kafka存储
A. 【kafka】kafka理论之partition & replication
基于分区和副本集的相关知识,初步了解Kafka的数据存储、同步原理。
对于消息的生产以及消费逻辑不在本文的讨论范畴,主要就Broker的数据存储做以浅显的总结。
首先解释一下常见的相关专业术语:
Partition是作用于具体的Topic而言的,而不是一个独立的概念。Partition能水平扩展客户端的读写性能,是高吞吐量的 保障。
通俗的将,Partition就是一块保存具体数据的空间,本质就是磁盘上存放数据的文件夹,所以Partition是不能跨Broker存在,也不能在同一个Broker上跨磁盘。
对于一个Topic,可以根据需要设定Partition的个数;Kafka默认的Partition个数num.partitions为1($KAFKA_HOME/config/server.properties),表示该Topic的所有数据均写入至一个文件夹下;用户也可以在新建Topic的时候通过显示的指定--partitions <integer>参数实现自定义Partition个数。
在数据持久化时,每条消息都是根据一定的分区规则路由到对应的Partition中,并append在log文件的尾部(这一点类似于HDFS);在同一个Partition中消息是顺序写入的且始终保持有序性;但是不同Partition之间不能保证消息的有序性(高吞吐量的保障)。
Kafka也支持动态增加一个已存在Topic的Partition个数,但不支持动态减少Partition个数。因为被减少Partition所对应的数据处理是个难题; 由于Kafka的数据写模式的限制,所以如果要把这些Partition的历史数据集追加到有效的Partition的尾部,就会破坏了Kafka在Partition上消息的有序性,显然是不合理的;但如果按照时间戳重新构分区的数据文件,可操作性和难度都将是非常大的,所以目前并不支持动态减少Partition个数。
Partition是用来存储数据的,但并不是最小的数据存储单元。Partition下还可以细分成Segment,每个Partition是由一个或多个Segment组成。每个Segment分别对应两个文件: 一个是以.index结尾的索引文件,另一个是以.log结尾的数据文件,且两个文件的文件名完全相同。 所有的Segment均存在于所属Partition的目录下。
Segment的必要性:如果以partition作为数据存储的最小单元,那么partition将会是一个很大的数据文件,且数据量是持续递增的;当进行过期数据清理或消费指定offset数据时,操作如此的大文件将会是一个很严重的性能问题。
Replication是Kafka架构中一个比较重要的概念,是系统高可用的一种保障。
Replication逻辑上是作用于Topic的,但实际上是体现在每一个Partition上。
例如:有一个Topic,分区(partitions)数为3(分别为a, b, c),副本因子(replication-factor)数也为3;其本质就是该Topic一共有3个a分区,3个b分区,3个c分区。这样的设计在某种意义上就很大程度的提高了系统的容错率。
那么问题来了:一个Topic下a分区一共有三个,既然是副本集,那这三个所包含的数据都完全一样吗?作用都一样吗?
说到这就不得不引出两个概念:Leader Replica & Follower Replica
leader partition(主分区) & leader replica(主副本集)其实这两个概念是一回事,因为副本集策略只是一种机制,是为了提高可用性而生的。
这种策略就是作用于partition上的,通俗的说增加副本集个数其实就是增加同一个partition的备份个数,同样的对于主分区而言,就是同一个partition下所有备份中的主副本集。
同一个topic下的不同partition之间是没有主次之分,都是同等重要且存储不同数据的。
当新建一个topic,并指定partition个数后,会在log.dirs参数($KAFKA_HOME/config/server.properties)所指定的目录下创建对应的分区目录,用来存储落到该分区上的数据。
分区目录的命名格式为:topic名称 + 短横线 + 分区序号;序号默认从0开始,最大为分区数 - 1。
为了尽可能的提升服务的可用性和容错率,Kafka遵循如下的分区分配原则:
如集群中有四个节点,均在统一机架上,新建一个topic:demoTopic,指定分区个数为4,副本因子为3,则对应的partition目录分别为:demoTopic-0、demoTopic-1、demoTopic-2、demoTopic-3。
因为集群未跨机架,所以在这里主要验证一下前两条分区分配原则:四个主分区分别位于四个不同的broker上,且另外两个replica也随机分配到除leader所在节点以外的其他三个broker上。
每个Partition全局的第一个Segment文件名均是从0开始,后续每个Segment的文件名为上一个Segment文件中最后一条消息的offset值;数据的大小为64位,20位数字字符的长度,未用到的用0填充。同一个Segment的.index文件和.log文件的文件名完全相同。
这种命名格式的好处在于可以有效的规避单文件数据量过大导致的操作难问题,不仅如此,还可以方便、快速的定位数据。
例如:要实现从指定offset处开始读取数据,只需要根据给定的offset值与对应Partition下的segment文件名所比对,就可以快速的定位目标数据所在的segment文件,然后根据目标segment的.index文件查找给定offset值所对应的实际磁盘偏移量,即可快速在.log中读取目标数据。
在Kafka 0.10.1.0以后,对于每个Segment文件,在原有的.index和.log文件的基础上,新增加一个.timeindex文件,通过该索引文件 可以实现基于时间戳操作消息的功能,具体实现详见Kafka Timestamp。
Kafka中所说的Offset本质上是一个逻辑值,代表的是目标数据对应在Partition上的偏移量;而数据在磁盘上的实际偏移量是存储在对应Segment的.index文件中。
通过简单介绍replica之间的offset的变化和更新逻辑,来初步了解Kafka的数据同步机制。
首先引入几个概念:Offset & Replica相关概念
清楚LEO、HW和ISR之间的相互关系是了解Kafka底层数据同步的关键:
Kafka取Partition所对应的ISR中最小的LEO作为整个Partition的HW;
每个Partition都会有自己独立的HW,与此同时leader和follower都会负责维护和更新自己的HW。
对于leader新写入的消息,Consumer不能立刻被发现并进行消费,leader会等待该消息被ISR中所有的replica同步更新HW后,此时leader才会更新该partition的HW为之前新写入消息的offset,此时该消息对外才可见。
在分布式架构中,服务的可用性和数据的一致性是一个绕不开的话题,Kafka也不例外。
如上文所说:当leader接受到一条消息后,需要等待ISR中所有的replica都同步复制完成以后,该消息才能被消费。
如果在同步的过程中,ISR中如果有follower replica的同步落后延迟超过了阈值,则会被leader从ISR中剔除;只要ISR中所有的replica均同步成功,则该消息就一定不会丢失。
从数据的角度出发,这种方式很契合一致性的需求,但是当集群的节点数较多,ISR队里的副本数变大时,每条消息的同步时长可能并不是所有业务场景所能容忍的,所以Kafka在Procer阶段通过 request.required.acks 参数提供了不同类型的应答机制以方便用户在系统吞吐量和一致性之间进行权衡:
假如一个Partition有两个Replica,A(Leader)中包含的数据为a, b, c, d, e,LEO为5;B(Follower)包含的数据为a, b, c,LEO为3;此时该Partition的HW为3,Consumer可见的消息为a, b, c,系统对外表示正常;
当follower还未来得及同步消息d、e时,leader挂了,此时B变成Leader,并且Procer重新发了两条消息f和g;因为此时系统中只有B一个存活,所以Partition对外的HW这会更新为5没有问题,Consumer可见的内容为a, b, c, f, g;此时A被唤醒并作为Follower开始从Leader中拉取数据,因为follower自身的HW等于Leader的HW,所以B没有拉去到任何数据,当Procer继续发送消息时,就会导致副本A、B的数据集不一致。
这个问题在0.11.0.0中通过 leader epoch机制 来消除该问题,可以把epoch理解为代(版本)的概念,即每一次的leader对应一个唯一的epoch,如果leader更换,则对应的epoch值也会随之更换,而过期的epoch请求则都会被忽略。
Kafka——broker宕机后无法消费问题
https://www.cnblogs.com/caoweixiong/p/12048276.html
B. Zookeeper 在 Kafka 中的作用
如上图所示,kafaka集群的 broker,和 Consumer 都需要连接 Zookeeper。
Procer 直接连接 Broker。
Procer 把数据上传到 Broker,Procer可以指定数据有几个分区、几个备份。上面的图中,数据有两个分区 0、1,每个分区都有自己的副本:0'、 1'。
黄色的分区为 leader,白色的为 follower。
leader 处理 partition 的所有读写请求,与此同时,follower会被动定期地去复制leader上的数据。 如下图所示,红色的为 leader,绿色的为 follower,leader复制自己到其他 Broker 中:
Topic 分区被放在不同的 Broker 中,保证 Procer 和 Consumer 错开访问 Broker,避免访问单个 Broker造成过度的IO压力,使得负载均衡。
Broker是分布式部署并且相互之间相互独立,但是需要有一个注册系统能够将整个集群中的Broker管理起来 ,此时就使用到了Zookeeper。在Zookeeper上会有一个专门 用来进行Broker服务器列表记录 的节点:
/brokers/ids
每个Broker在启动时,都会到Zookeeper上进行注册,即到/brokers/ids下创建属于自己的节点,如/brokers/ids/[0...N]。
Kafka使用了全局唯一的数字来指代每个Broker服务器,不同的Broker必须使用不同的Broker ID进行注册,创建完节点后, 每个Broker就会将自己的IP地址和端口信息记录 到该节点中去。其中,Broker创建的节点类型是临时节点,一旦Broker宕机,则对应的临时节点也会被自动删除。
在Kafka中,同一个 Topic的消息会被分成多个分区 并将其分布在多个Broker上, 这些分区信息及与Broker的对应关系 也都是由Zookeeper在维护,由专门的节点来记录,如:
/borkers/topics
Kafka中每个Topic都会以/brokers/topics/[topic]的形式被记录,如/brokers/topics/login和/brokers/topics/search等。Broker服务器启动后,会到对应Topic节点(/brokers/topics)上注册自己的Broker ID并写入针对该Topic的分区总数,如/brokers/topics/login/3->2,这个节点表示Broker ID为3的一个Broker服务器,对于"login"这个Topic的消息,提供了2个分区进行消息存储,同样,这个分区节点也是临时节点。
由于同一个Topic消息会被分区并将其分布在多个Broker上,因此, 生产者需要将消息合理地发送到这些分布式的Broker上 ,那么如何实现生产者的负载均衡,Kafka支持传统的四层负载均衡,也支持Zookeeper方式实现负载均衡。
(1) 四层负载均衡,根据生产者的IP地址和端口来为其确定一个相关联的Broker。通常,一个生产者只会对应单个Broker,然后该生产者产生的消息都发往该Broker。这种方式逻辑简单,每个生产者不需要同其他系统建立额外的TCP连接,只需要和Broker维护单个TCP连接即可。但是,其无法做到真正的负载均衡,因为实际系统中的每个生产者产生的消息量及每个Broker的消息存储量都是不一样的,如果有些生产者产生的消息远多于其他生产者的话,那么会导致不同的Broker接收到的消息总数差异巨大,同时,生产者也无法实时感知到Broker的新增和删除。
(2) 使用Zookeeper进行负载均衡,由于每个Broker启动时,都会完成Broker注册过程,生产者会通过该节点的变化来动态地感知到Broker服务器列表的变更,这样就可以实现动态的负载均衡机制。
与生产者类似,Kafka中的消费者同样需要进行负载均衡来实现多个消费者合理地从对应的Broker服务器上接收消息,每个消费者分组包含若干消费者, 每条消息都只会发送给分组中的一个消费者 ,不同的消费者分组消费自己特定的Topic下面的消息,互不干扰。
消费组 (Consumer Group):
consumer group 下有多个 Consumer(消费者)。
对于每个消费者组 (Consumer Group),Kafka都会为其分配一个全局唯一的Group ID,Group 内部的所有消费者共享该 ID。订阅的topic下的每个分区只能分配给某个 group 下的一个consumer(当然该分区还可以被分配给其他group)。
同时,Kafka为每个消费者分配一个Consumer ID,通常采用"Hostname:UUID"形式表示。
在Kafka中,规定了 每个消息分区 只能被同组的一个消费者进行消费 ,因此,需要在 Zookeeper 上记录 消息分区 与 Consumer 之间的关系,每个消费者一旦确定了对一个消息分区的消费权力,需要将其Consumer ID 写入到 Zookeeper 对应消息分区的临时节点上,例如:
/consumers/[group_id]/owners/[topic]/[broker_id-partition_id]
其中,[broker_id-partition_id]就是一个 消息分区 的标识,节点内容就是该 消息分区 上 消费者的Consumer ID。
在消费者对指定消息分区进行消息消费的过程中, 需要定时地将分区消息的消费进度Offset记录到Zookeeper上 ,以便在该消费者进行重启或者其他消费者重新接管该消息分区的消息消费后,能够从之前的进度开始继续进行消息消费。Offset在Zookeeper中由一个专门节点进行记录,其节点路径为:
/consumers/[group_id]/offsets/[topic]/[broker_id-partition_id]
节点内容就是Offset的值。
消费者服务器在初始化启动时加入消费者分组的步骤如下
注册到消费者分组。每个消费者服务器启动时,都会到Zookeeper的指定节点下创建一个属于自己的消费者节点,例如/consumers/[group_id]/ids/[consumer_id],完成节点创建后,消费者就会将自己订阅的Topic信息写入该临时节点。
对 消费者分组 中的 消费者 的变化注册监听 。每个 消费者 都需要关注所属 消费者分组 中其他消费者服务器的变化情况,即对/consumers/[group_id]/ids节点注册子节点变化的Watcher监听,一旦发现消费者新增或减少,就触发消费者的负载均衡。
对Broker服务器变化注册监听 。消费者需要对/broker/ids/[0-N]中的节点进行监听,如果发现Broker服务器列表发生变化,那么就根据具体情况来决定是否需要进行消费者负载均衡。
进行消费者负载均衡 。为了让同一个Topic下不同分区的消息尽量均衡地被多个 消费者 消费而进行 消费者 与 消息 分区分配的过程,通常,对于一个消费者分组,如果组内的消费者服务器发生变更或Broker服务器发生变更,会发出消费者负载均衡。
以下是kafka在zookeep中的详细存储结构图:
早期版本的 kafka 用 zk 做 meta 信息存储,consumer 的消费状态,group 的管理以及 offse t的值。考虑到zk本身的一些因素以及整个架构较大概率存在单点问题,新版本中确实逐渐弱化了zookeeper的作用。新的consumer使用了kafka内部的group coordination协议,也减少了对zookeeper的依赖
C. kafka的原理是什么
在Kafka中的每一条消息都有一个topic。一般来说在我们应用中产生不同类型的数据,都可以设置不同的主题。一个主题一般会有多个消息的订阅者,当生产者发布消息到某个主题时,订阅了这个主题的消费者都可以接收到生产者写入的新消息。
kafka为每个主题维护了分布式的分区(partition)日志文件,每个partition在kafka存储层面是append log。
任何发布到此partition的消息都会被追加到log文件的尾部,在分区中的每条消息都会按照时间顺序分配到一个单调递增的顺序编号,也就是我们的offset,offset是一个long型的数字,通过这个offset可以确定一条在该partition下的唯一消息。在partition下面是保证了有序性,但是在topic下面没有保证有序性。
(3)kafka存储扩展阅读
procer选择一个topic,生产消息,消息会通过分配策略append到某个partition末尾。
consumer选择一个topic,通过id指定从哪个位置开始消费消息。消费完成之后保留id,下次可以从这个位置开始继续消费,也可以从其他任意位置开始消费。
保证了消息不变性,为并发消费提供了线程安全的保证。每个 consumer都保留自己的offset,互相之间不干扰,不存在线程安全问题。
消息访问的并行高效性。每个topic中的消息被组织成多个partition,partition均匀分配到集群server中。生产、消费消息的时候,会被路由到指定partition,减少竞争,增加了程序的并行能力。
D. 怎么设置kafka topic数据存储时间
1、Kafka创建topic命令很简单,一条命令足矣:bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 3 --partitions 3 --topic test 。
E. kafka是干嘛的
Kafka是由Apache软件基金会开发的一个开源流处理平台,由Scala和Java编写。Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者在网站中的所有动作流数据。
这种动作(网页浏览,搜索和其他用户的行动)是在现代网络上的许多社会功能的一个关键因素。 这些数据通常是由于吞吐量的要求而通过处理日志和日志聚合来解决。
对于像Hadoop一样的日志数据和离线分析系统,但又要求实时处理的限制,这是一个可行的解决方案。Kafka的目的是通过Hadoop的并行加载机制来统一线上和离线的消息处理,也是为了通过集群来提供实时的消息。
主要特性
Kafka是一种高吞吐量 的分布式发布订阅消息系统,有如下特性:
通过O(1)的磁盘数据结构提供消息的持久化,这种结构对于即使数以TB的消息存储也能够保持长时间的稳定性能。
高吞吐量:即使是非常普通的硬件Kafka也可以支持每秒数百万的消息。
支持通过Kafka服务器和消费机集群来分区消息。
支持Hadoop并行数据加载。
Kafka通过官网发布了最新版本3.0.0。
以上内容来自 网络-kafka
F. 消息队列原理及选型
消息队列(Message Queue)是一种进程间通信或同一进程的不同线程间的通信方式。
Broker(消息服务器)
Broker的概念来自与Apache ActiveMQ,通俗的讲就是MQ的服务器。
Procer(生产者)
业务的发起方,负责生产消息传输给broker
Consumer(消费者)
业务的处理方,负责从broker获取消息并进行业务逻辑处理
Topic(主题)
发布订阅模式下的消息统一汇集地,不同生产者向topic发送消息,由MQ服务器分发到不同的订阅 者,实现消息的广播
Queue(队列)
PTP模式下,特定生产者向特定queue发送消息,消费者订阅特定的queue完成指定消息的接收。
Message(消息体)
根据不同通信协议定义的固定格式进行编码的数据包,来封装业务数据,实现消息的传输
点对点模型用于消息生产者和消息消费者之间点到点的通信。
点对点模式包含三个角色:
每个消息都被发送到一个特定的队列,接收者从队列中获取消息。队列保留着消息,可以放在内存 中也可以持久化,直到他们被消费或超时。
特点:
发布订阅模型包含三个角色:
多个发布者将消息发送到Topic,系统将这些消息传递给多个订阅者。
特点:
AMQP即Advanced Message Queuing Protocol,是应用层协议的一个开放标准,为面向消息的中间件设计。消息中间件主要用于组件之间的解耦,消息的发送者无需知道消息使用者的存在,反之亦然。AMQP 的主要特征是面向消息、队列、路由(包括点对点和发布/订阅)、可靠性、安全。
优点:可靠、通用
MQTT(Message Queuing Telemetry Transport,消息队列遥测传输)是IBM开发的一个即时通讯协议,有可能成为物联网的重要组成部分。该协议支持所有平台,几乎可以把所有联网物品和外部连接起来,被用来当做传感器和致动器(比如通过Twitter让房屋联网)的通信协议。
优点:格式简洁、占用带宽小、移动端通信、PUSH、嵌入式系统
STOMP(Streaming Text Orientated Message Protocol)是流文本定向消息协议,是一种为MOM(Message Oriented Middleware,面向消息的中间件)设计的简单文本协议。STOMP提供一个可互操作的连接格式,允许客户端与任意STOMP消息代理(Broker)进行交互。
优点:命令模式(非topicqueue模式)
XMPP(可扩展消息处理现场协议,Extensible Messaging and Presence Protocol)是基于可扩展标记语言(XML)的协议,多用于即时消息(IM)以及在线现场探测。适用于服务器之间的准即时操作。核心是基于XML流传输,这个协议可能最终允许因特网用户向因特网上的其他任何人发送即时消息,即使其操作系统和浏览器不同。
优点:通用公开、兼容性强、可扩展、安全性高,但XML编码格式占用带宽大
RabbitMQ 是实现 AMQP(高级消息队列协议)的消息中间件的一种,最初起源于金融系统,用于在分布式系统中存储转发消息,在易用性、扩展性、高可用性等方面表现不俗。 RabbitMQ 主要是为了实现系统之间的双向解耦而实现的。当生产者大量产生数据时,消费者无法快速消费,那么需要一个中间层。保存这个数据。
RabbitMQ 是一个开源的 AMQP 实现,服务器端用Erlang语言编写,支持多种客户端,如:Python、Ruby、.NET、Java、JMS、C、PHP、ActionScript、XMPP、STOMP 等,支持 AJAX。用于在分布式系统中存储转发消息,在易用性、扩展性、高可用性等方面表现不俗。
Channel(通道)
道是两个管理器之间的一种单向点对点的的通信连接,如果需要双向交流,可以建立一对通道。
Exchange(消息交换机)
Exchange类似于数据通信网络中的交换机,提供消息路由策略。
RabbitMq中,procer不是通过信道直接将消息发送给queue,而是先发送给Exchange。一个Exchange可以和多个Queue进行绑定,procer在传递消息的时候,会传递一个ROUTING_KEY,Exchange会根据这个ROUTING_KEY按照特定的路由算法,将消息路由给指定的queue。和Queue一样,Exchange也可设置为持久化,临时或者自动删除。
Exchange有4种类型:direct(默认),fanout, topic, 和headers。
不同类型的Exchange转发消息的策略有所区别:
Binding(绑定)
所谓绑定就是将一个特定的 Exchange 和一个特定的 Queue 绑定起来。Exchange 和Queue的绑定可以是多对多的关系。
Routing Key(路由关键字)
exchange根据这个关键字进行消息投递。
vhost(虚拟主机)
在RabbitMq server上可以创建多个虚拟的message broker,又叫做virtual hosts (vhosts)。每一个vhost本质上是一个mini-rabbitmq server,分别管理各自的exchange,和bindings。vhost相当于物理的server,可以为不同app提供边界隔离,使得应用安全的运行在不同的vhost实例上,相互之间不会干扰。procer和consumer连接rabbit server需要指定一个vhost。
假设P1和C1注册了相同的Broker,Exchange和Queue。P1发送的消息最终会被C1消费。
基本的通信流程大概如下所示:
Consumer收到消息时需要显式的向rabbit broker发送basic。ack消息或者consumer订阅消息时设置auto_ack参数为true。
在通信过程中,队列对ACK的处理有以下几种情况:
即消息的Ackownledge确认机制,为了保证消息不丢失,消息队列提供了消息Acknowledge机制,即ACK机制,当Consumer确认消息已经被消费处理,发送一个ACK给消息队列,此时消息队列便可以删除这个消息了。如果Consumer宕机/关闭,没有发送ACK,消息队列将认为这个消息没有被处理,会将这个消息重新发送给其他的Consumer重新消费处理。
消息的收发处理支持事务,例如:在任务中心场景中,一次处理可能涉及多个消息的接收、处理,这应该处于同一个事务范围内,如果一个消息处理失败,事务回滚,消息重新回到队列中。
消息的持久化,对于一些关键的核心业务来说是非常重要的,启用消息持久化后,消息队列宕机重启后,消息可以从持久化存储恢复,消息不丢失,可以继续消费处理。
fanout 模式
模式特点:
direct 模式
任何发送到Direct Exchange的消息都会被转发到routing_key中指定的Queue。
如果一个exchange 声明为direct,并且bind中指定了routing_key,那么发送消息时需要同时指明该exchange和routing_key。
简而言之就是:生产者生成消息发送给Exchange, Exchange根据Exchange类型和basic_publish中的routing_key进行消息发送 消费者:订阅Exchange并根据Exchange类型和binding key(bindings 中的routing key) ,如果生产者和订阅者的routing_key相同,Exchange就会路由到那个队列。
topic 模式
前面讲到direct类型的Exchange路由规则是完全匹配binding key与routing key,但这种严格的匹配方式在很多情况下不能满足实际业务需求。
topic类型的Exchange在匹配规则上进行了扩展,它与direct类型的Exchage相似,也是将消息路由到binding key与routing key相匹配的Queue中,但这里的匹配规则有些不同。
它约定:
以上图中的配置为例,routingKey=”quick.orange.rabbit”的消息会同时路由到Q1与Q2,routingKey=”lazy.orange.fox”的消息会路由到Q1,routingKey=”lazy.brown.fox”的消息会路由到Q2,routingKey=”lazy.pink.rabbit”的消息会路由到Q2(只会投递给Q2一次,虽然这个routingKey与Q2的两个bindingKey都匹配);routingKey=”quick.brown.fox”、routingKey=”orange”、routingKey=”quick.orange.male.rabbit”的消息将会被丢弃,因为它们没有匹配任何bindingKey。
RabbitMQ,部署分三种模式:单机模式,普通集群模式,镜像集群模式。
普通集群模式
多台机器部署,每个机器放一个rabbitmq实例,但是创建的queue只会放在一个rabbitmq实例上,每个实例同步queue的元数据。
如果消费时连的是其他实例,那个实例会从queue所在实例拉取数据。这就会导致拉取数据的开销,如果那个放queue的实例宕机了,那么其他实例就无法从那个实例拉取,即便开启了消息持久化,让rabbitmq落地存储消息的话,消息不一定会丢,但得等这个实例恢复了,然后才可以继续从这个queue拉取数据, 这就没什么高可用可言,主要是提供吞吐量 ,让集群中多个节点来服务某个queue的读写操作。
镜像集群模式
queue的元数据和消息都会存放在多个实例,每次写消息就自动同步到多个queue实例里。这样任何一个机器宕机,其他机器都可以顶上,但是性能开销太大,消息同步导致网络带宽压力和消耗很重,另外,没有扩展性可言,如果queue负载很重,加机器,新增的机器也包含了这个queue的所有数据,并没有办法线性扩展你的queue。此时,需要开启镜像集群模式,在rabbitmq管理控制台新增一个策略,将数据同步到指定数量的节点,然后你再次创建queue的时候,应用这个策略,就会自动将数据同步到其他的节点上去了。
Kafka 是 Apache 的子项目,是一个高性能跨语言的分布式发布/订阅消息队列系统(没有严格实现 JMS 规范的点对点模型,但可以实现其效果),在企业开发中有广泛的应用。高性能是其最大优势,劣势是消息的可靠性(丢失或重复),这个劣势是为了换取高性能,开发者可以以稍降低性能,来换取消息的可靠性。
一个Topic可以认为是一类消息,每个topic将被分成多个partition(区),每个partition在存储层面是append log文件。任何发布到此partition的消息都会被直接追加到log文件的尾部,每条消息在文件中的位置称为offset(偏移量),offset为一个long型数字,它是唯一标记一条消息。它唯一的标记一条消息。kafka并没有提供其他额外的索引机制来存储offset,因为在kafka中几乎不允许对消息进行“随机读写”。
Kafka和JMS(Java Message Service)实现(activeMQ)不同的是:即使消息被消费,消息仍然不会被立即删除。日志文件将会根据broker中的配置要求,保留一定的时间之后删除;比如log文件保留2天,那么两天后,文件会被清除,无论其中的消息是否被消费。kafka通过这种简单的手段,来释放磁盘空间,以及减少消息消费之后对文件内容改动的磁盘IO开支。
对于consumer而言,它需要保存消费消息的offset,对于offset的保存和使用,有consumer来控制;当consumer正常消费消息时,offset将会"线性"的向前驱动,即消息将依次顺序被消费。事实上consumer可以使用任意顺序消费消息,它只需要将offset重置为任意值。(offset将会保存在zookeeper中,参见下文)
kafka集群几乎不需要维护任何consumer和procer状态信息,这些信息有zookeeper保存;因此procer和consumer的客户端实现非常轻量级,它们可以随意离开,而不会对集群造成额外的影响。
partitions的设计目的有多个。最根本原因是kafka基于文件存储。通过分区,可以将日志内容分散到多个server上,来避免文件尺寸达到单机磁盘的上限,每个partiton都会被当前server(kafka实例)保存;可以将一个topic切分多任意多个partitions,来消息保存/消费的效率。此外越多的partitions意味着可以容纳更多的consumer,有效提升并发消费的能力。(具体原理参见下文)。
一个Topic的多个partitions,被分布在kafka集群中的多个server上;每个server(kafka实例)负责partitions中消息的读写操作;此外kafka还可以配置partitions需要备份的个数(replicas),每个partition将会被备份到多台机器上,以提高可用性。
基于replicated方案,那么就意味着需要对多个备份进行调度;每个partition都有一个server为"leader";leader负责所有的读写操作,如果leader失效,那么将会有其他follower来接管(成为新的leader);follower只是单调的和leader跟进,同步消息即可。由此可见作为leader的server承载了全部的请求压力,因此从集群的整体考虑,有多少个partitions就意味着有多少个"leader",kafka会将"leader"均衡的分散在每个实例上,来确保整体的性能稳定。
Procers
Procer将消息发布到指定的Topic中,同时Procer也能决定将此消息归属于哪个partition;比如基于"round-robin"方式或者通过其他的一些算法等。
Consumers
本质上kafka只支持Topic。每个consumer属于一个consumer group;反过来说,每个group中可以有多个consumer。发送到Topic的消息,只会被订阅此Topic的每个group中的一个consumer消费。
如果所有的consumer都具有相同的group,这种情况和queue模式很像;消息将会在consumers之间负载均衡。
如果所有的consumer都具有不同的group,那这就是"发布-订阅";消息将会广播给所有的消费者。
在kafka中,一个partition中的消息只会被group中的一个consumer消费;每个group中consumer消息消费互相独立;我们可以认为一个group是一个"订阅"者,一个Topic中的每个partions,只会被一个"订阅者"中的一个consumer消费,不过一个consumer可以消费多个partitions中的消息。kafka只能保证一个partition中的消息被某个consumer消费时,消息是顺序的。事实上,从Topic角度来说,消息仍不是有序的。
Kafka的设计原理决定,对于一个topic,同一个group中不能有多于partitions个数的consumer同时消费,否则将意味着某些consumer将无法得到消息。
Guarantees
Kafka就比较适合高吞吐量并且允许少量数据丢失的场景,如果非要保证“消息可靠传输”,可以使用JMS。
Kafka Procer 消息发送有两种方式(配置参数 procer.type):
对于同步方式(procer.type=sync)?Kafka Procer 消息发送有三种确认方式(配置参数 acks):
kafka的设计初衷是希望作为一个统一的信息收集平台,能够实时的收集反馈信息,并需要能够支撑较大的数据量,且具备良好的容错能力。
持久性
kafka使用文件存储消息,这就直接决定kafka在性能上严重依赖文件系统的本身特性。且无论任何OS下,对文件系统本身的优化几乎没有可能。文件缓存/直接内存映射等是常用的手段。因为kafka是对日志文件进行append操作,因此磁盘检索的开支是较小的;同时为了减少磁盘写入的次数,broker会将消息暂时buffer起来,当消息的个数(或尺寸)达到一定阀值时,再flush到磁盘,这样减少了磁盘IO调用的次数。
性能
需要考虑的影响性能点很多,除磁盘IO之外,我们还需要考虑网络IO,这直接关系到kafka的吞吐量问题。kafka并没有提供太多高超的技巧;对于procer端,可以将消息buffer起来,当消息的条数达到一定阀值时,批量发送给broker;对于consumer端也是一样,批量fetch多条消息。不过消息量的大小可以通过配置文件来指定。对于kafka broker端,似乎有个sendfile系统调用可以潜在的提升网络IO的性能:将文件的数据映射到系统内存中,socket直接读取相应的内存区域即可,而无需进程再次和交换。 其实对于procer/consumer/broker三者而言,CPU的开支应该都不大,因此启用消息压缩机制是一个良好的策略;压缩需要消耗少量的CPU资源,不过对于kafka而言,网络IO更应该需要考虑。可以将任何在网络上传输的消息都经过压缩。kafka支持gzip/snappy等多种压缩方式。
生产者
负载均衡: procer将会和Topic下所有partition leader保持socket连接;消息由procer直接通过socket发送到broker,中间不会经过任何“路由层“。事实上,消息被路由到哪个partition上,有procer客户端决定。比如可以采用“random““key-hash““轮询“等,如果一个topic中有多个partitions,那么在procer端实现“消息均衡分发“是必要的。
其中partition leader的位置(host:port)注册在zookeeper中,procer作为zookeeper client,已经注册了watch用来监听partition leader的变更事件。
异步发送:将多条消息暂且在客户端buffer起来,并将他们批量的发送到broker,小数据IO太多,会拖慢整体的网络延迟,批量延迟发送事实上提升了网络效率。不过这也有一定的隐患,比如说当procer失效时,那些尚未发送的消息将会丢失。
消费者
consumer端向broker发送“fetch”请求,并告知其获取消息的offset;此后consumer将会获得一定条数的消息;consumer端也可以重置offset来重新消费消息。
在JMS实现中,Topic模型基于push方式,即broker将消息推送给consumer端。不过在kafka中,采用了pull方式,即consumer在和broker建立连接之后,主动去pull(或者说fetch)消息;这中模式有些优点,首先consumer端可以根据自己的消费能力适时的去fetch消息并处理,且可以控制消息消费的进度(offset);此外,消费者可以良好的控制消息消费的数量,batch fetch。
其他JMS实现,消息消费的位置是有prodiver保留,以便避免重复发送消息或者将没有消费成功的消息重发等,同时还要控制消息的状态。这就要求JMS broker需要太多额外的工作。在kafka中,partition中的消息只有一个consumer在消费,且不存在消息状态的控制,也没有复杂的消息确认机制,可见kafka broker端是相当轻量级的。当消息被consumer接收之后,consumer可以在本地保存最后消息的offset,并间歇性的向zookeeper注册offset。由此可见,consumer客户端也很轻量级。
对于JMS实现,消息传输担保非常直接:有且只有一次(exactly once)。
在kafka中稍有不同:
at most once: 消费者fetch消息,然后保存offset,然后处理消息;当client保存offset之后,但是在消息处理过程中出现了异常,导致部分消息未能继续处理。那么此后"未处理"的消息将不能被fetch到,这就是"at most once"。
at least once: 消费者fetch消息,然后处理消息,然后保存offset。如果消息处理成功之后,但是在保存offset阶段zookeeper异常导致保存操作未能执行成功,这就导致接下来再次fetch时可能获得上次已经处理过的消息,这就是"at least once",原因offset没有及时的提交给zookeeper,zookeeper恢复正常还是之前offset状态。
exactly once: kafka中并没有严格的去实现(基于2阶段提交,事务),我们认为这种策略在kafka中是没有必要的。
通常情况下“at-least-once”是我们首选。(相比at most once而言,重复接收数据总比丢失数据要好)。
kafka高可用由多个broker组成,每个broker是一个节点;
创建一个topic,这个topic会划分为多个partition,每个partition存在于不同的broker上,每个partition就放一部分数据。
kafka是一个分布式消息队列,就是说一个topic的数据,是分散放在不同的机器上,每个机器就放一部分数据。
在0.8版本以前,是没有HA机制的,就是任何一个broker宕机了,那个broker上的partition就废了,没法写也没法读,没有什么高可用性可言。
0.8版本以后,才提供了HA机制,也就是就是replica副本机制。每个partition的数据都会同步到其他的机器上,形成自己的多个replica副本。然后所有replica会选举一个leader出来,那么生产和消费都跟这个leader打交道,然后其他replica就是follower。
写的时候,leader会负责把数据同步到所有follower上去,读的时候就直接读leader上数据即可。
kafka会均匀的将一个partition的所有replica分布在不同的机器上,从而提高容错性。
如果某个broker宕机了也没事,它上面的partition在其他机器上都有副本的,如果这上面有某个partition的leader,那么此时会重新选举一个新的leader出来,大家继续读写那个新的leader即可。这就有所谓的高可用性了。
写数据的时候,生产者就写leader,然后leader将数据落地写本地磁盘,接着其他follower自己主动从leader来pull数据。一旦所有follower同步好数据了,就会发送ack给leader,leader收到所有follower的ack之后,就会返回写成功的消息给生产者。
消息丢失会出现在三个环节,分别是生产者、mq中间件、消费者:
RabbitMQ
Kafka
大体和RabbitMQ相同。
Rabbitmq
需要保证顺序的消息投递到同一个queue中,这个queue只能有一个consumer,如果需要提升性能,可以用内存队列做排队,然后分发给底层不同的worker来处理。
Kafka
写入一个partition中的数据一定是有序的。生产者在写的时候 ,可以指定一个key,比如指定订单id作为key,这个订单相关数据一定会被分发到一个partition中去。消费者从partition中取出数据的时候也一定是有序的,把每个数据放入对应的一个内存队列,一个partition中有几条相关数据就用几个内存队列,消费者开启多个线程,每个线程处理一个内存队列。