAM SRAM PRAM各与各的区别是什么

1、SDRAM,即Synchronous DRAM(同步动态随机存储器),曾经是PC电脑上最为广泛应用的一种内存类型,即便在今天SDRAM仍旧还在市场占有一席之地。既然是“同步动态随机存储器”,那就代表着它的工作速度是与系统总线速度同步的。SDRAM内存又分为PC66、PC100、PC133等不同规格,而规格后面的数字就代表着该内存最大所能正常工作系统总线速度,比如PC100,那就说明此内存可以在系统总线为100MHz的电脑中同步工作。

与系统总线速度同步,也就是与系统时钟同步,这样就避免了不必要的等待周期,减少数据存储时间。同步还使存储控制器知道在哪一个时钟脉冲期由数据请求使用,因此数据可在脉冲上升期便开始传输。SDRAM采用3.3伏工作电压,168Pin的DIMM接口,带宽为64位。SDRAM不仅应用在内存上,在显存上也较为常见。
2、
PSRAM具有一个单晶体管的DRAM储存格,与传统具有六个晶体管的SRAM储存格或是四个晶体管与two-load resistor SRAM 储存格大不相同,但它具有类似SRAM的稳定接口,内部的DRAM架构给予PSRAM一些比low-power 6T SRAM优异的长处,例如体积更为轻巧,售价更具竞争力。目前在整体SRAM市场中,有90%的制造商都在生产PSRAM组件。在过去两年,市场上重要的SRAM/PSRAM供货商有Samsung、Cypress、Renesas、Micron与Toshiba等。

编辑本段PSRAM与SRAM的比较:基本原理PSRAM就是伪SRAM,内部的内存颗粒跟SDRAM的颗粒相似,但外部的接口跟SRAM相似,不需要SDRAM那样复杂的控制器和刷新机制,PSRAM的接口跟SRAM的接口是一样的。
容量PSRAM容量有4Mb,8Mbit,16Mbit,32Mbit等等,容量没有SDRAM那样密度高,但肯定是比SRAM的容量要高很多的,速度支持突发模式,并不是很慢,Hynix,Fidelix,Coremagic, WINBOND .MICRON. CY 等厂家都有供应,价格只比相同容量的SDRAM稍贵一点点,比SRAM便宜很多。

编辑本段主要应用PSRAM主要应用于手机,电子词典,掌上电脑,PDA,PMP.MP3/4,GPS接收器等消费电子产品与SRAM(采用6T的技术)相比,PSRAM采用的是1T+1C的技术,所以在体积上更小,同时,PSRAM的I/O接口与SRAM相同.在容量上,目前有4MB,8MB,16MB,32MB,64MB和128MB。目前智能手机基本采用256MB以上的PSRAM,很多采用512MB。比较于SDRAM,PSRAM的功耗要低很多。所以对于要求有一定缓存容量的很多便携式产品是一个理想的选择。

编辑本段目前发展现状:东芝(Toshiba)、NEC Electronics和富士通(Fujitsu)三家公司日前共同提出PSRAM (Pseudo Static Random Access Memory)第四版的标准接口规范,也称之为CSOMORAM Rev. 4 (COmmon Specifications for MObile RAM)是用于移动RAM的通用规范。三家公司将各自生产与销售自家产品,产品最快可在2007年3月推出。上述三家公司在1998年9月首次提出通用规范,将堆栈多芯片封装(MCP)通用接口规范共享给包括闪存和SRAM在内的移动设备。随后,他们在2002、2003和2004年分别对其进行了修订,增加了页面模式和突发模式等规格。COSMORAM Rev. 4为Pseudo SRAM增加了双速率突发(DDR突发)模式。
3、SRAM不需要刷新电路即能保存它内部存储的数据。而DRAM(Dynamic Random Access Memory)每隔一段时间,要刷新充电一次,否则内部的数据即会消失,因此SRAM具有较高的性能,但是SRAM也有它的缺点,即它的集成度较低,相同容量的DRAM内存可以设计为较小的体积,但是SRAM却需要很大的体积,且功耗较大。所以在主板上SRAM存储器要占用一部分面积。
4、
PRAM是韩国三星公司推出的一款存储器,相比普通的DRAM和闪存,PRAM具有高速低功耗的特点。如果发展顺利的话,预计PRAM将从2007年起逐步取代闪存,成为下一代存储器产品中的主导力量。

PRAM内存可在芯片供电中断时保存数据,与普通闪存的工作原理相同。但PRAM写入数据的速度要比闪存块30倍,其寿命周期也将至少提高十倍。

ITRI可能不是第一家销售PRAM内存产品的商家。全球最大芯片制造商三星公司在去年发布了512MB新内存原型,并有望在明年早些时候上市销售。但ITRI其他公司有可能以更大的内存容量和不同功能来击败三星。

其他芯片制造商也在积极开发相变内存,其中有英特尔公司、IBM公司、Qimonda公司、意法半导体公司、Hynix半导体公司和Ovonyx。

台积电和ITRI也在开发磁性随机储存内存技术(MRAM),双方已经获得了与此有关的40多项专利。台积电有可能在明年底或2009年早期向客户销售MRAM。

新芯片运用了 "垂直电极" 及 "3D 晶体管结构" 两项技术,让芯片的尺寸缩小,同时在写入新数据时,也不必先将旧资料复写。着眼于 Samsung 日前发表的 32GB NAND 内存还是属于 40 奈米制程,就长期来看,PRAM 也将比 NAND 更省成本。

IBM 和几家内存模块大厂合作,包括 Qimonda AG、台湾的旺宏电子(Macronix International),在固态内存(non-volatile memory)上头,有了相当大的进展。

PRAM(Phase-Change RAM),这个在将来的将来可能取代闪存(将来用来取代传统硬盘)的男人,不仅仅是在 Samsung 的大本营默默的蛰伏,以 IBM 为首的研究团队,更是在速度上硬是压下了 Samsung 先前发表的 30x 读写速度,一举推到了 500x ~ 1000x,并且电力也只需要ㄧ半,寿命(重复写入的次数)也大大的延长(以上皆是相较于一般闪存),IBM还是强大啊,硬盘到PRAM一路都是IBM在唱主角.

㈡ 什么是相变存储器

相变存储器简称PCM,是基于奥弗辛斯基在20世纪60年代末提出的奥弗辛斯基电子效应的存储器。
奥弗辛斯基电子效应是指材料由非晶体状态变成晶体,再变回非晶体的过程中,其非晶体和晶体状态呈现不同的反光特性和电阻特性,因此可以利用非晶态和晶态分别代表“0”和“1”来存储数据。
相变存储器比起当今主流产品具有多种优势,有望同时替代公众熟知的两大类存储技术,如应用于U盘的可断电存储的闪存技术,又如应用于电脑内存的不断电存储的DRAM技术。
在存储密度方面,目前主流存储器在20多纳米的技术节点上出现极限,无法进一步紧凑集成;而相变存储器可达5纳米量级。在存储速度方面,相变存储器的存储单元比闪存快100倍,使用寿命也达百倍以上。

㈢ 相变存储器的发展历史

二十世纪五十年代至六十年代,Dr. Stanford Ovshinsky开始研究无定形物质的性质。无定形物质是一类没有表现出确定、有序的结晶结构的物质。1968年,他发现某些玻璃在变相时存在可逆的电阻系数变化。1969年,他又发现激光在光学存储介质中的反射率会发生响应的变化。1970年,他与他的妻子Dr. Iris Ovshinsky共同建立的能量转换装置(ECD)公司,发布了他们与Intel的Gordon Moore合作的结果。1970年9月28日在Electronics发布的这一篇文章描述了世界上第一个256位半导体相变存储器。
近30年后,能量转换装置(ECD)公司与MicronTechnology前副主席Tyler Lowery建立了新的子公司Ovonyx。在2000年2月,Intel与Ovonyx发表了合作与许可协议,此份协议是现代PCM研究与发展的开端。2000年12月,STMicroelectronics(ST)也与Ovonyx开始合作。至2003年,以上三家公司将力量集中,避免重复进行基础的、竞争的研究与发展,避免重复进行延伸领域的研究,以加快此项技术的进展。2005年,ST与Intel发表了它们建立新的闪存公司的意图,新公司名为Numonyx。
在1970年第一份产品问世以后的几年中,半导体制作工艺有了很大的进展,这促进了半导体相变存储器的发展。同时期,相变材料也愈加完善以满足在可重复写入的CD与DVD中的大量使用。Intel开发的相变存储器使用了硫属化物(Chalcogenides),这类材料包含元素周期表中的氧/硫族元素。Numonyx的相变存储器使用一种含锗、锑、碲的合成材料(Ge2Sb2Te5),多被称为GST。现今大多数公司在研究和发展相变存储器时都都使用GST或近似的相关合成材料。大部分DVD-RAM都是使用与Numonyx相变存储器使用的相同的材料。
2011年8月31日,中国首次完成第一批基于相变存储器的产品芯片。
2015年,《自然·光子学》杂志布了世界上第一个或可长期存储数据且完全基于光的相变存储器。

㈣ 相变存储器的介绍

相变存储器,简称PCM,相变存储器就是利用特殊材料在晶态和非晶态之间相互转化时所表现出来的导电性差异来存储数据的。相变存储器通常是利用硫族化合物在晶态和非晶态巨大的导电性差异来存储数据的一种信息存储装置。2015年,《自然·光子学》杂志公布了世界上第一个或可长期存储数据且完全基于光的相变存储器。

㈤ OUM是什么东西

相变存储器(OUM)
奥弗辛斯基(Stanford
Ovshinsky)在1968年发表了第一篇关于非晶体相变的论文,创立了非晶体半导体学。一年以后,他首次描述了基于相变理论的存储器:材料由非晶体状态变成晶体,再变回非晶体的过程中,其非晶体和晶体状态呈现不同的反光特性和电阻特性,因此可以利用非晶态和晶态分别代表“0”和“1”来存储数据。后来,人们将这一学说称为奥弗辛斯基电子效应。相变存储器是基于奥弗辛斯基效应的元件,因此被命名为奥弗辛斯基电效应统一存储器(OUM),如图2所示。从理论上来说,OUM的优点在于产品体积较小、成本低、可直接写入(即在写入资料时不需要将原有资料抹除)和制造简单,只需在现有的CMOS工艺上增加2~4次掩膜工序就能制造出来。

OUM是世界头号半导体芯片厂商Intel公司推崇的下一代非易失性、大容量存储技术。Intel和该项技术的发明厂商Ovonyx
公司一起,正在进行技术完善和可制造性方面的研发工作。Intel公司在2001年7月就发布了0.18mm工艺的4Mb
OUM测试芯片,该技术通过在一种硫化物上生成高低两种不同的阻抗来存储数据。2003年VLSI会议上,Samsung公司也报道研制成功以Ge2Sb2Te5(GST)为存储介质,采用0.25mm工艺制备的小容量OUM,工作电压在1.1V,进行了1.8x109
读写循环,在1.58x109循环后没有出现疲劳现象。
不过OUM的读写速度和次数不如FeRAM和MRAM,同时如何稳定维持其驱动温度也是一个技术难题。2003年7月,Intel负责非易失性存储器等技术开发的S.K.Lai还指出OUM的另一个问题:OUM的存储单元虽小,但需要的外围电路面积较大,因此芯片面积反而是OUM的一个头疼问题。同时从目前来看,OUM的生产成本比Intel预想的要高得多,也成为阻碍其发展的瓶颈之一。

㈥ 江苏时代芯存的相变存储器可以应用于哪些领域

时代芯存的变相存储器可以广泛地运用于工业控制、汽车、机械设备、智能家居、5G网络、消费电子等领域,市场潜力是大大的。

㈦ CPU-Z里面内存里的DC模式是什么意思

DC模式意思为、Dual Channel。Dual Channel是关于电脑记忆体的一种技术,最早使用此技术的记忆体是RDRam。

DC模式可理解为“打开双通道的方式”。一般在CPU-Z中的显示有灰色不可见、“对称”、“不对称”、“单通道+”等方式。DC模式在部分Intel芯片组的主板上是灰色的,原因是Intel的芯片组只支持对称双通道同步模式。



(7)相变存储器三星扩展阅读:

在DDR Ram发展中期,内存带宽开始出现瓶颈。原因是FSB带宽比内存带宽大得多,而处理器处理完的数据不能即时转入内存,造成处理器性能得不到完全发挥。基于此,芯片组厂商引入双通道内存技术。单条DDR内存是64位元带宽,而两条则是双倍,128位元。内存瓶颈得以缓解。

注:若芯片组只支援单通道内存,就算插入两条DDR内存也都是单通道内存,不会变成双通道内存的。

引入双通道内存技术的第一家芯片组厂商是nVidia。但当时AMD处理器的FSB带宽不是很大,双通道内存的效能提升作用轻微。

期后Intel将DDR双通道内存技术引入,配合Xeon,芯片组名为E7205。它支援DDR266双通道内存。用DDR的价钱,得到RDRam的效能。而主板厂将之支援Pentium 4。

毕竟是服务器平台产品,价格比较贵。而SiS的SiS 655出现,使DDR双通道成了平民化的技术。由于支援DDR333双通道内存,效能比E7205更高,价钱更低。

而最经典的应该是i865PE了,支援DDR400双通道内存,800MHz FSB的Pentium 4。 而i915P亦新增支援DDR-II 533双通道内存。 最新的975X更支援DDR-II 667双通道内存。

AMD平台方面,nVidia凭nForce 2 Ultra 400支援DDR400双通道内存,成为当时AMD平台性能最佳的芯片组,更击败VIA的皇者地位。随后AMD的Athlon 64系列处理器亦内建了DDR400双通道内存控制器。

㈧ 推进半导体技术发展的五大趋势

过去几十年,全球半导体行业增长主要受台式机、笔记本电脑和无线通信产品等尖端电子设备的需求,以及基于云计算兴起的推动。这些增长将继续为高性能计算市场领域开发新应用程序。

首先,5G将让数据量呈指数级增长。我们需要越来越多的服务器来处理和存储这些数据。2020年Yole报告,这些服务器核心的高端CPU和GPU的复合年增长率有望达到29%。它们将支持大量的数据中心应用,比如超级计算和高性能计算服务。在云 游戏 和人工智能等新兴应用的推动下,GPU预计将实现更快增长。例如,2020年3月,互联网流量增长了近50%,法兰克福的商业互联网数据交换创下了数据吞吐量超过每秒9.1兆兆位的新世界纪录。

第二个主要驱动因素是移动SoC——智能手机芯片。这个细分市场增长虽然没有那么快, 但这些SoC在尺寸受限的芯片领域对更多功能的需求,将推动进一步技术创新。

除了逻辑、内存和3D互联的传统维度扩展之外,这些新兴应用程序将需要利用跨领域的创新。这需要在器件、块和SoC级别进行新模块、新材料和架构的改变,以实现在系统级别的效益。我们将这些创新归纳为半导体技术的五大发展趋势。

趋势一:摩尔定律还有用,将为半导体技术续命8到10年…

在接下来的8到10年里,CMOS晶体管的密度缩放将大致遵循摩尔定律。这将主要通过EUV模式和引入新器件架构来实现逻辑标准单元缩放。

在7nm技术节点上引入了极紫外(EUV)光刻,可在单个曝光步骤中对一些最关键的芯片结构进行了设计。在5nm技术节点之外(即关键线后端(BEOL)金属节距低于28-30nm时),多模式EUV光刻将不可避免地增加了晶圆成本。最终,我们希望高数值孔径(High-NA) EUV光刻技术能够用于行业1nm节点的最关键层上。这种技术将推动这些层中的一些多图案化回到单图案化,从而提供成本、产量和周期时间的优势。

Imec对随机缺陷的研究对EUV光刻技术的发展具有重要意义。随机打印故障是指随机的、非重复的、孤立的缺陷,如微桥、局部断线、触点丢失或合并。改善随机缺陷可使用低剂量照射,从而提高吞吐量和成本。

为了加速高NA EUV的引入,我们正在安装Attolab,它可以在高NA EUV工具面世之前测试一些关键的高NA EUV材料(如掩膜吸收层和电阻)。目前Attolab已经成功地完成了第一阶段安装,预计在未来几个月将出现高NA EUV曝光。

除了EUV光刻技术的进步之外,如果没有前沿线端(FEOL)设备架构的创新,摩尔定律就无法延续。如今,FinFET是主流晶体管架构,最先进的节点在6T标准单元中有2个鳍。然而,将鳍片长度缩小到5T标准单元会导致鳍片数量减少,标准单元中每个设备只有一个鳍片,导致设备的单位面积性能急剧下降。这里,垂直堆叠纳米薄片晶体管被认为是下一代设备,可以更有效地利用设备占用空间。另一个关键的除垢助推器是埋地动力轨(BPR)。埋在芯片的FEOL而不是BEOL,这些BPR将释放互连资源路由。

将纳米片缩放到2nm一代将受到n-to-p空间约束的限制。Imec设想将Forksheet作为下一代设备。通过用电介质墙定义n- p空间,轨道高度可以进一步缩放。与传统的HVH设计相反,另一个有助于提高路由效率的标准单元架构发展是针对金属线路的垂直-水平-垂直(VHV)设计。最终通过互补场效应晶体管(CFET)将标准cell缩小到4T,之后充分利用cell层面上的第三维度,互补场效应晶体管通过将n-场效应晶体管与p-场效应晶体管折叠。

趋势2: 在固定功率下,逻辑性能的提高会慢下来

有了上述的创新,我们期望晶体管密度能遵循摩尔所规划的路径。但是在固定电源下,节点到节点的性能改进——被称Dennard缩放比例定律,Dennard缩放比例定律(Dennard scaling)表明,随着晶体管变得越来越小,它们的功率密度保持不变,因此功率的使用与面积成比例;电压和电流的规模与长度成比例。

世界各地的研究人员都在寻找方法来弥补这种减速,并进一步提高芯片性能。上述埋地电力轨道预计将提供一个性能提高在系统水平由于改进的电力分配。此外,imec还着眼于在纳米片和叉片装置中加入应力,以及提高中线的接触电阻(MOL)。

二维材料如二硫化钨(WS2)在通道中有望提高性能,因为它们比Si或SiGe具有更强的栅长伸缩能力。其中基于2d的设备架构包括多个堆叠的薄片非常有前景,每个薄片被一个栅极堆叠包围并从侧面接触。模拟表明,这些器件在1nm节点或更大节点上比纳米片的性能更好。为了进一步改善这些器件的驱动电流,我们着重改善通道生长质量,在这些新材料中加入掺杂剂和提高接触电阻。我们试图通过将物理特性(如生长质量)与电气特性相关联来加快这些设备的学习周期。

除了FEOL, 走线拥挤和BEOL RC延迟,这些已经成为性能改善的重要瓶颈。为了提高通径电阻,我们正在研究使用Ru或Mo的混合金属化。我们预计半镶嵌(semi-damascene)金属化模块可同时改善紧密距金属层的电阻和电容。半镶嵌(semi-damascene) 可通过直接模式和使用气隙作为介电在线路之间(控制电容增加)

允许我们增加宽高比的金属线(以降低电阻)。同时,我们筛选了各种替代导体,如二元合金,它作为‘good old’ Cu的替代品,以进一步降低线路电阻。

趋势3:3D技术使更多的异构集成成为可能

在工业领域,通过利用2.5D或3D连接的异构集成来构建系统。这些有助于解决内存问题,可在受形状因素限制的系统中添加功能,或提高大型芯片系统的产量。随着逻辑PPAC(性能-区域-成本)的放缓,SoC 的智能功能分区可以提供另一个缩放旋钮。一个典型的例子是高带宽内存栈(HBM),它由堆叠的DRAM芯片组成,这些芯片通过短的interposer链路直接连接到处理器芯片,例如GPU或CPU。最典型的案例是Intel Lakefield CPU上的模对模堆叠, AMD 7nm Epyc CPU。在未来,我们希望看到更多这样的异构SOC,它是提高芯片性能的最佳桥梁。

在imec,我们通过利用我们在不同领域(如逻辑、内存、3D…)所进行的创新,在SoC级别带来了一些好处。为了将技术与系统级别性能联系起来,我们建立了一个名为S-EAT的框架(用于实现高级技术的系统基准测试)。这个框架可评估特定技术对系统级性能的影响。例如:我们能从缓存层次结构较低级别的片上内存的3D分区中获益吗?如果SRAM被磁存储器(MRAM)取代,在系统级会发生什么?

为了能够在缓存层次结构的这些更深层次上进行分区,我们需要一种高密度的晶片到晶片的堆叠技术。我们已经开发了700nm间距的晶圆-晶圆混合键合,相信在不久的将来,键合技术的进步将使500nm间距的键合成为可能。

通过3D集成技术实现异质集成。我们已经开发了一种基于sn的微突起互连方法,互连间距降低到7µm。这种高密度连接充分利用了透硅通孔技术的潜力,使>16x更高的三维互联密度在模具之间或模具与硅插接器之间成为可能。这样就大大降低了对HBM I/O接口的SoC区域需求(从6 mm2降至1 mm2),并可能将HBM内存栈的互连长度缩短至多1 mm。使用混合铜键合也可以将模具直接与硅结合。我们正在开发3µm间距的模具到晶圆的混合键合,它具有高公差和放置精度。

由于SoC变得越来越异质化,一个芯片上的不同功能(逻辑、内存、I/O接口、模拟…)不需要来自单一的CMOS技术。对不同的子系统采用不同的工艺技术来优化设计成本和产量可能更有利。这种演变也可以满足更多芯片的多样化和定制化需求。

趋势4:NAND和DRAM被推到极限;非易失性存储器正在兴起

内存芯片市场预测显示,2020年内存将与2019年持平——这一变化可能部分与COVID-19减缓有关。2021年后,这个市场有望再次开始增长。新兴非易失性存储器市场预计将以>50%的复合年增长率增长,主要受嵌入式磁随机存取存储器(MRAM)和独立相变存储器(PCM)的需求推动。

NAND存储将继续递增,在未来几年内可能不会出现颠覆性架构变化。当今最先进的NAND产品具有128层存储能力。由于晶片之间的结合,可能会产生更多的层,从而使3D扩展继续下去。Imec通过开发像钌这样的低电阻字线金属,研究备用存储介质堆,提高通道电流,并确定控制压力的方法来实现这一路线图。我们还专注于用更先进的FinFET器件取代NAND外围的平面逻辑晶体管。我们正在 探索 3D FeFET与新型纤锌矿材料,作为3D NAND替代高端存储应用。作为传统3D NAND的替代品,我们正在评估新型存储器的可行性。

对于DRAM,单元缩放速度减慢,EUV光刻可能需要改进图案。三星最近宣布EUV DRAM产品将用于10nm (1a)级。除了 探索 EUV光刻用于关键DRAM结构的模式,imec还为真正的3D DRAM解决方案提供了构建模块。

在嵌入式内存领域,我通过大量的努力来理解并最终拆除所谓的内存墙,CPU从DRAM或基于SRAM的缓存中访问数据的速度有多快?如何确保多个CPU核心访问共享缓存时的缓存一致性?限制速度的瓶颈是什么? 我们正在研究各种各样的磁随机存取存储器(MRAM),包括自旋转移转矩(STT)-MRAM,自旋轨道转矩(SOT)-MRAM和电压控制磁各向异性(VCMA)-MRAM),以潜在地取代一些传统的基于SRAM的L1、L2和L3缓存(图4)。每一种MRAM存储器都有其自身的优点和挑战,并可能通过提高速度、功耗和/或内存密度来帮助我们克服内存瓶颈。为了进一步提高密度,我们还在积极研究可与磁隧道结相结合的选择器,这些是MRAM的核心。

趋势5:边缘人工智能芯片行业崛起

边缘 AI预计在未来五年内将实现100%的增长。与基于云的人工智能不同,推理功能是嵌入在位于网络边缘的物联网端点(如手机和智能扬声器)上的。物联网设备与一个相对靠近边缘服务器进行无线通信。该服务器决定将哪些数据发送到云服务器(通常是时间敏感性较低的任务所需的数据,如重新培训),以及在边缘服务器上处理哪些数据。

与基于云的AI(数据需要从端点到云服务器来回移动)相比,边缘 AI更容易解决隐私问题。它还提供了响应速度和减少云服务器工作负载的优点。想象一下,一辆需要基于人工智能做出决定的自动 汽车 。由于需要非常迅速地做出决策,系统不能等待数据传输到服务器并返回。考虑到通常由电池供电的物联网设备施加的功率限制,这些物联网设备中的推理引擎也需要非常节能。

今天,商业上可用的边缘 AI芯片,加上快速GPU或ASIC,可达到1-100 Tops/W运算效率。对于物联网的实现,将需要更高的效率。Imec的目标是证明推理效率在10.000个Tops /W。

通过研究模拟内存计算架构,我们正在开发一种不同的方法。这种方法打破了传统的冯·诺伊曼计算模式,基于从内存发送数据到CPU(或GPU)进行计算。使用模拟内存计算,节省了来回移动数据的大量能量。2019年,我们演示了基于SRAM的模拟内存计算单元(内置22nm FD-SOI技术),实现了1000Tops/W的效率。为了进一步提高到10.000Tops/W,我们正在研究非易失性存储器,如SOT-MRAM, FeFET和基于IGZO(铟镓锌氧化物)的存储器。

㈨ 时代芯存的相变存储器有什么优势

时代芯存生产的相变存储器的存储速度要比传统的同类型的存储器产品要快千倍,除了在读写速度上的巨大优势外,在产品的稳定性,功耗,抗辐射性能都具有独特的优势。 大大的赞哦。

㈩ 相变存储器的工作原理

相变存储器(PCM)是一种非易失存储设备,它利用材料的可逆转的相变来存储信息。同一物质可以在诸如固体、液体、气体、冷凝物和等离子体等状态下存在,这些状态都称为相。相变存储器便是利用特殊材料在不同相间的电阻差异进行工作的。
在非晶态下,GST材料具有短距离的原子能级和较低的自由电子密度,使得其具有较高的电阻率。由于这种状态通常出现在RESET操作之后,一般称其为RESET状态,在RESET操作中DUT的温度上升到略高于熔点温度,然后突然对GST淬火将其冷却。冷却的速度对于非晶层的形成至关重要。非晶层的电阻通常可超过1兆欧。
在晶态下,GST材料具有长距离的原子能级和较高的自由电子密度,从而具有较低的电阻率。由于这种状态通常出现在SET操作之后,我们一般称其为SET状态,在SET操作中,材料的温度上升高于再结晶温度但是低于熔点温度,然后缓慢冷却使得晶粒形成整层。晶态的电阻范围通常从1千欧到10千欧。晶态是一种低能态;因此,当对非晶态下的材料加热,温度接近结晶温度时,它就会自然地转变为晶态。
典型的GST PCM器件结构顶部电极、晶态GST、α/晶态GST、热绝缘体、电阻(加热器)、底部电极组成。一个电阻连接在GST层的下方。加热/熔化过程只影响该电阻顶端周围的一小片区域。擦除/RESET脉冲施加高电阻即逻辑0,在器件上形成一片非晶层区域。擦除/RESET脉冲比写/SET脉冲要高、窄和陡峭。SET脉冲用于置逻辑1,使非晶层再结晶回到结晶态。

热点内容
电脑ftp建立 发布:2025-04-01 05:58:02 浏览:169
Mata源码 发布:2025-04-01 05:57:51 浏览:74
sql设置表主键 发布:2025-04-01 05:57:22 浏览:344
linux开发应用 发布:2025-04-01 05:57:12 浏览:690
slb服务器搭建 发布:2025-04-01 05:54:05 浏览:133
编程小丸子 发布:2025-04-01 05:46:20 浏览:218
文件怎么解压到桌面 发布:2025-04-01 05:44:20 浏览:738
青岛分布式存储获取方式 发布:2025-04-01 05:31:18 浏览:140
吃鸡国际服服务器选择怎么找回 发布:2025-04-01 05:29:48 浏览:279
加工中心编程软件下载 发布:2025-04-01 05:18:44 浏览:829