c语言存储区域
1. c语言分配内存方式有哪些
内存分配方式有三种:
1、从静态存储区域分配。内存在程序编译的时候就已经分配好,这块内存在程序的整个运行期间都存在。例如全局变量,static变量。
2、在栈上创建。在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。
3、从堆上分配,亦称动态内存分配。程序在运行的时候用malloc或new申请任意多少的内存,程序员自己负责在何时用free或delete释放内存。动态内存的生存期由程序员决定,使用非常灵活,但如果在堆上分配了空间,就有责任回收它,否则运行的程序会出现内存泄漏,频繁地分配和释放不同大小的堆空间将会产生堆内碎块。
2. C语言中全局变量存放在内存空间中那个位置
在 C 语言中,内存分配方式有以下三种形式:
1、从静态存储区域分配
由编译器自动分配和释放,在程序编译的时候就已经分配好内存,这块内存在程序的整个运行期间都存在,直到整个程序运行结束时才被释放,如全局变量与 static 变量。
2、在栈上分配
同样由编译器自动分配和释放,在函数执行时,函数内部的局部变量都可以在栈上创建,函数执行结束时,这些存储单元将则被自动释放。
需要注意的是,栈内存分配运算内置于处理器的指令集中,它的运行效率一般很高,但是分配的内存容量有限。
3、从堆上分配
也称为动态内存分配,由程序员手动完成申请和释放。程序在运行的时,由程序员使用内存分配函数(如 malloc 函数)来申请内存,使用完之后再由程序员自己负责使用内存释放函数(如 free 函数)来释放内存。
需要注意的是,如果在堆上分配了内存空间,就必须及时释放它,否则将会导致运行的程序出现内存泄漏等错误。
在 C 语言中,不同类型变量的存储位置和作用域也有所不同。
全局变量
从静态存储区域分配,其作用域是全局作用域,也就是整个程序的生命周期内都可以使用。如果程序是由多个源文件构成的,那么全局变量只要在一个文件中定义,就可以在其他所有的文件中使用,但必须在其他文件中通过使用extern关键字来声明该全局变量。
全局静态变量
从静态存储区域分配,其生命周期也是与整个程序同在的,从程序开始到结束一直起作用。与全局变量不同的是,全局静态变量作用域只在定义它的一个源文件内,其他源文件不能使用。
局部变量
从栈上分配,其作用域只是在局部函数内,在定义该变量的函数内,只要出了该函数,该局部变量就不再起作用,也即该变量的生命周期和该函数同在。
局部静态变量
从静态存储区域分配,其在第一次初始化后就一直存在直到程序结束。该变量的特点是其作用域只在定义它的函数内可见,出了该函数就不可见了。
3. 谁能给我讲一下C语言中程序以及各类型数据存储位置
我想很多人也是糊涂,以下文章写得很好,故全文转来,慢慢体会。
程序的内存分配(堆和栈区别)
一、预备知识 程序的内存分配
一个由c/C++编译的程序占用的内存分为以下几个部分
1、栈区(stack) 由编译器自动分配释放 ,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。
2、堆区(heap) 一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表,呵呵。
3、全局区(静态区)(static),全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域, 未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。 - 程序结束后有系统释放
4、文字常量区 ?常量字符串就是放在这里的。 程序结束后由系统释放
5、程序代码区?存放函数体的二进制代码。
二、例子程序
这是一个前辈写的,非常详细
//main.cpp
int a = 0; 全局初始化区
char *p1; 全局未初始化区
main()
{
int b; 栈
char s[] = "abc"; 栈
char *p2; 栈
char *p3 = "123456"; 123456\0在常量区,p3在栈上。
static int c =0; 全局(静态)初始化区
p1 = (char *)malloc(10);
p2 = (char *)malloc(20);
分配得来得10和20字节的区域就在堆区。
strcpy(p1, "123456"); 123456\0放在常量区,编译器可能会将它与p3所指向的"123456"优化成一个地方。
}
二、堆和栈的理论知识
2.1申请方式
stack:
由系统自动分配。 例如,声明在函数中一个局部变量 int b; 系统自动在栈中为b开辟空间
heap:
需要程序员自己申请,并指明大小,在c中malloc函数
如p1 = (char *)malloc(10);
在C++中用new运算符
如p2 = (char *)malloc(10);
但是注意p1、p2本身是在栈中的。
2.2
申请后系统的响应
栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。
堆:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,
会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样,代码中的delete语句才能正确的释放本内存空间。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。
2.3申请大小的限制
栈:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在WINDOWS下,栈的大小是2M(也有的说是1M,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因此,能从栈获得的空间较小。
堆:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。
2.4申请效率的比较:
栈由系统自动分配,速度较快。但程序员是无法控制的。
堆是由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便.
另外,在WINDOWS下,最好的方式是用VirtualAlloc分配内存,他不是在堆,也不是在栈是直接在进程的地址空间中保留一快内存,虽然用起来最不方便。但是速度快,也最灵活。
2.5堆和栈中的存储内容
栈: 在函数调用时,第一个进栈的是主函数中后的下一条指令(函数调用语句的下一条可执行语句)的地址,然后是函数的各个参数,在大多数的C编译器中,参数是由右往左入栈的,然后是函数中的局部变量。注意静态变量是不入栈的。
当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主函数中的下一条指令,程序由该点继续运行。
堆:一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容有程序员安排。
2.6存取效率的比较
char s1[] = "aaaaaaaaaaaaaaa";
char *s2 = "bbbbbbbbbbbbbbbbb";
aaaaaaaaaaa是在运行时刻赋值的;
而bbbbbbbbbbb是在编译时就确定的;
但是,在以后的存取中,在栈上的数组比指针所指向的字符串(例如堆)快。
比如:
#include
void main()
{
char a = 1;
char c[] = "1234567890";
char *p ="1234567890";
a = c[1];
a = p[1];
return;
}
对应的汇编代码
10: a = c[1];
00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh]
0040106A 88 4D FC mov byte ptr [ebp-4],cl
11: a = p[1];
0040106D 8B 55 EC mov edx,dword ptr [ebp-14h]
00401070 8A 42 01 mov al,byte ptr [edx+1]
00401073 88 45 FC mov byte ptr [ebp-4],al
第一种在读取时直接就把字符串中的元素读到寄存器cl中,而第二种则要先把指针值读到edx中,在根据edx读取字符,显然慢了。
2.7小结:
堆和栈的区别可以用如下的比喻来看出:
使用栈就象我们去饭馆里吃饭,只管点菜(发出申请)、付钱、和吃(使用),吃饱了就走,不必理会切菜、洗菜等准备工作和洗碗、刷锅等扫尾工作,他的好处是快捷,但是自由度小。
使用堆就象是自己动手做喜欢吃的菜肴,比较麻烦,但是比较符合自己的口味,而且自由度大
一般认为在c中分为这几个存储区
1栈 - 有编译器自动分配释放
2堆 - 一般由程序员分配释放,若程序员不释放,程序结束时可能由OS回收
3全局区(静态区),全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域,未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。- 程序结束释放
4另外还有一个专门放常量的地方。 - 程序结束释放
在函数体中定义的变量通常是在栈上,用malloc, calloc, realloc等分配内存的函数分配得到的就是在堆上。在所有函数体外定义的是全局量,加了static修饰符后不管在哪里都存放在全局区(静态区),在所有函数体外定义的static变量表示在该文件中有效,不能extern到别的文件用,在函数体内定义的static表示只在该函数体内有效。另外,函数中的"adgfdf"这样的字符串存放在常量区。比如:
代码:
int a = 0; //全局初始化区
char *p1; //全局未初始化区
main()
{
int b; //栈
char s[] = "abc"; //栈
char *p2; //栈
char *p3 = "123456"; //123456\0在常量区,p3在栈上。
static int c = 0; //全局(静态)初始化区
p1 = (char *)malloc(10);
p2 = (char *)malloc(20); //分配得来得10和20字节的区域就在堆区。
strcpy(p1, "123456"); //123456\0放在常量区,编译器可能会将它与p3所指向的"123456"优化成一块。
}
还有就是函数调用时会在栈上有一系列的保留现场及传递参数的操作。栈的空间大小有限定,vc的缺省是2M。栈不够用的情况一般是程序中分配了大量数组和递归函数层次太深。有一点必须知道,当一个函数调用完返回后它会释放该函数中所有的栈空间。栈是由编译器自动管理的,不用你操心。
堆是动态分配内存的,并且你可以分配使用很大的内存。但是用不好会产生内存泄漏。并且频繁地malloc和free会产生内存碎片(有点类似磁盘碎片),因为c分配动态内存时是寻找匹配的内存的。而用栈则不会产生碎片。
在栈上存取数据比通过指针在堆上存取数据快些。一般大家说的堆栈和栈是一样的,就是栈(stack),而说堆时才是堆heap。栈是先入后出的,一般是由高地址向低地址生长。
4. C语言中分配内存
要实现根据程序的需要动态分配存储空间,就必须用到以下几个函数
1、malloc函数
malloc函数的原型为:
void
*malloc
(u
igned
int
size)
其作用是在内存的动态存储区中分配一个长度为size的连续空间。其参数是一个无符号整形数,返回值是一个指向所分配的连续存储域的起始地址的指针。还有一点必须注意的是,当函数未能成功分配存储空间(如内存不足)就会返回一个NULL指针。所以在调用该函数时应该检测返回值是否为NULL并执行相应的操作。
下例是一个动态分配的程序:
#include
#include
main()
{
int
count,*array;
/*count是一个计数器,array是一个整型指针,也可以理解为指向一个整型数组的首地址*/
if((array(int
*)
malloc(10*sizeof(int)))==NULL)
{
printf("不能成功分配存储空间。");
exit(1);
}
for
(count=0;count〈10;count++)
/*给数组赋值*/
array[count]=count;
for(count=0;count〈10;count++)
/*打印数组元素*/
printf("%2d",array[count]);
}
上例中动态分配了10个整型存储区域,然后进行赋值并打印。例中if((array(int
*)
malloc(10*sizeof(int)))==NULL)语句可以分为以下几步:
1)分配10个整型的连续存储空间,并返回一个指向其起始地址的整型指针
2)把此整型指针地址赋给array
3)检测返回值是否为NULL
2、free函数
由于内存区域总是有限的,不能不限制地分配下去,而且一个程序要尽量节省资源,所以当所分配的内存区域不用时,就要释放它,以便其它的变量或者程序使用。这时我们就要用到free函数。
其函数原型是:
void
free(void
*p)
作用是释放指针p所指向的内存区。
其参数p必须是先前调用malloc函数或calloc函数(另一个动态分配存储区域的函数)时返回的指针。给free函数传递其它的值很可能造成死机或其它灾难性的后果。
注意:这里重要的是指针的值,而不是用来申请动态内存的指针本身。例:
int
*p1,*p2;
p1=malloc(10*sizeof(int));
p2=p1;
……
free(p2)
/*或者free(p2)*/
malloc返回值赋给p1,又把p1的值赋给p2,所以此时p1,p2都可作为free函数的参数。
malloc函数是对存储区域进行分配的。
free函数是释放已经不用的内存区域的。
所以由这两个函数就可以实现对内存区域进行动态分配并进行简单的管理了。
5. C语言,函数是存储在代码区,想问代码区是栈区吗
代码区是独立的一个区,不属于栈区
1、栈区(stack)— 由编译器自动分配释放 ,存放函数的参数值,局部变量的值等。其
操作方式类似于数据结构中的栈。
2、堆区(heap) — 一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回
收 。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表,呵呵。
3、全局区(静态区)(static)—,全局变量和静态变量的存储是放在一块的,初始化的
全局变量和静态变量在一块区域, 未初始化的全局变量和未初始化的静态变量在相邻的另
一块区域。 - 程序结束后由系统释放。
4、文字常量区 —常量字符串就是放在这里的。 程序结束后由系统释放
5、程序代码区—存放函数体的二进制代码。
6. C语言动态和静态存储类别的区别
主要区别在于存储区域和作用时间。
C语言的数据区分为静态存储区与动态存储区。
静态存储是指在程序运行期间给变量分配固定存储空间的方式。如全局变量存放在静态存储区中,程序运行时分配空间,程序运行完释放。
动态存储是指在程序运行时根据实际需要动态分配存储空间的方式。如形式参数存放在动态存储区中,在函数调用时分配空间,调用完成释放。
7. C或C++程序编译时内存分为几个存储区
1、从操作系统原理的角度来看,只有一个存储区就是虚拟内存。
2、根据功能可以分为 ,栈区 、堆区、静态区, 栈区一般指的一个函数局部变量,在编译原理中这叫做一个栈帧。 堆区一般是为了用户自由分配的,一般C语言中用MALLOC函数分配,C++中用NEW运算符来分配,它是有操作系统的堆管理器来管理的,拿windows来说,在一个程序运行后,一般至少有两个默认的堆,一个是new堆,一个进程 自己的堆, 静态区,这个一般是全局变量或者static变量使用的区域,这个区域,如果你对PE结构熟悉,就会明白这实际上是pe 区段中的.data区段,当程序运行后变成进程,这个区段是直接内存文件映射过去的。
8. c语言常量变量在内存中的存储方式
从静态存储区域分配:内存在程序编译的时候就已经分配好,这块内存在程序的整个运行期间都存在。例如全局变量,static变量。
在栈上创建(地址从大到小):在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。(栈上的变量都具有临时变量的特性)
从堆上分配(地址从小到大):亦称动态内存分配。程序在运行的时候用malloc或new申请任意多少的内存,程序员自行负责在何时用free或delete释放内存。
(8)c语言存储区域扩展阅读:
注意事项:
const在C语言中使用比较多,虽然变量由const修饰,但是从本质上仍然是变量,所以存储在堆栈和静态存储区,这么区域从进程角度来讲是可读可写,但为什么const修饰后将变得不可写了。
既然const变量所在区域的属性为可读可写,那么可以修改其所处内存的值了。
C语言const变量的作用说起:const是一个c语言的关键字,限定一个变量不允许被改变,产生静态作用。使用const在一定程度上可以提高程序的安全性和可靠性。另外在观看别人代码的时候,清晰理解const所起的作用,对理解对方的程序也有一些帮助。
9. c语言变量的储存类别及各自的特点
你自己根据需要归纳吧~
C语言变量存储类型
auto
static
extern
static extern
register
auto 局部变量
auto 变量是用堆栈(stack)方式占用储存器空间,因此,当执行此区段是,系统会立即为这个变量分配存储器空间,而程序执行完后,这个堆栈立即被系统收回.在大括号{}内声明.
自动变量就是指在函数内部定义使用的变量。他只是允许在定义他的函数内部使用它。在函数外的其他任何地方都不能使用的变量。自动变量是局部变量,即它的区域性是在定义他的函数内部有效。当然这说明自动变量也没有链接性,因为它也不允许其他的文件访问他。由于自动变量在定义他的函数的外面的任何地方都是不可见的,所以允许我们在这个函数外的其他地方或者是其他的函数内部定义同名的变量,他们之间不会发生冲突的。因为他们都有自己的区域性,而且它没有链接性(即:不允许其他的文件访问他的)。来看看自动量的持续性。计算机在执行这个函数的时候,创建并为它分配内存,当函数执行完毕返回后,自动变量就会被销毁。这个过程是通过一个堆栈的机制来实现的。为自动变量分配内存就压栈,而函数返回时就退栈。
static 静态变量
一、局部静态变量
局部变量按照存储形式可分为三种auto, static, register。
与auto类型(普通)局部变量相比, static局部变量有三点不同:
1. 存储空间分配不同
auto类型分配在栈上, 属于动态存储类别, 占动态存储区空间, 函数调用结束后自动释放, 而static分配在静态存储区, 在程序整个运行期间都不释放. 两者之间的作用域相同, 但生存期不同.
2. static局部变量在所处模块在初次运行时进行初始化工作, 且只操作一次。
3. 对于局部静态变量, 如果不赋初值, 编译期会自动赋初值0或空字符, 而auto类型的初值是不确定的.
特点: static局部变量的”记忆性”与生存期的”全局性”
所谓”记忆性”是指在两次函数调用时, 在第二次调用进入时, 能保持第一次调用退出时的值.
注意事项:
1. “记忆性”, 程序运行很重要的一点就是可重复性, 而static变量的”记忆性”破坏了这种可重复性, 造成不同时刻至运行的结果可能不同.
2. “生存期”全局性和唯一性. 普通的local变量的存储空间分配在stack上, 因此每次调用函数时, 分配的空间都可能不一样, 而static具有全局唯一性的特点, 每次调用时, 都指向同一块内存, 这就造成一个很重要的问题 ---- 不可重入性!!!
二、外部静态变量/函数
在C中static有了第二种含义:用来表示不能被其它文件访问的全局变量和函数。, 但为了限制全局变量/函数的作用域, 函数或变量前加static使得函数成为静态函数。但此处“static”的含义不是指存储方式,而是指对函数的作用域仅局限于本文件(所以又称内部函数)。注意此时, 对于外部(全局)变量, 不论是否有static限制, 它的存储区域都是在静态存储区, 生存期都是全局的. 此时的static只是起作用域限制作用, 限定作用域在本模块(文件)内部.
使用内部函数的好处是:不同的人编写不同的函数时,不用担心自己定义的函数,是否会与其它文件中的函数同名。
extern 变量
外部变量 定义在程序外部,所有的函数很程序段都可以使用.
外部变量可能会在某一程序段被重新定义,以段内变量为参考值.
static extern 变量
静态外部变量和外部变量差别在于,外部变量生命可以同时给多个文件使用,而静态外部变量则只能给声明此变量的文件使用.
register 变量
寄存器变量,是由寄存器分配空间,访问速度比访问内存快,加快执行速度.寄存器大小有限.
在c语言当中可以使用寄存器变量来优化程序的性能,最常见的是在一个函数体当中,将一个常用的变量声明为寄存器变量: register int ra; 如果可能的话,编译器就会为它分配一个单独的寄存器,在整个函数执行期间对这个变量的操作全都是对这个寄存器进行操作,这时候就不用频繁地去访存了,自然就提高了性能。
不能用于全局变量。现在的情况是VC忽略用户定义的REGISTER,因此定义一个REGISTER变量与不定义一个REGISTER是一样的,编译器进行相同的优化,因为MS认为,REGISTER是系统中宝贵的资源,应该由系统统一调配,而且认为VC编译器的优化能力要大于一般的程序员。因此也有人说register关键字在PC机(x86CPU)无用,编译器按自动变量处理。
注意: register是不能取址的。
register int j; int *p = &j;是错的,因为无法对寄存器的寻址。
10. C语言中 局部变量和全局变量都是存储在什么区
C语言中局部变量存在栈里,全局变量存静态存储区。
局部变量在栈空间上分配,这个局部变量所在的函数被多次调用时,每次调用这个局部变量在栈上的位置都不一定相同。局部变量也可以在堆上动态分配,但是记得使用完这个堆空间后要释放之。
全局变量全部存放在静态存储区,在程序开始执行时给全局变量分配存储区,程序行完毕就释放。在程序执行过程中它们占据固定的存储单元,而不动态地进行分配和释放;
(10)c语言存储区域扩展阅读
C语言中局部变量和全局变量示例:
#include<stdio.h>
#include<malloc.h>
staticints1=0,s2=0,s3=0;//静态变量放在静态区
intg1=0,g2=0,g3=0;//全局变量放在静态区
voidmain()
{
staticints4=0,s5=0,s6=0;<spanstyle="font-family:Arial,Helvetica,simsun,u5b8bu4f53;"></span>//静态变量
inta1=0,a2=0,a3=0;<spanstyle="font-family:Arial,Helvetica,simsun,u5b8bu4f53;"></span>//局部变量放在栈区
charc1[]="aabb";//局部变量放在栈区
char*c2="aabb";//字符常量放在静态区
char*m1=(char*)malloc(1);//堆区
char*m2=(char*)malloc(1);//堆区
char*m3=(char*)malloc(1);//堆区
printf("动态数据区 ");
printf("a1 a2 a3 ",&a1,&a2,&a3);
printf("c1 ",c1);
printf("m1 m2 m3 ",&m1,&m2,&m3);
printf("静态数据区 ");
printf("s1 s2 s3 ",&s1,&s2,&s3);
printf("g1 g2 g3 ",&g1,&g2,&g3);
printf("s4 s5 s6 ",&s4,&s5,&s6);
printf("c2 ",c2);
}