多阶存储单元
① HFM128GDHTNG-8310A是什么
HFM128GDHTNG-8310A是固态硬盘。具体如下:
解释:
HFM128GDHTNG-8310A是SKhynix的NVME固态硬盘,这种ssd一般出自品牌机华硕联想都有。
缺点
1、容量:随着MLC、TLC、QLC乃至未来的PLC等多阶存储单元的发展,固态硬盘容量正在迅速增长。截止2021年1月世界上容量最大的固态硬盘是Nimbus Data推出的ExaDrive DC100系列固态硬盘,容量可达100TB。
2、寿命限制:固态硬盘闪存具有擦写次数限制的问题,这也是许多人诟病其寿命短的所在。闪存完全擦写一次叫做1次P/E,因此闪存的寿命就以P/E作单位。
以上资料参考网络—固态硬盘
② 各类硬盘选用基础知识
目前固态硬盘开始普及,而在组装电脑的时候,我们常常会考虑选固态硬盘还是机械硬盘,由于这两种硬盘优势各有千秋,对于小白来说,绝对是很纠结的事情。下面就让我带你去看看固态硬盘和机械硬盘的相关知识吧,希望能帮助到大家!
一文看懂固态硬盘!
硬盘对于整台电脑的重要性不言而喻,电脑所运行的 操作系统 、软件、以及游戏等所有文件资料都是存放在硬盘里面的,硬盘的不同类型和你电脑的性能密切相关,本期笔者向大家介绍一些有关硬盘的知识。
硬盘的种类
目前分为三种硬盘:机械硬盘(HDD)、固态硬盘(SSD)、混合硬盘(SSHD)。其中机械硬盘和固态硬盘为主流,机械硬盘采用磁性盘片进行存储,目前市面上主流机械硬盘品牌有:希捷、西部数据、东芝。固态硬盘采用闪存颗粒进行存储,有体积小、速度快等特点。混合硬盘可以看做是机械硬盘和固态硬盘的结合体,多用于对空间要求较高的 笔记本 电脑中,但是随着固态硬盘的普及,混合硬盘也逐渐被市场淘汰。
机械硬盘和固态硬盘的区别
固态硬盘普遍要比机械硬盘体积小且重量轻。其次是速度,固态硬盘比机械硬盘存储速度快,如果将机械硬盘比作是一辆货车,那固态硬盘就是一辆跑车。机械硬盘采用物理方式读写数据,所以在工作时会有噪音,使用时间久一点的机械硬盘噪音尤为明显,而固态硬盘因为读写原理不同,噪音为0,并且功耗更低。固态硬盘采用闪存颗粒制作而成,具有更强的防震抗摔性,而机械硬盘在运行过程中,如遇到震动,则很容易产生坏道而造成数据丢失。那么固态硬盘就没有缺点了吗?当然不是,固态硬盘有读写次数限制,而机械硬盘有着更长的寿命。
固态硬盘的重要参数
主控是固态硬盘的控制中心,市面上常见品牌的主控有迈威(Marvel),后改名为“美满”,人们常叫它“马牌”,还有三星、英特尔、慧荣、群联、东芝等。主控好比是固态硬盘的司机,司机技术越好,就越能发挥出固态硬盘的性能。
闪存颗粒同样重要,3D NAND和3D __point为目前主流,NAND闪存又分为SLC、MLC、TLC、QLC四种类型闪存颗粒,SLC为单阶存储单元,每一个单元存储一个信息,MLC为双阶存储单元,每一个单元存储两个信息,TLC为三阶存储单元,每一个单元存储三个信息,以此类推。其中SLC颗粒传输速度最快,使用寿命最久,但是成本也相对最高,多用于企业级存储。而MLC颗粒速度和寿命都不如SLC颗粒,但成本较低,多用于消费级市场。而TLC颗粒和QLC在MLC的基础上速度更慢,寿命更少,成本更低(后来TLC颗粒成为主流)。这些颗粒组合之后就成了NAND平面闪存,将这些平面闪存多个堆叠在一起就组成了3D NAND闪存。而3D X__oint比3D NAND速度更快,延迟更低且寿命更长,但成本也随之水涨船高,目前只有英特尔使用。目前具备自主生产颗粒能力的厂商有:英特尔、三星、西部数据、镁光、东芝、海力士。
固态硬盘接口和传输协议
目前分为三种接口:SATA、M.2、PCIE,传输速度由低到高。SATA接口固态传输速度不会超过550Mb/s。M.2接口分为M型和 B型 两种类型,M型走PCIE通道,传输速度更快,而B型走SATA通道,传输速度相对较慢。我们可以把传输协议比作是道路,路越宽传输速度越快。
以上就是有关固态硬盘性能的部分重要参数,希望能够帮助到你,笔者建议选择有自产闪存颗粒能力的品牌,再根据自己预算进行选择避免翻车。
服务器的 硬盘知识
以下是主流硬盘:
1. SATA硬盘(普通硬盘,特点:便宜,读写速度一般,寿命一般)
2. SSD硬盘(固态硬盘,特点:读写速度很快,寿命较低,数据恢复不易)
3.SAS硬盘(大数据专用,特点:读写速度快,寿命很长)
比较:
读写速度:SSD〉SAS〉SATA
寿命:SAS>SATA>SSD
一般机房默认的是SATA硬盘,这个硬盘是自带的,价格比较便宜特点上面也列有。如果没什么特殊情况,自带的SATA硬盘就足够;如果是追求读写速度的话SSD硬盘的确是个好选择;如果数据比较重要的话,建议使用SAS硬盘,但是SAS硬盘对机器要求比较高,目前只有E5的机器支持。
如果是做数据库服务器,建议是对每台服务器的硬盘做阵列,这样以免当硬盘出现问题的时候,造成服务器的数据不必要的损失,一般机房做最多的是阵列1和阵列0
硬盘的阵列1与阵列0
阵列0:两块500G硬盘做成的一块1T硬盘,比一般单独的1T硬盘发挥效果更好
阵列1:两块500G硬盘做成的一块500G硬盘,有备份功能
RAID 0又称为Stripe或Striping,它代表了所有RAID级别中最高的存储性能。RAID 0提高存储性能的原理是把连续的数据分散到多个磁盘上存取,这样,系统有数据请求就可以被多个磁盘并行的执行,每个磁盘执行属于它自己的那部分数据请求。这种数据上的并行操作可以充分利用总线的带宽,显着提高磁盘整体存取性能。
RAID 1通过磁盘数据镜像实现数据冗余,在成对的独立磁盘上产生互为备份的数据。当原始数据繁忙时,可直接从镜像拷贝中读取数据,因此RAID 1可以提高读取性能。RAID 1是磁盘阵列中单位成本最高的,但提供了很高的数据安全性和可用性。当一个磁盘失效时,系统可以自动切换到镜像磁盘上读写,而不需要重组失效的数据。
科普机械硬盘与固态硬盘知识
机械硬盘篇
机械硬盘(HDD)最大优势就是在于容量大,价格便宜。传统的机械硬盘采用的是高速旋转的磁盘来存储数据,通过磁头来进行读写,在这个机械运动过程中会存在延迟,并且无法同时迸发多向读写数据,目前的机械硬盘已经遇到了速度瓶颈。
1、机械硬盘容量
对于主流用户来说,目前性价比最高的就是1T、2T机械硬盘,也是最佳容量之选。因此我们在装机时候可根据自己需求来选择适合自己的容量,一般家用、办公、游戏用户,选择1T或者2T容量就对了。
2、机械硬盘转速
目前市面上的主流机械硬盘,转速一般是7200转,部分会有5400转,建议首选考虑7200转。一般来说,机械硬盘转速越高,那么内部传输率就越快,读写速度越快,也就是机械硬盘的速度越快,但是发热量也随之增加。
3、机械硬盘缓存
除了转速会影响机械硬盘的速度之外,机械硬盘的缓存大小也会影响速度,机械硬盘存取零碎数据的时候需要不断的在硬盘与内存之间交换数据,如果机械硬盘具备大缓存,可以将零碎数据暂时存储在缓存中,减小对系统的负荷,也能够提升数据传输速度。
4、单碟容量越大性能越高
目前,对于机械硬盘来说,单盘片容量越大,机械硬盘可储存的数据就越多。传统机械硬盘主要由磁盘和磁头组成,由于体积的限制,每个机械硬盘腔体所能安放的盘片也有限。要在有限的盘片里增大机械硬盘的容量,就只能靠提升盘片的存储密度。通过垂直记录技术,不但盘片的容量提到了一个新高度。与此同时,由于盘片数据密度的增加,机械硬盘的持续传输速率也获得了质的提升。
5、机械硬盘接口类型
现阶段的机械硬盘主流接口都是SATA3.0类型的,IDE、SATA1、SATA2接口都属于机械硬盘老接口,其中SATA1、SATA2接口可以互相兼容,主要是传输速率不同,SATA1.0为理论传输速度为1.5Gbit/s,SATA2.0为理论传输速度为3Gbit/s,SATA3.0为理论传输速度为6Gbit/s。此外,IDE是老式的机械硬盘接口,理论传输速度仅有100或166MB/S,由于传输速度较慢,因此被淘汰,而目前的主板也已经完全取消了IDE接口的支持。
固态硬盘篇:
固态硬盘的优势主要是读写速度快,完全突破了机械硬盘的速度瓶颈。固态硬盘用固态电子存储芯片阵列而制成的硬盘,由控制单元和存储单元(FLASH芯片、DRAM芯片)组成,有点类似于U盘,缺点是容量较小,价格较贵。
1.数据读写速度
入门级的SATA3.0固态硬盘读写速度能够达到500M/S,而机械硬盘只能达到150MB/S,约三倍的差距。更别提现在的M.2 NVMe协议的固态硬盘了,读写速度高的吓人。
2.固态硬盘噪音与散热
由于固态硬盘内部是采用闪存颗粒而制成的硬盘,没有机械部件转动,没有磁盘和磁头机械马达、风扇等,因此在运行时做到绝对的静音,而且发热量较小。
3.重量和体积、抗震性
固态硬盘内部都是类似于内存颗粒一样的存储芯片,所以重量轻, 体积小,抗震性能好。
5.功耗:
由于固态硬盘内部没有机械部件,没有高速旋转的磁盘,所以功耗较小,更加节能省电。通常不超过3W,而机械硬盘则是5-10W,大了两三倍,因此固态硬盘更加符合节能环保。
注:固态硬盘除了容量小的缺点,固态硬盘在数据安全性也是缺点,可能会导致数据无法恢复,但是机械硬盘损坏,一般还可以进行数据恢复,从数据安全性来讲,机械硬盘也有优势。
总结 :
能够看出来说,固态硬盘与机械硬盘优势确实各有千秋,那么买电脑选固态硬盘还是机械硬盘?对于目前普通用户来说,如果对安全性要求不是很高,并且对容量存储要求不高,建议首选速度更快的固态硬盘。当然,如果预算足够,我们更加建议固态+机械双硬盘方案,固态硬盘作为系统盘符,而机械硬盘作为存储重要数据,兼备速度与大存储需求。
各类硬盘选用基础知识相关 文章 :
★ 电脑硬件的基础知识学习
★ 计算机硬件基本知识你知多少?
★ 组装电脑选择硬盘技巧?怎么挑选硬盘才好?
★ 基础的硬件知识
★ 【电脑硬件知识】:新手必备的四大电脑硬件基础常识
★ 内存硬核选购知识大全
★ 2019超详细电脑硬件及电脑配置知识大全讲解
★ 电脑入门,基础的硬件知识
★ 【硬盘知识你知多少】:小心被淘汰的硬盘会泄露你的信息!
★ 【电脑硬件知识】:电脑硬件基础知识你知多少?
③ MLC的多层单元
MLC(Multi-Level Cell多层单元)
简介
要解释MLC的话,必然要提到SLC。MLC和SLC属于两种不同类型的NAND FLASH存储器,可以用来作为MP3播放器、移动存储盘等产品的存储介质。SLC全称是Single-Level Cell,即单层单元闪存,而MLC全称则是Multi-Level Cell,即为多层单元闪存。它们之间的区别,在于SLC每一个单元,只能存储一位数据,MLC每一个单元可以存储两位数据,MLC的数据密度要比SLC 大一倍。
从名次解释上来看,当然MLC密度要大,自然有其优势,成本上来说,MLC也具有很大的优势。据了解,不少芯片厂商开始从SLC制程转向MLC制程,06年8月,三星正式从SLC转向MLC,06年10月份,三星已经开始大批量的生产MLC闪存芯片。三星采用的芯片编号为K9G开头 K9L开头的芯片为MLC芯片,而现代采用编号为:HYUU开头 HYUV开头芯片也是MLC芯片。
特点
SLC的特点是成本高、容量小、速度快,而MLC的特点是容量大成本低,但是速度慢。MLC的每个单元是2bit的,相对SLC来说整整多了一倍。不过,由于每个MLC存储单元中存放的资料较多,结构相对复杂,出错的几率会增加,必须进行错误修正,这个动作导致其性能大幅落后于结构简单的SLC闪存。此外,SLC闪存的优点是复写次数高达100000次,比MLC闪存高10倍。此外,为了保证MLC的寿命,控制芯片都校验和智能磨损平衡技术算法,使得每个存储单元的写入次数可以平均分摊,达到100万小时故障间隔时间(MTBF)。
缺点
不过尽管MLC有其自身的优势,但是也掩饰不了其缺点。
1、读写效能较差
相比SLC闪存,MLC的读写效能要差,SLC闪存约可以反复读写10万次左右,而MLC则大约只能读写1万次左右,甚至有部分产品只能达到5000次左右。
2、读写速度较慢
在相同条件下,MLC的读写速度要比SLC芯片慢,MLC芯片速度大约只有2M左右。
3、能耗较高
在相同使用条件下,MLC能耗比SLC高,要多15%左右的电流消耗。
这些原因,很大程度上是取决于MLC制式改变,需要新的控制芯片支持,而部分MP3、闪存盘等产品仍然延续老式的设计,MLC就会带来各种问题,包括数据丢失、传输速度慢等缺陷。06年大批量SD卡被招回的风波,就是因为转用MLC芯片,没有新的主控芯片支持惹的祸,造成了很大的影响。
现状
随着三星、东芝的MLC闪存芯片开始量产,MLC芯片应用也越来约广泛,由于全新的MLC芯片在存储密度等方面加大,对主控芯片的要求也越来越高。读写频繁的数码播放器和闪存盘等数码设备也加重了MLC闪存的出错几率,对于视频和音频这样的应用来说,必需具备控制芯片和ECC校验机制,目前有的主控芯片通过纯软件校验,这样,无形当中加重了主控芯片的负担。也有部分主控通过硬件的4bitECC校验和软件校验相结合,从而减轻了主控负担,但是这只是在一定程度上减少出错的几率,MLC的芯片写入次数限制和传输速度等缺点是无法克服的。
MLC在架构上取胜SLC,很多厂商都MLC做了很多的优化和开发,未来可能将是一个主流方向,技术还不是很成熟。而成本上来说,MLC要便宜SLC芯片,所以不少厂商在原有架构上选用了MLC芯片,但却没有增加控制芯片或者ECC校验,使得不少问题则由此而生,使得不少行业人士也惊呼MLC为“黑芯”。所以大家在选购MP3、闪存盘等数码产品的时候,不能一味的只看价格,而需要更多层面的去考虑。
MLC技术开始升温应该说是从2003年2月东芝推出了第一款MLC架构NAND Flash开始,当时作为NAND Flash的主导企业三星电子对此架构很是不屑,依旧我行我素大力推行SLC架构。第二年也就是2004年4月东芝接续推出了采用MLC技术的4Gbit和8Gbit NAND Flash,显然这对于本来就以容量见长的NAND闪存更是如虎添翼。三星电子长期以来一直倡导SLC架构,声称SLC优于MLC,但该公司于2004和2005年发表的关于MLC技术的ISSCC论文却初步显示它的看法发生了转变。三星在其网站上仍未提供关于MLC闪存的任何营销材料,但此时却已经开发出了一款4Gbit的MLC NAND闪存。该产品的裸片面积是156mm2,比东芝的90nm工艺MLC NAND闪存大了18mm2。两家主流NAND闪存厂商在MLC架构上的竞争就从这时开始正式打响了。除了这三星和东芝这两家外,拥有了英特尔MLC技术的IM科技公司更是在工艺和MLC上都希望超越竞争对手,大有后来者居上的冲劲。MLC技术的竞争就这样如火如荼地进行。 MLC,Multiple Lines Centre。北京地铁在组织ACC(票务清分中心)和各条LC(线路中心)之间增加了一个特殊的线路共用中心,称为MLC。MLC的功能和作用如下:
假设某地区有一个轨道交通票务清分中心ACC,和 n 条轨道交通线路LC。这些 n 条线路由 m 个不同的轨道交通运营商各自管理,其中 m < n。为了简化清分模型,避免同一运营商内部多条线路的清分与其他运营商线路清分产生的误差被放大,现由各个运营商各自成立自己所辖多条线路构成的一个小ACC,然后以运营商名义再接入大ACC。这种情况下ACC面对的是不同的运营商,不再面对具体的线路,减轻了清分负担,降低了清分误差。 多叶准直器(Multi-leaf Collimator)
是用来产生适形辐射野的机械运动部件,俗称多叶光栅、多叶光阑等等,广泛应用于医学领域。
概念
英文名字:multi-leaf collimator (简称MLC)
2000年,IEC60976标准对IEC976、IEC977都进行了修正,主要就是增加了有关多叶准直器的内容。
类型
按照多叶准直器运动方式,多叶准直器有手动及电动两类,后者的功用远大于前者,是主要的形式;手动多叶准直器是通过手动驱动每个叶片,达达到到调整辐射野轮廓的目的;电动多叶准直器是通过计算机控制多个微型电机独立驱动每个叶片单独运动,达到射野动态或静态成形的目的。
多叶准直器通常还需与辐射头的次级准直器配合使用,因此按照多叶准直器的安装方式分,有外置式与内置式两种。
因为对于大部分不同形状和大小的靶区,一般只有少部分叶片处于有效射野的范围之内,而其余的那些处于有效射野范围之外的叶片应该是左右成对地合在一起,以防射线泄漏。但是,为避免成对叶片相对碰撞引起机械损伤等故障,通常留有少许间隙。这样,就必须对加速器常规治疗准直器规定一个相对有效射野的最小外接矩形野,使之既可屏蔽有效射野外各对未完全闭合叶片端面间歇的漏射线,又能遮挡相邻叶片之间微小外接矩形野,并将相应的控制数据传输给对应的控制系统,从而实现最小矩形野和MLC有效射野的自动设置及跟随。适形野外成对叶片间无漏射者则无需如此。
结构特点
从多叶准直器问世直到现在,多叶准直的结构设计就一直在改进、完善。为适应各种不同的功能和用途,世界各国先后推出多种结构形式的多叶准直器。纵观其历史发展,多叶准直器主要是围绕着提高适形度、减小透射半影、降低漏射、适应动态与动态楔形板等高级功能展开的。例如叶片对数由少到多、叶片宽度由大到小;最大照射野按需要向大和小两端发展;聚焦方式由无聚焦到单聚焦或双聚焦;相邻叶片之间由平面接触到凹凸插合;对侧叶片由不过中线到过中线且行程由小到大等。再加上独立驱动机构硬件的快速开发,使得MLC系统功能大增,逐渐向满足临床应用要求、降低造价、便于加工、操作简便、高可靠、低故障的方向迅速发展。
叶片的宽度直接决定了多叶准直器所组成的不规则野与计划靶体积(PTV)形状的几何适合度(适形度);叶片越薄,适形度越好,但加工也较困难,驱动电机等机构越多且复杂,造价相应提高,因此必须在适形度和造价之间作合理的折中选择。
叶片的高度必须能将原射线和辐射强度削弱到点5%以下,即至少需4。5个半值厚度。由于需保持叶片间低阻力的相对动态移动,叶片间常有一些漏射线,会降低叶片对原射线的屏蔽效果,叶片高度需适当加厚,一般不少于5cm厚的钨合金。如果将漏射线剂量降到2%以下,通常需7.5cm的钨合金厚度。
叶片纵截面的设计需考虑两个因素:
A. 要保证相邻叶片间和相对叶片合拢时的漏射剂量最小,这就决定了叶片的侧面多采用凹凸槽相互镶嵌的结构。凹凸槽的位置可加工在叶片高度的中部,但由于这种结构要求加工精度高、技术难度大,使用中有时发现个别叶片因运动阻力大而发生故障,所以后来不少厂家生产的叶片采用了台阶式结构。
B. 叶片的底面和顶面必须在与运动方向垂直的平面内会聚到X射线靶的位置,这就决定了叶片的横截面应是梯形结构,即底面的宽度应大于顶面的宽度,使得任何一个叶片都与从源(靶)辐射出且通过此面的射线平行。加工使所有叶片都在以辐射源为圆心,以辐射源到叶片底面距离为半径的圆周上运动,就可构成无穿射半影的双聚焦结构。
为了减少叶片端面对射野半影的影响,叶片端面的设计尤其重要。通常有两种设计类型;弧形端面和直立端面。采用弧形设计后,在叶片沿垂直于射线中心轴方向运动的任何位置,都能使原射线与端面相切。采用弧形端面可能使射野的半影增大,而且半影的大小会随叶片离开射束中心轴的位置而变化,但如果合理地选择端面的曲率半径,可在叶片的全部直线运动行程中,使射线与端面的切弦长度近似保持不变,这样就可使射野半影基本上不随叶片位置变化而保持常数。
采用直立端面设计时,叶片可有两种运动方式:
A. 叶片沿以X射线源(靶)为中心的圆弧形轨迹运动。这时无论处于任何位置,其端面总是与原射线相切。
B. 如果叶片沿垂直于射束中心轴方向的直线轨迹运动,则叶片在达到指定位置后必须自转一个小角度,以便使其直立端面与原射线的扩散度相切。由于叶片多,这种转角设计在技术上有一定的难度。
(1) 无聚焦结构
早期的MLC主要是用于头部和病体小病变的微型MLC,大都是无聚焦的叶片平移结构。这种叶片上下左右等厚,叶片全部采用平移运动,叶片上下所组成的射野大小和形状相同,不能消除穿射半影。对小野,因射线束的张角很小,影响不大;但对大野,会造成临床不能接受的较大半影。
(2) 单聚焦结构
这种结构使所有叶片都在以辐射源为圆心,以辐射源到叶片底面距离为半径的圆周上运动,使叶片的端面始终与射线束平行,消除了叶片运动方向上的穿射半影。但在垂直于叶片运动的方向上,因叶片上下等宽度,所以还是有穿射半影。1996年以前生产的用于体部的大型MLC(40cm×40cm为最大射野)大都是这种单聚焦结构。
(3) 双聚焦结构
对于安装在无聚焦二级准直器治疗机上的MLC,有必要采取双聚焦结构。双聚焦结构是将单聚焦结构的MLC的每一个叶片在宽度方向加工成非等宽的发散状,端面呈现梯形上小下大,每个端面的向上延长线都应相交于放射源点。换言之,必须使每个叶片的双侧面和端面在任何位置都始终与其相邻的射线束平行。这种结构装在任何治疗机上都能消除穿射半影。当然,消除半影的聚焦设计与MLC的安装高度有关,还要考虑电路连接、配重、结构空间、驱动控制等多种因素。由于加速器机头的结构复杂,设计要求高,对已在用加速器机头的改造会产生多种困难,所以,除中小型附加外挂式MLC之外,多叶准直器的双聚焦和叶片结构国内外的大型MLC大都是由加速器厂家配套生产的。
(4) 防漏射结构
临床应用要求每个叶片独立运动灵活,磨擦力小,相邻叶片之间不能挤靠太紧,但贴得太松又容易引起射线泄露。为解决这一矛盾,可将每个叶片加工成一面带凹槽,另一面带凸榫,使相邻两片之间以槽榫凹凸迭合,利用射线只能直线传播的特点获得很好的防漏射效果。这种槽榫凹凸结合既不必太紧,也不必太深。有的公司的MLC由40对钨合金组成,叶片厚度7.5cm,在等中心平面上的投影宽度为1.1cm,相邻叶片的槽榫凹凸重叠厚度在等中心平面投影只有0.1cm,所以相邻叶片的投影中心距离为1.0cm。其漏射率可确保小于2%。
(5) 过中线设计
随着MLC用途的进一步开发,动态非线性楔形野、动态调强及逆向设计为各种不同形状和复杂剂量分布射野的高级应用技术越来越多,常常要求成对的叶片从最远的一端一前一后以不同的变速度同向运动到另一端。因此,叶片运动的过中线行程是实现高性能适形强照射法的必要条件,并成为衡量现代MLC功能强弱的重要指标之一,要求叶片的过中线行程应尽可能大,一般不应小于12cm。
控制要点
为使每个叶片随时分别到达准确的位置,各生产厂家采用了不同的叶片控制方式,但都必须包括三项内容:
A. 叶片位置的监测
包括使用机械限位开关监测叶片的开关状态,光学摄像系统,线性编码器等。
B. 叶片控制逻辑
包括控制叶片的开关状态、叶片位置、叶片运动速度和剂量补偿等。
C. 叶片运动到位机构
采用数字方式或模拟方式控制叶片的到位。
(1) 叶片位置的监测
为确保叶片安全、可靠地到位,必须定时监测叶片的位置。对于开关式准直器,是使用机械限位开关来监测叶片的开关(ON、OFF)状态,另一种较常用的方法是用高精度的线性电位器作为线性编码器,它具有很好的线性度和精度,但因为接线太多、占据空间较大,一旦电位器出现问题,在结构紧凑的MLC中较难查找故障,必须用高可靠、高质量的电位器;还有一种监测方法是用光学摄像法:它是在加速器治疗头内的原射野灯光系统中增设一个分光镜,把MLC上端面反射回来的光线经分光镜反射到MLC的位置接收器。较常用的接收器是CCD摄像机,它将视频信号转换成数字信号后,送给MLC控制器中的图像处理器,即可监MLC的叶片位置。这种光学摄像系统的优点是:可实时显示MLC的叶片位置、接线少、空间分辨率高、位置线性度好。但CCD摄像机不耐辐射,需经常更换。
(2) 叶片位置的控制
叶片位置的确定和控制到位是实现MLC功能的先决条件。叶片位置应与它拟形成的射野的边界相一致。线性编码电位器或光学摄像系统所记录或显示的叶片位置应相当于灯光野的大小,也必须是实际射线野的大小。对直立端面的双聚焦型MLC,因其端面总是与射线扩散相平行,所以其射击野的校对方式与常规方法相同,但对弧形端面的MLC叶片,因为灯光指示的是端面切点的位置而不是原射线强度被削弱50%的位置,致使情况变得复杂。好在计算和实践业已证明:在使用的射野范围内,灯光野和射线野之间的最大差别不超过1mm。在有的MLC上,采用缩短光源到等到中心距离1cm(SAD=99cm)的措施,将灯光野的指示范围稍加扩大,即可使之与射线野符合,但这时下叶准直器的灯光野会比射线野略大。为解决之,在下叶准直器的上端面附加一对薄铝片消光器,是两者相符。
以上方法解决了等中心层面灯光和射线野的不符合问题,但对非标称源皮距的照射还是会有误差,因此在有的设计中,是将射线野大小与MLC叶片的对应位置都列成表格存入MLC控制微机中,只要指导处方射野的大小,就可得到叶片应运动到的位置。叶片运动控制逻辑中还可根据治疗需要(如是否调强)来控制叶片运动的速度、相对叶片和相邻叶片之间的碰撞问题等。
(3) 叶片驱动机构
对于开关型MLC,通常采用活塞气动式控制,可使叶片快速进入开、闭状态;对于非开关型的标准MLC,一般都采用微型电机驱动,并通过丝杠将电机的旋转运动变成叶片的直线运动。叶片的运动速度可设计在大约0.2-50mm/s范围,常用的速度是1-2cm/s
(4) 叶片位置的校对
叶片位置的校对是保证叶片精确到位的重要措施。它是把来自CCD摄像机的像素信号或来自线性电位器的电压信号与叶片的位置进行一对一的校对,并定期重复进行。各公司生产的MLC自校对系统也各不相同,有的MLC系统中,是预置一与MLC运动方向垂直的窄长的红外线束。当驱动MLC时,叶片就自动跨越它,叶片截取红外线的宽度后与叶片位置的编码信息进行比较,按预先列出的几何关系计算公式定标后存入MLC控制计算机的相应表格中;有的MLC是在治疗头内预置了4个固定参考反射器,构成一个固定的参考射野框架,校对时只需要用胶片对一组预置缺省射野进行照射,用胶片法进行MLC射野的刻度。
(5) 治疗准直器或后备准直器的自动跟随
治疗或后备准直器的自动跟随是为了屏蔽相对叶片和相邻叶片之间的泄漏射线。除用后备准直器跟随外,有的采用标准的加速器治疗准直器进行跟随。跟随准直器的位置应由相应MLC叶片的当前位置的编码信号进行控制。
用途
多叶准直器开发的主要目的是实现适形放疗。但由于其机械结构方面的优良性能和计算机自动化控制下精确运动的灵活多样性,使其具备了多种潜在功能。
最简单的例子是取代常规实心挡块。事实上,在放射治疗中。特别是有些大野、部分术后放疗等,只需要少数加挡块的固定野。例如,大面积斗篷野、锄形野、面颈联合野、品字野、表浅肿瘤的电子线单向固定野、规范放疗中的对穿野和三野交角照射等。这种静止固定野照射,对挡块没有动态控制的要求,用手动MLC和具有精确的位置控制功能的MLC都可容易地完成。
无论是经模拟定位获得的定位胶片或是体表标志射野,只要按比例描出射野的形状和等中心点(或坐标原点),用数字化仪或扫描仪输入与MLC配合使用的三维治疗计划系统,该系统很快就可用编辑好的数据文件去驱动MLC的各个叶片,形成所需要的适形挡块野形状。
④ 储存卡存储数据原理
储存卡也可以叫做闪存主要分为NOR Flash和NAND Flash两种,两种闪存的原理有所不同,下面介绍的就是这两种闪存运作的基本原理。
NOR Flash
闪存将数据存储在由浮闸晶体管组成的记忆单元数组内,在单阶存储单元(Single-level cell, SLC)设备中,每个单元只存储1比特的信息。而多阶存储单元(Multi-level cell, MLC)设备则利用多种电荷值的控制让每个单元可以存储1比特以上的数据。
闪存的每个存储单元类似一个标准MOSFET, 除了晶体管有两个而非一个闸极。在顶部的是控制闸(Control Gate, CG),如同其他MOS晶体管。但是它下方则是一个以氧化物层与周遭绝缘的浮闸(Floating Gate, FG)。这个FG放在CG与MOSFET通道之间。由于这个FG在电气上是受绝缘层独立的, 所以进入的电子会被困在里面。在一般的条件下电荷经过多年都不会逸散。当FG抓到电荷时,它部分屏蔽掉来自CG的电场,并改变这个单元的阀电压(VT)。在读出期间。利用向CG的电压,MOSFET通道会变的导电或保持绝缘。这视乎该单元的VT而定(而该单元的VT受到FG上的电荷控制)。这股电流流过MOSFET通道,并以二进制码的方式读出、再现存储的数据。在每单元存储1比特以上的数据的MLC设备中,为了能够更精确的测定FG中的电荷位准,则是以感应电流的量(而非单纯的有或无)达成的。
逻辑上,单层NOR Flash单元在默认状态代表二进制码中的“1”值,因为在以特定的电压值控制闸极时,电流会流经通道。经由以下流程,NOR Flash 单元可以被设置为二进制码中的“0”值。
1. 对CG施加高电压(通常大于5V)。
2. 现在通道是开的,所以电子可以从源极流入汲极(想象它是NMOS晶体管)。
3. 源-汲电流够高了,足以导致某些高能电子越过绝缘层,并进入绝缘层上的FG,这种过程称为热电子注入。
由于汲极与CG间有一个大的、相反的极性电压,借由量子穿隧效应可 以将电子拉出FG,所以能够地用这个特性抹除NOR Flash单元(将其重设为“1”状态)。现代的NOR Flash芯片被分为若干抹除片段(常称为区扇(Blocks or sectors)),抹除操作只能以这些区块为基础进行;所有区块内的记忆单元都会被一起抹除。不过一般而言,写入NOR Flash单元的动作却可以单一字节的方式进行。
虽然抹写都需要高电压才能进行,不过实际上现今所有闪存芯片是借由芯片内的电荷帮浦产生足够的电压,所以只需要一个单一的电压供应即可。
⑤ 500g闪存是什么意思
500g闪存是指硬盘容量。
闪存,存储技术,新型的存储介质。闪存,是一种电子式可清除程序化只读存储器的形式,允许在操作中被多次擦或写的存储器。这种科技主要用于一般性数据存储,以及在计算机与其他数字产品间交换传输数据,如储存卡与U盘。
闪存概述:
闪存是一种非易失性内存,在没有电流供应的条件下也能够长久地保持数据,其存储特性相当于硬盘,这项特性正是闪存得以成为各类便携型数字设备的存储介质的基础。
NOR和NAND是市场上两种主要的非易失闪存技术。目前有三种类型的闪存,耐久性各不相同。单阶存储单元闪存在每个单元写一位数据,耐久性最好。多阶存储单元闪存在每个单元写多位数据,耐久性排名第二。三阶存储单元在每个单元写三位数据,耐久性最差。
每个单元写入的数据位越多意味着每个单元的容量越高,每的成本越低,同样意味着平均寿命更短。NAND 闪存被广泛用于移动存储、MP3 播放器、数码相机、掌上电脑等新兴数字设备中。由于受到数码设备强劲发展的带动, NAND 闪存一直呈现指数级的超高速增长。
⑥ 光存储技术的光存储技术的分类及最新进展
相变型存储材料的光盘 记录信息:高功率调制后的激光束照射记录介质,形成非晶相记录点。非晶相记录点的反射率与未被照射的晶态部分有明显的差异。读出信息:用低功率激光照射存储单元,利用反射光的差异读出信息。信息的擦除:相记录点在低功率、宽脉冲激光照射下,又变回到晶态。
磁光存储材料的光盘 记录信息:记录介质为磁化方向单向规则排列的垂直磁光膜。在聚焦激光束照射下,发生热磁效应,记录点的磁化方向发生变化,进而完成信息记录。读出信息:利用法拉第效应和克尔效应。信息的擦出:在激光的作用下,改变偏磁场的方向,删出了记录信息。 多媒体信息时代的第一次数字化革命是以直径为12cm 的高音质CD(Compact disc)光盘取代直径为30cm 的密纹唱片。这其中包括CD-ROM, CD-R 和CD-RW 类型。CD 光盘使用的激光波长为780nm,数值孔径为0.45,道间距为1.6um,存储容量为650MB。第二代数字多用光盘DVD(Digital Versatile Disk)使用的激光波长为635/650nm,数值孔径为0.6,道间距为0.74um,单面存储容量为4.7GB,双面双层结构的为17GB。DVD光盘系列有DVD-ROM, DVD-R, DVD-RW, DVD+RW 等多种类型。目前DVD-Multi 已兼容了
DVD-RW, DVD+RW, DVD-RAM 三种光盘。上述这些产品的问世,对包括音频、视频信息在内的数据的记录都发挥过巨大的作用。 多阶光存储是目前国内外光存储研究的重点之一,缘于它可以大大地提高存储容量和数据传输率。在传统的光存储系统中,二元数据序列存储在记录介质中,记录符只有两种不同的物理状态,例如只读光盘中交替变化的坑岸形貌。多阶光存储是读出信号呈现多阶特性,或者直接采用多阶记录介质。多阶光存储分为信号多阶光存储和介质多阶光存储。
从技术上讲,蓝光光盘的下一代存储技术是相当先进的,不过由于蓝光光盘格式本身与现存的红光DVD格式并不兼容,所以如果采用蓝光光盘格式的厂商必须大动干戈的更换整条生产线,这大大增加了生产厂商的生产成本,使得其价格普遍偏高,从很大程度上阻碍了蓝光光盘格式的普及。所以虽然蓝光技术得到了很多大厂得支持,但价格是蓝光技术的致命伤。不过还是有很多有实力的大厂如三星、飞利浦、LG、三菱、索尼等表示他们已经或将很快推出其支持蓝光技术的产品。
⑦ FLASH闪存的FLASH闪存虚拟化
基于FLASH闪存的存储能够解决很多性能问题,尤其是由虚拟服务器环境所导致的问题。但FLASH闪存仍有很多神秘之处:它们可信吗?哪种类型的FLASH闪存最适合虚拟环境?FLASH闪存是一种内存技术,与RAM不同,在断电时它仍旧可以保留所存储的信息。尽管FLASH闪存在执行读写操作时并不像RAM那样快,但性能远远高于典型的硬盘。更为重要的是,FLASH闪存访问数据时几乎不存在任何时间延迟。FLASH闪存技术非常适合随机I/O,而虚拟服务器环境中恰恰存在大量的随机I/O。对FLASH闪存主要的关注点之一是其执行写操作的方式。FLASH闪存可以执行的写操作次数有限,这意味着FLASH闪存厂商需要开发复杂的控制器技术,对写入FLASH闪存模块的方式进行管理,确保每个FLASH闪存单元接收相同的写请求。目前有三种类型的FLASH闪存,耐久性各不相同。单阶存储单元(SLC)FLASH闪存在每个单元写一位数据,耐久性最好。多阶存储单元(MLC)FLASH闪存在每个单元写多位数据,耐久性排名第二。三阶存储单元(TLC)在每个单元写三位数据,耐久性最差。每个单元写入的数据位越多意味着每个单元的容量越高,每GB的成本越低,同样意味着平均寿命更短。SLC是数据中心标准,但控制器技术的不断优化使得MLC被大多数用例所接受。尤其是在采用了某种方式的数据保护,比如镜像或者RAID或者使用了FLASH闪存层时。 就在虚拟环境中使用FLASH闪存而言,通常有三种规格可供选择。最常见的是固态硬盘,其与硬盘的规格相同。这类FLASH闪存可以很容易地安装在服务器内部或者存储阵列内部,直接使用HDD的驱动器插槽即可。SSD的不足之处在于性能、密度。在SSD中放置FLASH闪存意味着所有的存储I/O都是通过SCSI堆栈处理的。与其他方式相比,会增加一些延迟。尽管如此,这些系统,尤其是阵列,仍旧可以交付成千上万个IOPS,因此很少会受到需要使用SCSI协议的SSD的影响。密度同样受到了忽视,闪存SSD厂商已经采用了独特的方式在硬盘中塞入尽可能多的FLASH闪存,与同等的HDD相比,SSD通常提供了更大的存储容量。就某些环境而言,SCSI所增加的延迟存在问题,尽管通常我们所指的并不是虚拟环境。当延迟是一个关注点时,可以选择PCIe SSD,将闪存设备集成到PCIe板卡上。这通常避免了标准的存储协议堆栈而且能够在本地访问CPU。但用于三大最为流行的虚拟环境的驱动器都是很普通的。PCIe应该被虚拟环境视为RAM内存的一个扩展。因为PCIe具备低延迟特性,能够提供性能非常高的虚拟内存池,这样一来动态RAM用于存储换出的页面几乎对性能没有任何影响。另一种正在变得流行的FLASH闪存是内存总线FLASH闪存。FLASH内存总线FLASH闪存安装在服务器FLASH内存插槽中而不是PCIe总线中。FLASH内存总线FLASH闪存看起来像是DRAM双排直插内存模块,但实际上包含的是FLASH闪存。这种实现方式的延迟甚至比PCIe SSD还要低而且在访问CPU时提供了私有、高性能路径。FLASH内存总线FLASH闪存在虚拟环境中应用有限,但将FLASH内存总线FLASH闪存用作虚拟交换FLASH内存大有裨益,当难于使用PCIe插槽时,FLASH内存总线闪存同样是刀片、1U以及2U服务器的理想选择。
⑧ 闪存与传统硬盘分别是用什么原理储存数据的
你好
.
闪存(FlashMemory)是一种长寿命的非易失性(在断电情况下仍能保持所存储的数据信息)的存储器,闪存是电子可擦除只读存储器(EEPROM)的变种。闪存是一种非易失性存储器,即断电数据也不会丢失。因为闪存不像RAM(随机存取存储器)一样以字节为单位改写数据,因此不能取代RAM。
祝顺利,如有帮助,还望及时采纳.
⑨ 半导体存储器有几类,分别有什么特点
1、随机存储器
对于任意一个地址,以相同速度高速地、随机地读出和写入数据的存储器(写入速度和读出速度可以不同)。存储单元的内部结构一般是组成二维方矩阵形式,即一位一个地址的形式(如64k×1位)。但有时也有编排成便于多位输出的形式(如8k×8位)。
特点:这种存储器的特点是单元器件数量少,集成度高,应用最为广泛(见金属-氧化物-半导体动态随机存储器)。
2、只读存储器
用来存储长期固定的数据或信息,如各种函数表、字符和固定程序等。其单元只有一个二极管或三极管。一般规定,当器件接通时为“1”,断开时为“0”,反之亦可。若在设计只读存储器掩模版时,就将数据编写在掩模版图形中,光刻时便转移到硅芯片上。
特点:其优点是适合于大量生产。但是,整机在调试阶段,往往需要修改只读存储器的内容,比较费时、费事,很不灵活(见半导体只读存储器)。
3、串行存储器
它的单元排列成一维结构,犹如磁带。首尾部分的读取时间相隔很长,因为要按顺序通过整条磁带。半导体串行存储器中单元也是一维排列,数据按每列顺序读取,如移位寄存器和电荷耦合存储器等。
特点:砷化镓半导体存储器如1024位静态随机存储器的读取时间已达2毫秒,预计在超高速领域将有所发展。
(9)多阶存储单元扩展阅读:
半导体存储器优点
1、存储单元阵列和主要外围逻辑电路制作在同一个硅芯片上,输出和输入电平可以做到同片外的电路兼容和匹配。这可使计算机的运算和控制与存储两大部分之间的接口大为简化。
2、数据的存入和读取速度比磁性存储器约快三个数量级,可大大提高计算机运算速度。
3、利用大容量半导体存储器使存储体的体积和成本大大缩小和下降。