hbase存储架构图
⑴ HBase数据结构是什么
RowKey
与nosql数据库们一样,RowKey是用来检索记录的主键。访问HBASE table中的行,只有三种方式:
通过单个RowKey访问(get)
通过RowKey的range(正则)(like)
全表扫描(scan)
RowKey行键 (RowKey)可以是任意字符串(最大长度是64KB,实际应用中长度一般为 10-100bytes),在HBASE内部,RowKey保存为字节数组。存储时,数据按照RowKey的字典序(byte order)排序存储。设计RowKey时,要充分排序存储这个特性,将经常一起读取的行存储放到一起。(位置相关性)Table:表,所有的表都是命名空间的成员,即表必属于某个命名空间,如果没有指定,则在default默认的命名空间中。
RegionServer group:一个命名空间包含了默认的RegionServer Group。
Permission:权限,命名空间能够让我们来定义访问控制列表ACL(Access Control List)。例如,创建表,读取表,删除,更新等等操作。
Quota:限额,可以强制一个命名空间可包含的region的数量。
Column Family
列族:HBASE表中的每个列,都归属于某个列族。列族是表的schema的一部 分(而列不是),必须在使用表之前定义。列名都以列族作为前缀。例如 courses:history,courses:math都属于courses 这个列族。
Cell
由{rowkey, column Family:columu, version} 唯一确定的单元。cell中的数据是没有类型的,全部是字节码形式存贮。
关键字:无类型、字节码
Time Stamp
HBASE 中通过rowkey和columns确定的为一个存贮单元称为cell。每个 cell都保存 着同一份数据的多个版本。版本通过时间戳来索引。时间戳的类型是 64位整型。时间戳可以由HBASE(在数据写入时自动 )赋值,此时时间戳是精确到毫秒 的当前系统时间。时间戳也可以由客户显式赋值。如果应用程序要避免数据版 本冲突,就必须自己生成具有唯一性的时间戳。每个 cell中,不同版本的数据按照时间倒序排序,即最新的数据排在最前面。
为了避免数据存在过多版本造成的的管理 (包括存贮和索引)负担,HBASE提供 了两种数据版本回收方式。一是保存数据的最后n个版本,二是保存最近一段 时间内的版本(比如最近七天)。用户可以针对每个列族进行设置。
命名空间
命名空间的结构:
⑵ hbase是如何做到并发写的和随机写的
阅读数:9381
Hbase概述
hbase是一个构建在HDFS上的分布式列存储系统。HBase是Apache Hadoop生态系统中的重要 一员,主要用于海量结构化数据存储。从逻辑上讲,HBase将数据按照表、行和列进行存储。
如图所示,Hbase构建在HDFS之上,hadoop之下。其内部管理的文件全部存储在HDFS中。与HDFS相比两者都具有良好的容错性和扩展性,都可以 扩展到成百上千个节点。但HDFS适合批处理场景,不支持数据随机查找,不适合增量数据处理且不支持数据更新。
Hbase是列存储的非关系数据库。传统数据库MySQL等,数据是按行存储的。其没有索引的查询将消耗大量I/O 并且建立索引和物化视图需要花费大量时间和资源。因此,为了满足面向查询的需求,数据库必须被大量膨胀才能满 足性能要求。
Hbase数据是按列存储-每一列单独存放。列存储的优点是数据即是索引。访问查询涉及的列-大量降低系统I/O 。并且每一列由一个线索来处理,可以实现查询的并发处理。基于Hbase数据类型一致性,可以实现数据库的高效压缩。
HBase数据模型
HBase是基于Google BigTable模型开发的, 典型的key/value系统。一个Row key对应很多Column Family,Column Family中有很多Column。其中,保存了不同时间戳的数据。
如图所示,Rowkey cutting对应列簇info和roles。其中,info中有key-value对hight-9ft,state-CA。更清晰的结构如下图所:
Hbase的所有操作均是基于rowkey的。支持CRUD(Create、Read、Update和Delete)和 Scan操作。 包括单行操作Put 、Get、Scan。多行操作包括Scan和MultiPut。但没有内置join操作,可使用MapRece解决。
HBase物理模型
Hbase的Table中的所有行都按照row key的字典序排列。Table 在行的方向上分割为多个Region。、Region按大小分割的,每个表开始只有一个region,随 着数据增多,region不断增大,当增大到一个阀值的时候, region就会等分会两个新的region,之后会有越来越多的 region。
Region是HBase中分布式存储和负载均衡的最小单元。 不同Region分布到不同RegionServer上。
Region虽然是分布式存储的最小单元,但并不是存储 的最小单元。Region由一个或者多个Store组成,每个store保存一个 columns family。每个Strore又由一个memStore和0至多个StoreFile组成。memStore存储在内存中,StoreFile存储在HDFS上。
HBase基本架构
HBase构建在HDFS之上,其组件包括 Client、zookeeper、HDFS、Hmaster以及HRegionServer。Client包含访问HBase的接口,并维护cache来加快对HBase的访问。Zookeeper用来保证任何时候,集群中只有一个master,存贮所有Region的寻址入口以及实时监控Region server的上线和下线信息。并实时通知给Master存储HBase的schema和table元数据。HMaster负责为Region server分配region和Region server的负载均衡。如果发现失效的Region server并重新分配其上的region。同时,管理用户对table的增删改查操作。Region Server 负责维护region,处理对这些region的IO请求并且切分在运行过程中变得过大的region。
HBase 依赖ZooKeeper,默认情况下,HBase 管理ZooKeeper 实例。比如, 启动或者停止ZooKeeper。Master与RegionServers 启动时会向ZooKeeper注册。因此,Zookeeper的引入使得 Master不再是单点故障。
Client每次写数据库之前,都会首先血Hlog日志。记录写操作。如果不做日志记录,一旦发生故障,操作将不可恢复。HMaster一旦故障,Zookeeper将重新选择一个新的Master 。无Master过程中,数据读取仍照常进行。但是,无master过程中,region切分、负载均衡等无法进行。RegionServer出现故障的处理原理是定时向Zookeeper汇报心跳,如果一旦时 间内未出现心跳HMaster将该RegionServer上的Region重新分配到其他RegionServer上。失效服务器上“预写”日志由主服务器进行分割并派送给新的 RegionServer 。Zookeeper是一个可靠地服务,一般配置3或5个Zookeeper实例。
寻找RegionServer定位的顺序是ZooKeeper --ROOT-(单Region) -.META. -用户表 。如上图所示。-ROOT- 表包含.META.表所在的region列表,该表只会有一 个Region。 Zookeeper中记录了-ROOT-表的location。 .META. 表包含所有的用户空间region列表,以及 RegionServer的服务器地址。
HBase应用举例
Hbase适合需对数据进行随机读操作或者随机写操作、大数据上高并发操作,比如每秒对PB级数据进行上千次操作以及读写访问均是非常简单的操作。
淘宝指数是Hbase在淘宝的一个典型应用。交易历史纪录查询很适合用Hbase作为底层数据库。
⑶ 大数据下的地质资料信息存储架构设计
颉贵琴 胡晓琴
(甘肃省国土资源信息中心)
摘要 为推进我国地质资料信息服务集群化产业化工作,更大更好地发挥地质资料信息的价值,本文针对我国现有的地质资料信息集群化共享服务平台存在的缺陷和问题,基于现有系统的存储架构,设计了一种大数据下的地质资料信息存储架构,以便于我国地质资料信息服务集群化产业化工作能够适应大数据时代的数据存储。
关键词 大数据 地质资料 存储 NoSQL 双数据库
0 引言
新中国成立60多年来,我国形成了海量的地质资料信息,为国民经济和社会发展提供了重要支撑。但在地质资料管理方面长期存在资料信息分散、综合研究不够、数字化信息化程度不高、服务渠道不畅、服务能力不强等问题,使地质资料信息的巨大潜在价值未能得到充分发挥。为进一步提高地质工作服务国民经济和社会发展的能力,充分发挥地质资料信息的服务功能,扩大服务领域,国土资源部根据国内外地质工作的先进经验,做出了全面推进地质资料信息服务集群化产业化工作的部署。
目前,全国各省地质资料馆都在有条不紊地对本省成果、原始和实物地质资料进行清理,并对其中重要地质资料进行数字化和存储工作。然而,由于我国地质资源丰富,经过几十年的积累,已经形成了海量的地质资料,数据量早已经超过了几百太字节(TB)。在进行地质资料信息服务集群化工作中,随着共享数据量的不断增大,传统的数据存储方式和管理系统必然会展现出存储和检索方面的不足以及系统管理方面的缺陷。为了解决该问题,需要设计更加先进的数据存储架构来实现海量地质资料的存储。
而大数据(Big Data)作为近年来在云计算领域中出现的一种新型数据,科技工作者在不断的研究中,设计了适合大数据存储管理的非关系型数据库NoSQL进行大数据的存储和管理。本文将针对我国现有的地质资料信息集群化共享服务平台存在的缺陷和问题,利用大数据存储管理模式的思想,提出一种海量地质资料存储架构,改进现有系统存储架构,以便于我国全面推进地质资料信息服务集群化产业化工作。
1 工作现状
1.1 国内外地质资料信息的存储现状
在美国,主要有两大地质资料公共服务平台,分别是地球科学信息中心(ESIC)、地球资源观测和科学中心(EROS),其目的是通过为社会和政府提供更加便利、快速的地质信息服务。20世纪90年代初,澳大利亚出台了国家地球科学填图协议,采用先进的科学方法和技术进行数据存储,从而形成了第二代澳大利亚陆地地质图。
目前,我国地质资料信息服务集群化产业化工作刚刚起步,虽然国土资源部信息中心已经开发了地质资料信息集群化共享服务平台,并倡导各地方用户使用该系统。但由于各个地方早期的工作背景不一致,因此各地方所使用的存储系统也不尽相同,主要有Access、SQL Server、Oracle、MySQL等系统。本文以国土资源部信息中心开发的地质资料信息集群化共享服务平台的存储系统MySQL为例说明。该系统是基于关系数据库管理系统MySQL的一套分布式存储检索系统。该系统的部署使得我国地质资料信息服务集群化产业化工作取得了重大进展,同时也为我国建立标准统一的地质资料信息共享服务平台和互联互通的网络服务体系奠定了坚实的基础。然而,该系统的研发并没有考虑到地质资料信息进一步集群化以及在未来地质资料信息进入大数据时代的信息共享和存储管理问题,也没有给出明确的解决方案。
1.2 大数据的存储架构介绍
大数据是近年在云计算领域中出现的一种新型数据,具有数据量大、数据结构不固定、类型多样、查询分析复杂等特点。传统关系型数据库管理系统在数据存储规模、检索效率等方面已不再适合大数据存储。NoSQL(Not Only SQL)是与关系数据库相对的一类数据库的总称。这些数据库放弃了对关系数据库的支持,转而采用灵活的、分布式的数据存储方式管理数据,从而可以满足大数据存储和处理的需求。NoSQL基于非关系型数据存储的设计理念,以键值对进行存储,采用的数据字的结构不固定,每一个元组可以有不一样的字段,且每个元组可以根据自己的需要增加一些自己的键值对,可以减少一些检索时间和存储空间。目前,应用广泛的 NoSQL 数据库有 Google BigTable、HBase、MongoDB、Neo4 j、Infinite Graph等。
2 大数据下的地质资料信息存储架构设计
根据国土资源部做出的全面推进地质资料信息服务集群化产业化工作的部署,国土资源部倡导全国地质资料馆使用国土资源部信息中心开发的地质资料信息集群化共享服务平台,实现地质资料信息的存储和共享。该系统采用了数据库管理系统MySQL作为数据存储系统。
为了与现有系统和现有的工作进行对接,并为将来地质资料进入大数据时代后的存储工作做准备,本文设计了一种能用于海量地质资料信息存储并且兼容MySQL的分布式的数据存储架构(图1)。
整个系统可以根据不同的用户等级分为不同的用户管理层,由于图幅限制,在图1 中仅仅展示了3级:国家级管理层(即共享服务平台用户层)、省级管理层以及市级管理层(可根据实际需要延伸至县级)。
每级管理层的每个用户可以单独管理一个服务器。如国土资源部信息中心可以单独管理一个服务器;甘肃省国土资源信息中心可以单独管理一个服务器,陕西省国土资源信息中心可以单独管理一个服务器;甘肃的若干个市级国土资源局可以根据需要分别管理各自的服务器。
在服务器上分别安装两套数据库管理系统,一套是原有的MySQL数据库管理系统,另一套是为大数据存储而配备的NoSQL型数据库管理系统。在服务器上还专门开发一个数据库管理器中间件,用于进行用户层和数据库的通信以及两套数据库之间的通信。
由于各个管理层都各自维护自己的数据库和数据。当用户需要进行数据存储时,他所影响的数据库仅仅是本地数据库,存储效率较高;当用户需要从多个数据库读取数据时,顶层的共享服务平台会根据用户需求进行任务分解,将任务分发给下层的管理层进行数据库读取,由于各个数据库并行读取,从而提高了数据库读取效率。
图1 大数据下的地质资料信息存储架构框图
2.1 用户管理层
用户管理层根据权限范围,分为多层(本文以3层为例)。
位于顶层的国家级管理层(共享服务平台用户层)负责用户访问权限的分配、与其直接关联的数据库的访问、下级管理层任务的分配等工作。
用户访问权限的分配是指为访问本共享服务平台的个人用户和单位用户分配数据的使用权限、安全性的设计等。
与其直接关联的数据库访问是指直接存储在其本地数据库上的数据的访问。在该数据库中不仅要存储所需要的地质资料,还要存储注册用户信息等数据。
下级管理层任务分配是指如果用户需要访问多个下层数据库,用户只需要输入查询这几个下层数据库的命令,而如何查找下层数据库则由该功能来完成。例如某用户要查找甘肃、陕西、上海、北京的铁矿分布图,则用户只需要输入这几个地方及铁矿等查询条件,系统将自动把各个省的数据库查询任务分派到下级管理层。
同理,位于下层的省级管理层和市级管理层除了没有用户访问权限功能外,其余功能与国家级管理层是相同的。各层之间的数据库通过互联网相互连接成分布式的数据库系统。
2.2 MySQL和NoSQL的融合
MySQL是关系型数据库,它支持SQL查询语言,而NoSQL是非关系型数据库,它不支持SQL查询语言。用户要想透明地访问这两套数据库,必须要设计数据库管理器中间件,作为用户访问数据库的统一入口和两套数据库管理系统的通信平台。本文所设计的数据库管理器简单模型如图2所示。
图2 数据库管理器模型
服务器管理器通过用户程序接口与应用程序进行通讯,通过MySQL数据库接口与MySQL服务器通讯,通过NoSQL数据库接口与NoSQL数据库接口通讯。当应用程序接口接收到一条数据库访问命令之后,交由数据库访问命令解析器进行命令解析,从而形成MySQL访问命令或者NoSQL访问命令,通过相应的数据库接口访问数据库;数据库返回访问结果后经过汇总,由应用程序接口返回给应用程序。
两套数据库可以通过双数据库通信协议进行相互的通信和互访。此通信协议的建立便于地质工作人员将已经存入MySQL数据库的不适合结构化存储的数据转存到NoSQL数据库中,从而便于系统的升级和优化。
2.3 系统的存储和检索模式
在本存储框架设计中,系统采用分布式网络存储模式,即采用可扩展的存储结构,利用分散在全国各地的多台独立的服务器进行数据存储。这种方式不仅分担了服务器的存储压力,提高了系统的可靠性和可用性,还易于进行系统扩展。另外,由于地质资料信息存储的特殊性,各地方用户的数据存储工作基本都是在本地服务器进行,很少通过网络进行远程存储,所以数据存储效率较高。
在一台数据库服务器上安装有MySQL和NoSQL型两套数据库管理系统,分别用于存储地质资料信息中的结构化数据和非结构化数据。其中,NoSQL型数据库作为主数据库,用于存储一部分结构化数据和全部的非结构化数据;而MySQL数据库作为辅助数据库,用于存储一部分结构化的数据,以及旧系统中已经存储的数据。使用两套数据库不仅可以存储结构化数据而且还可以适用于大数据时代地质资料信息的存储,因此系统具有很好的适应性和灵活性。
2.4 安全性设计
地质资料信息是国家的机密,地质工作人员必须要保证它的安全。地质资料信息进入数字化时代之后,地质资料常常在计算机以及网络上进行传输,地质资料信息的安全传输和保存更是地质工作人员必须关注和解决的问题。在本存储架构的设计中设计的安全问题主要有数据库存储安全、数据传输安全、数据访问安全等问题。
数据库设计时采用多边安全模型和多级安全模型阻止数据库中信息和数据的泄露来提高数据库的安全性能,以保障地质信息在数据库中的存储安全;当用户登录系统访问数据库时,必须进行用户甄别和实名认证,这主要是对用户的身份进行有效的识别,防止非法用户访问数据库;在对地质资料进行网络传输时,应该首先将数据进行加密,然后再进行网络传输,以防止地质信息在传输过程中被窃取。
3 结语
提高地质资料数字化信息化水平,是国外地质工作强国的普遍做法。为推进我国地质资料信息服务集群化产业化工作,本文针对我国现有的地质资料信息集群化共享服务平台存在的缺陷和问题,利用大数据存储管理模式的思想,基于现有系统的存储架构,设计了一种大数据下的地质资料信息存储架构,以便于我国地质资料信息服务集群化产业化工作能够适应大数据时代的数据存储。该存储架构的设计只涉及了简单模型的构建,具体详细复杂的功能设计和软件实现还需要在进一步的研究工作中完成。
参考文献
[1]吴金朋.一种大数据存储模型的研究与应用[D].北京:北京邮电大学计算机学院,2012.
[2]吴广君,王树鹏,陈明,等.海量结构化数据存储检索系统[J].计算机研究与发展,2012,49(Suppl):1~5.
[3]黄
⑷ HBase是什么呢,都有哪些特点呢
Hbase是一种NoSQL数据库,这意味着它不像传统的RDBMS数据库那样支持SQL作为查询语言。Hbase是一种分布式存储的数据库,技术上来讲,它更像是分布式存储而不是分布式数据库,它缺少很多RDBMS系统的特性,比如列类型,辅助索引,触发器,和高级查询语言等待
那Hbase有什么特性呢?如下:
强读写一致,但是不是“最终一致性”的数据存储,这使得它非常适合高速的计算聚合
自动分片,通过Region分散在集群中,当行数增长的时候,Region也会自动的切分和再分配
自动的故障转移
Hadoop/HDFS集成,和HDFS开箱即用,不用太麻烦的衔接
丰富的“简洁,高效”API,Thrift/REST API,Java API
块缓存,布隆过滤器,可以高效的列查询优化
操作管理,Hbase提供了内置的web界面来操作,还可以监控JMX指标
首先数据库量要足够多,如果有十亿及百亿行数据,那么Hbase是一个很好的选项,如果只有几百万行甚至不到的数据量,RDBMS是一个很好的选择。因为数据量小的话,真正能工作的机器量少,剩余的机器都处于空闲的状态
其次,如果你不需要辅助索引,静态类型的列,事务等特性,一个已经用RDBMS的系统想要切换到Hbase,则需要重新设计系统。
最后,保证硬件资源足够,每个HDFS集群在少于5个节点的时候,都不能表现的很好。因为HDFS默认的复制数量是3,再加上一个NameNode。
存储业务数据:车辆GPS信息,司机点位信息,用户操作信息,设备访问信息。。。
存储日志数据:架构监控数据(登录日志,中间件访问日志,推送日志,短信邮件发送记录。。。),业务操作日志信息
存储业务附件:UDFS系统存储图像,视频,文档等附件信息
什么时候用Hbase?
Hbase不适合解决所有的问题:
Hbase在单机环境也能运行,但是请在开发环境的时候使用。
内部应用
不过在公司使用的时候,一般不使用原生的Hbase API,使用原生的API会导致访问不可监控,影响系统稳定性,以致于版本升级的不可控。
HFile
HFile是Hbase在HDFS中存储数据的格式,它包含多层的索引,这样在Hbase检索数据的时候就不用完全的加载整个文件。索引的大小(keys的大小,数据量的大小)影响block的大小,在大数据集的情况下,block的大小设置为每个RegionServer 1GB也是常见的。
探讨数据库的数据存储方式,其实就是探讨数据如何在磁盘上进行有效的组织。因为我们通常以如何高效读取和消费数据为目的,而不是数据存储本身。
Hfile生成方式
起初,HFile中并没有任何Block,数据还存在于MemStore中。
Flush发生时,创建HFile Writer,第一个空的Data Block出现,初始化后的Data Block中为Header部分预留了空间,Header部分用来存放一个Data Block的元数据信息。
而后,位于MemStore中的KeyValues被一个个append到位于内存中的第一个Data Block中:
注:如果配置了Data Block Encoding,则会在Append KeyValue的时候进行同步编码,编码后的数据不再是单纯的KeyValue模式。Data Block Encoding是HBase为了降低KeyValue结构性膨胀而提供的内部编码机制。
⑸ 如何读懂Web服务的系统架构图
大数据数量庞大,格式多样化。大量数据由家庭、制造工厂和办公场所的各种设备、互联网事务交易、社交网络的活动、自动化传感器、移动设备以及科研仪器等生成。它的爆炸式增长已超出了传统IT基础架构的处理能力,给企业和社会带来严峻的数据管理问题。因此必须开发新的数据架构,围绕“数据收集、数据管理、数据分析、知识形成、智慧行动”的全过程,开发使用这些数据,释放出更多数据的隐藏价值。
一、大数据建设思路
1)数据的获得
四、总结
基于分布式技术构建的大数据平台能够有效降低数据存储成本,提升数据分析处理效率,并具备海量数据、高并发场景的支撑能力,可大幅缩短数据查询响应时间,满足企业各上层应用的数据需求。
⑹ hbase虚拟分布式模式需要多少个节点
Copyright © 1999-2020, CSDN.NET, All Rights Reserved
登录
HBase实战+权威指南
《HBase实战》是一本基于经验提炼而成的指南,它教给读者...在HBase中集成用于海量并行数据处理任务的Hadoop的MapRece框架;助你了解如何调节集群、设计模式、拷贝表、导入批量数据、删除节点以及其他更多的任务等。
HBase
hbase权威指南
《HBase权威指南》探讨了如何通过使用与...在HBase中集成MapRece框架;了解如何调节集群、设计模式、拷贝表、导入批量数据和删除节点等。 《HBase权威指南》适合使用HBase进行数据库开发的高级数据库研发人员阅读
hbase
浅谈HBase的数据分布_weixin_34337381的博客-CSDN博客
本文从数据分布问题展开,介绍HBase基于Range的分布策略与region的调度问题,详细讨论了rowkey的比较规则及其应用,希望能够加深用户对HBase数据分布机制和rowkey的理解,...
Hbase 超详细架构解析_weixin_33767813的博客-CSDN博客
注意:client访问hbase上的数据时不需要Hmaster的参与,因为数据寻址访问zookeeper和HregionServer,而数据读写访问HregionServer。Hmaster仅仅维护table和region的元数据信...
Apress - Pro Hadoop
这两个函数由程序员提供给系统,下层设施把Map和Rece操作分布在集群上运行,并把结果存储在GFS上。 3、BigTable。一个大型的分布式数据库,这个数据库不是关系式的数据库。像它的名字一样,就是一个巨大的表格...
Hadoop
分布式协调工具-ZooKeeper实现动态负载均衡
在分布式环境中,相同的业务应用分布在不同的机器上,有些业务逻辑(例如一些耗时的计算,网络I/O处理),往往只需要让整个集群中的某一台机器进行执行,其余机器可以共享这个结果,这样可以大大减少重复劳动,提高...
Hbase概念详解_fenglei0415的博客-CSDN博客
所以,HBase在表的设计上会有很严格的要求。架构上,HBase是分布式数据库的典范,这点比较像MongoDB的sharding模式,能根据键值的大小,把数据分布到不同的存储节点上...
面试题_HBase_qq_40822132的博客-CSDN博客
物理模型:整个hbase表会拆分成多个region,每个region记录着行键的起始点保存在不同的节点上,查询时就是对各个节点的并行查询,当region很大时使用.META表存储各个...
论文研究-文本挖掘中一种基于参数估计的语句分块方案研究.pdf
该方法要求生成并存储大量词组频率数据,并在每次迭代时支持计算节点快速访问数据。实验评估表明,该方案显着降低了远程数据库查询次数,其端到端应用运行时间要比只基于HBase的原始分布式部署快出6倍。
数据集 参数估计 文本挖掘 幂律
2017最新大数据架构师精英课程
57_hadoop伪分布模式8 I/ e; `1 Y$ b+ p1 R5 ^ 58_编写分发脚本-xcall-rsync1 X% G: Y' Q; }5 I$ [ 59_hadoop完全分布式-hdfs体验 60_hadoop的架构原理图 61_临时文件 62_hadoop的简单介绍, p5 P$ @+ O2 V. p } 63_...
Hbase史上最详细原理总结_二十-CSDN博客
表在行的方向上分割为多个Region; Region是Hbase中分布式存储和负载均衡的最小单元,不同Region分布到不同RegionServer上。 Region按大小分割的,随着数据增多,Region...
分布式开源数据库_HBase入门介绍_aa_maple的博客-CSDN博客
⑺ 急,急需要在vmware虚拟机的hadoop上安装运行hbase的截图
由图中可以看出,存储模块主要包括了ZooKeeper集群、HMaster、HRegionServer。
ZooKeeper:
Hbase是强依赖于ZooKeeper,我们读或写一个表的数据,都会优先访问ZooKeeper。
通常是集群中单独的3/5台服务器。
HMaster通常是Hadoop集群中的一台或两台(backup-Master)。
HRegionServer通常是Hadoop集群中的部分或全部
HRegionServer通常和datanode部署在同一台服务器上
比如datanode是10个
HRegionServer可以是10个或小于10个
2、hbase架构图重要组件的名称及作用
client:
读/写访问hbase的用户
ZooKeeper:
基于观察者模式监控master和regionserver运行状态,保证hbase的高可用性,这是因为hbase是强依赖于ZooKeeper的。
存储了hbase的寻址入口
存储了hbase表的meta元数据表的位置信息
Meta也是一张表,meta表一般只有一个region
region存在哪台regionserver上
meta元数据表存储了哪些信息:
一张表有哪些reigon
region分别分配到哪些regionserve上r
每个reigon的startkey和stopkey的大小
master:
管理regionserver并分配表的region给regionserver
对集群的region的数量进行负载均衡管理
master会借助ZooKeeper感知regionserver的上线和下线
master一般会有两台(backup-Master),保证master的高可用性
master不参与hbase表数据的读和写,负载通常比较低
master宕机一段时间内集群可以保持正常的读写
regionserver:
管理所在服务器节点上的所有region
负责响应客户端的读写请求(IO)
三大机制(flush、compact、split)
Hlog:
预写日志
⑻ 程序中的Hive具体是干什么用的呢
Hive是基于Hadoop平台的数仓工具,具有海量数据存储、水平可扩展、离线批量处理的优点,解决了传统关系型数仓不能支持海量数据存储、水平可扩展性差等问题,但是由于Hive数据存储和数据处理是依赖于HDFS和MapRece,因此在Hive进行数据离线批量处理时,需将查询语言先转换成MR任务,由MR批量处理返回结果,所以Hive没法满足数据实时查询分析的需求。
Hive是由FaceBook研发并开源,当时FaceBook使用Oracle作为数仓,由于数据量越来越大,Oracle数仓性能越来越差,没法实现海量数据的离线批量分析,因此基于Hadoop研发Hive,并开源给Apacha。
由于Hive不能实现数据实时查询交互,Hbase可提供实时在线查询能力,因此Hive和Hbase形成了良性互补。Hbase因为其海量数据存储、水平扩展、批量数据处理等优点,也得到了广泛应用。
Pig与HIVE工具类似,都可以用类sql语言对数据进行处理。但是他们应用场景有区别,Pig用于数据仓库数据的ETL,HIVE用于数仓数据分析。
从架构图当中,可看出Hive并没有完成数据的存储和处理,它是由HDFS完成数据存储,MR完成数据处理,其只是提供了用户查询语言的能力。Hive支持类sql语言,这种SQL称为Hivesql。用户可用Hivesql语言查询,其驱动可将Hivesql语言转换成MR任务,完成数据处理。
【Hive的访问接口】
CLI:是hive提供的命令行工具
HWI:是Hive的web访问接口
JDBC/ODBC:是两种的标准的应用程序编程访问接口
Thrift Server:提供异构语言,进行远程RPC调用Hive的能力。
因此Hiv具备丰富的访问接口能力,几乎能满足各种开发应用场景需求。
【Driver】
是HIVE比较核心的驱动模块,包含编译器、优化器、执行器,职责为把用户输入的Hivesql转换成MR数据处理任务
【Metastore】
是HIVE的元数据存储模块,数据的访问和查找,必须要先访问元数据。Hive中的元数据一般使用单独的关系型数据库存储,常用的是Mysql,为了确保高可用,Mysql元数据库还需主备部署。
架构图上面Karmasphere、Hue、Qubole也是访问HIVE的工具,其中Qubole可远程访问HIVE,相当于HIVE作为一种公有云服务,用户可通过互联网访问Hive服务。
Hive在使用过程中出现了一些不稳定问题,由此发展出了Hive HA机制,
⑼ 怎样的架构设计才是真正的数据仓库架构
一直想整理一下这块内容,既然是漫谈,就想起什么说什么吧。我一直是在互联网行业,就以互联网行业来说。
先大概列一下互联网行业数据仓库、数据平台的用途:
整合公司所有业务数据,建立统一的数据中心;
提供各种报表,有给高层的,有给各个业务的;
为网站运营提供运营上的数据支持,就是通过数据,让运营及时了解网站和产品的运营效果;
为各个业务提供线上或线下的数据支持,成为公司统一的数据交换与提供平台;
分析用户行为数据,通过数据挖掘来降低投入成本,提高投入效果;比如广告定向精准投放、用户个性化推荐等;
开发数据产品,直接或间接为公司盈利;
建设开放数据平台,开放公司数据;
。。。。。。
- 上面列出的内容看上去和传统行业数据仓库用途差不多,并且都要求数据仓库/数据平台有很好的稳定性、可靠性;但在互联网行业,除了数据量大之外,越来越多的业务要求时效性,甚至很多是要求实时的 ,另外,互联网行业的业务变化非常快,不可能像传统行业一样,可以使用自顶向下的方法建立数据仓库,一劳永逸,它要求新的业务很快能融入数据仓库中来,老的下线的业务,能很方便的从现有的数据仓库中下线;
- 其实,互联网行业的数据仓库就是所谓的敏捷数据仓库,不但要求能快速的响应数据,也要求能快速的响应业务;
- 建设敏捷数据仓库,除了对架构技术上的要求之外,还有一个很重要的方面,就是数据建模,如果一上来就想着建立一套能兼容所有数据和业务的数据模型,那就又回到传统数据仓库的建设上了,很难满足对业务变化的快速响应。应对这种情况,一般是先将核心的持久化的业务进行深度建模(比如:基于网站日志建立的网站统计分析模型和用户浏览轨迹模型;基于公司核心用户数据建立的用户模型),其它的业务一般都采用维度+宽表的方式来建立数据模型。这块是后话。
- 整体架构下面的图是我们目前使用的数据平台架构图,其实大多公司应该都差不多:
- 逻辑上,一般都有数据采集层、数据存储与分析层、数据共享层、数据应用层。可能叫法有所不同,本质上的角色都大同小异。
- 我们从下往上看:
- 数据采集数据采集层的任务就是把数据从各种数据源中采集和存储到数据存储上,期间有可能会做一些简单的清洗。
- 数据源的种类比较多:
网站日志:
- 作为互联网行业,网站日志占的份额最大,网站日志存储在多台网站日志服务器上,
- 一般是在每台网站日志服务器上部署flume agent,实时的收集网站日志并存储到HDFS上;
业务数据库:
- 业务数据库的种类也是多种多样,有Mysql、Oracle、SqlServer等,这时候,我们迫切的需要一种能从各种数据库中将数据同步到HDFS上的工具,Sqoop是一种,但是Sqoop太过繁重,而且不管数据量大小,都需要启动MapRece来执行,而且需要Hadoop集群的每台机器都能访问业务数据库;应对此场景,淘宝开源的DataX,是一个很好的解决方案(可参考文章 《异构数据源海量数据交换工具-Taobao DataX 下载和使用》),有资源的话,可以基于DataX之上做二次开发,就能非常好的解决,我们目前使用的DataHub也是。
- 当然,Flume通过配置与开发,也可以实时的从数据库中同步数据到HDFS。
来自于Ftp/Http的数据源:
- 有可能一些合作伙伴提供的数据,需要通过Ftp/Http等定时获取,DataX也可以满足该需求;
其他数据源:
- 比如一些手工录入的数据,只需要提供一个接口或小程序,即可完成;
- 数据存储与分析毋庸置疑,HDFS是大数据环境下数据仓库/数据平台最完美的数据存储解决方案。
- 离线数据分析与计算,也就是对实时性要求不高的部分,在我看来,Hive还是首当其冲的选择,丰富的数据类型、内置函数;压缩比非常高的ORC文件存储格式;非常方便的SQL支持,使得Hive在基于结构化数据上的统计分析远远比MapRece要高效的多,一句SQL可以完成的需求,开发MR可能需要上百行代码;
- 当然,使用Hadoop框架自然而然也提供了MapRece接口,如果真的很乐意开发Java,或者对SQL不熟,那么也可以使用MapRece来做分析与计算;Spark是这两年非常火的,经过实践,它的性能的确比MapRece要好很多,而且和Hive、Yarn结合的越来越好,因此,必须支持使用Spark和SparkSQL来做分析和计算。因为已经有Hadoop Yarn,使用Spark其实是非常容易的,不用单独部署Spark集群,关于Spark On Yarn的相关文章,可参考:《Spark On Yarn系列文章》
- 实时计算部分,后面单独说。
- 数据共享这里的数据共享,其实指的是前面数据分析与计算后的结果存放的地方,其实就是关系型数据库和NOSQL数据库;
- 前面使用Hive、MR、Spark、SparkSQL分析和计算的结果,还是在HDFS上,但大多业务和应用不可能直接从HDFS上获取数据,那么就需要一个数据共享的地方,使得各业务和产品能方便的获取数据;和数据采集层到HDFS刚好相反,这里需要一个从HDFS将数据同步至其他目标数据源的工具,同样,DataX也可以满足。
- 另外,一些实时计算的结果数据可能由实时计算模块直接写入数据共享。
- 数据应用
业务产品
- 业务产品所使用的数据,已经存在于数据共享层,他们直接从数据共享层访问即可;
报表
- 同业务产品,报表所使用的数据,一般也是已经统计汇总好的,存放于数据共享层;
即席查询
- 即席查询的用户有很多,有可能是数据开发人员、网站和产品运营人员、数据分析人员、甚至是部门老大,他们都有即席查询数据的需求;
- 这种即席查询通常是现有的报表和数据共享层的数据并不能满足他们的需求,需要从数据存储层直接查询。
- 即席查询一般是通过SQL完成,最大的难度在于响应速度上,使用Hive有点慢,目前我的解决方案是SparkSQL,它的响应速度较Hive快很多,而且能很好的与Hive兼容。
- 当然,你也可以使用Impala,如果不在乎平台中再多一个框架的话。
OLAP
- 目前,很多的OLAP工具不能很好的支持从HDFS上直接获取数据,都是通过将需要的数据同步到关系型数据库中做OLAP,但如果数据量巨大的话,关系型数据库显然不行;
- 这时候,需要做相应的开发,从HDFS或者HBase中获取数据,完成OLAP的功能;
- 比如:根据用户在界面上选择的不定的维度和指标,通过开发接口,从HBase中获取数据来展示。
其它数据接口
- 这种接口有通用的,有定制的。比如:一个从Redis中获取用户属性的接口是通用的,所有的业务都可以调用这个接口来获取用户属性。
- 实时计算现在业务对数据仓库实时性的需求越来越多,比如:实时的了解网站的整体流量;实时的获取一个广告的曝光和点击;在海量数据下,依靠传统数据库和传统实现方法基本完成不了,需要的是一种分布式的、高吞吐量的、延时低的、高可靠的实时计算框架;Storm在这块是比较成熟了,但我选择Spark Streaming,原因很简单,不想多引入一个框架到平台中,另外,Spark Streaming比Storm延时性高那么一点点,那对于我们的需要可以忽略。
- 我们目前使用Spark Streaming实现了实时的网站流量统计、实时的广告效果统计两块功能。
- 做法也很简单,由Flume在前端日志服务器上收集网站日志和广告日志,实时的发送给Spark Streaming,由Spark Streaming完成统计,将数据存储至Redis,业务通过访问Redis实时获取。
- 任务调度与监控在数据仓库/数据平台中,有各种各样非常多的程序和任务,比如:数据采集任务、数据同步任务、数据分析任务等;
- 这些任务除了定时调度,还存在非常复杂的任务依赖关系,比如:数据分析任务必须等相应的数据采集任务完成后才能开始;数据同步任务需要等数据分析任务完成后才能开始;这就需要一个非常完善的任务调度与监控系统,它作为数据仓库/数据平台的中枢,负责调度和监控所有任务的分配与运行。
- 前面有写过文章,《大数据平台中的任务调度与监控》,这里不再累赘。
- 总结在我看来架构并不是技术越多越新越好,而是在可以满足需求的情况下,越简单越稳定越好。目前在我们的数据平台中,开发更多的是关注业务,而不是技术,他们把业务和需求搞清楚了,基本上只需要做简单的SQL开发,然后配置到调度系统就可以了,如果任务异常,会收到告警。这样,可以使更多的资源专注于业务之上。
⑽ hbase怎么用
HBase安装及简单使用
通过之前的hadoop0.20.2的安装并调试成功,接下来我们继续安装hbase0.90.5。在安装hbase0.90.5之前,因为hbase0.90.5只支持jdk1.6,所以,我把之前的jdk1.8卸载,重新安装了jdk1.6。
第一步:
首先需要下载hbase0.90.5.tar.gz,并解压到/home/hadoop/的目录下,同时将目录修改为hbase0.90.5
第二步:
替换hadoop核心jar包,主要母的是防止hbase和hadoop版本不同出现兼容问题,造成hmaster启动异常
将hbase0.90.5/lib目录中的hadoop-core-0.20-append-r1056497.jar包进行备份后删除,再将/home/hadoop/hadoop下面的hadoop-0.20.2-core.jar赋值到/home/hadoop/hbase0.90.5目录下即可
第三步:
编辑配置文件
①/home/hadoop/hbase0.90.5/conf/hbase-env.sh
我们对行键'1001'中列族info的列名age赋值24(1001:info:age=>24),插入两次,会将最后一次的值进行合并,其中,用时间戳来区分。从图片中的时间戳不同可以看出保存的是最后一次put的内容。