存储器分页机制
1 分页机制
在虚拟内存中,页表是个映射表的概念, 即从进程能理解的线性地址(linear address)映射到存储器上的物理地址(phisical address).
很显然,这个页表是需要常驻内存的东西, 以应对频繁的查询映射需要(实际上,现代支持VM的处理器都有一个叫TLB的硬件级页表缓存部件,本文不讨论)。
1.1 为什么使用多级页表来完成映射
但是为什么要使用多级页表来完成映射呢?
用来将虚拟地址映射到物理地址的数据结构称为页表, 实现两个地址空间的关联最容易的方式是使用数组, 对虚拟地址空间中的每一页, 都分配一个数组项. 该数组指向与之关联的页帧, 但这会引发一个问题, 例如, IA-32体系结构使用4KB大小的页, 在虚拟地址空间为4GB的前提下, 则需要包含100万项的页表. 这个问题在64位体系结构下, 情况会更加糟糕. 而每个进程都需要自身的页表, 这回导致系统中大量的所有内存都用来保存页表.
设想一个典型的32位的X86系统,它的虚拟内存用户空间(user space)大小为3G, 并且典型的一个页表项(page table entry, pte)大小为4 bytes,每一个页(page)大小为4k bytes。那么这3G空间一共有(3G/4k=)786432个页面,每个页面需要一个pte来保存映射信息,这样一共需要786432个pte!
如何存储这些信息呢?一个直观的做法是用数组来存储,这样每个页能存储(4k/4=)1K个,这样一共需要(786432/1k=)768个连续的物理页面(phsical page)。而且,这只是一个进程,如果要存放所有N个进程,这个数目还要乘上N! 这是个巨大的数目,哪怕内存能提供这样数量的空间,要找到连续768个连续的物理页面在系统运行一段时间后碎片化的情况下,也是不现实的。
为减少页表的大小并容许忽略不需要的区域, 计算机体系结构的涉及会将虚拟地址分成多个部分. 同时虚拟地址空间的大部分们区域都没有使用, 因而页没有关联到页帧, 那么就可以使用功能相同但内存用量少的多的模型: 多级页表
但是新的问题来了, 到底采用几级页表合适呢?
1.2 32位系统中2级页表
从80386开始, intel处理器的分页单元是4KB的页, 32位的地址空间被分为3部分
单元
描述
页目录表Directory 最高10位
页中间表Table 中间10位
页内偏移 最低12位
即页表被划分为页目录表Directory和页中间表Tabl两个部分
此种情况下, 线性地址的转换分为两步完成.
第一步, 基于两级转换表(页目录表和页中间表), 最终查找到地址所在的页帧
第二步, 基于偏移, 在所在的页帧中查找到对应偏移的物理地址
使用这种二级页表可以有效的减少每个进程页表所需的RAM的数量. 如果使用简单的一级页表, 那将需要高达220个页表, 假设每项4B, 则共需要占用220?4B=4MB的RAM来表示每个进程的页表. 当然我们并不需要映射所有的线性地址空间(32位机器上线性地址空间为4GB), 内核通常只为进程实际使用的那些虚拟内存区请求页表来减少内存使用量.
1.3 64位系统中的分页
正常来说, 对于32位的系统两级页表已经足够了, 但是对于64位系统的计算机, 这远远不够.
首先假设一个大小为4KB的标准页. 因为1KB覆盖210个地址的范围, 4KB覆盖212个地址, 所以offset字段需要12位.
这样线性地址空间就剩下64-12=52位分配给页中间表Table和页目录表Directory. 如果我们现在决定仅仅使用64位中的48位来寻址(这个限制其实已经足够了, 2^48=256TB, 即可达到256TB的寻址空间). 剩下的48-12=36位被分配给Table和Directory字段. 即使我们现在决定位两个字段各预留18位, 那么每个进程的页目录和页表都包含218个项, 即超过256000个项.
基于这个原因, 所有64位处理器的硬件分页系统都使用了额外的分页级别. 使用的级别取决于处理器的类型
平台名称
页大小
寻址所使用的位数
分页级别数
线性地址分级
alpha 8KB 43 3 10 + 10 + 10 + 13
ia64 4KB 39 3 9 + 9 + 9 + 12
ppc64 4KB 41 3 10 + 10 + 9 + 12
sh64 4KB 41 3 10 + 10 + 9 + 12
x86_64 4KB 48 4 9 + 9 + 9 + 9 + 12
Ⅱ 、虚拟存储器系统采用请求分页机制,其中从内存读/写一个单元需要花费100ns。
摘要 您好,您的问题我已经看到了,正在整理答案,请您稍等一会儿~
Ⅲ 分页存储管理的基本思想
分页式存储管理的基本原理:采用分页存储器允许把一个作业存放到若干不相邻的分区中,既可免去移动信息的工作,又可尽量减少主存的碎片。分页式存储管理的基本原理如下: 1、 页框:物理地址分成大小相等的许多区,每个区称为一块; 2、址分成大小相等的区,区的大小与块的大小相等,每个称一个页面。 3、 逻辑地址形式:与此对应,分页存储器的逻辑地址由两部分组成,页号和单元号。逻辑地址格式为 页号 单元号(页内地址) 4、页表和地址转换:如何保证程序正确执行呢?采用的办法是动态重定位技术,让程序的指令执行时作地址变换,由于程序段以页为单位,所以,我们给每个页设立一个重定位寄存器,这些重定位寄存器的集合便称页表。页表是操作系统为每个用户作业建立的,用来记录程序页面和主存对应页框的对照表,页表中的每一栏指明了程序中的一个页面和分得的页框的对应关系。绝对地址=块号*块长+单元号 以上从拓扑结构角度分析了对称式与非对称式虚拟存储方案的异同,实际从虚拟化存储的实现原理来讲也有两种方式;即数据块虚拟与虚拟文件系统. 数据块虚拟存储方案着重解决数据传输过程中的冲突和延时问题.在多交换机组成的大型Fabric结构的SAN中,由于多台主机通过多个交换机端口访问存储设备,延时和数据块冲突问题非常严重.数据块虚拟存储方案利用虚拟的多端口并行技术,为多台客户机提供了极高的带宽,最大限度上减少了延时与冲突的发生,在实际应用中,数据块虚拟存储方案以对称式拓扑结构为表现形式. 虚拟文件系统存储方案着重解决大规模网络中文件共享的安全机制问题.通过对不同的站点指定不同的访问权限,保证网络文件的安全.在实际应用中,虚拟文件系统存储方案以非对称式拓扑结构为表现形式. 虚拟存储技术,实际上是虚拟存储技术的一个方面,特指以CPU时间和外存空间换取昂贵内存空间的操作系统中的资源转换技术 基本思想:程序,数据,堆栈的大小可以超过内存的大小,操作系统把程序当前使用的部分保留在内存,而把其他部分保存在磁盘上,并在需要时在内存和磁盘之间动态交换,虚拟存储器支持多道程序设计技术 目的:提高内存利用率管理方式A 请求式分页存储管理 在进程开始运行之前,不是装入全部页面,而是装入一个或零个页面,之后根据进程运行的需要,动态装入其他页面;当内存空间已满,而又需要装入新的页面时,则根据某种算法淘汰某个页面,以便装入新的页面 B 请求式分段存储管理 为了能实现虚拟存储,段式逻辑地址空间中的程序段在运行时并不全部装入内存,而是如同请求式分页存储管理,首先调入一个或若干个程序段运行,在运行过程中调用到哪段时,就根据该段长度在内存分配一个连续的分区给它使用.若内存中没有足够大的空闲分区,则考虑进行段的紧凑或将某段或某些段淘汰出去,这种存储管理技术称为请求式分段存储管理
Ⅳ 分页式存储器的地址分成页号和页内地址两部分,但它仍是线性地址.为什么
分页式存储管理的基本原理:采用分页存储器允许把一个作业存放到若干不相邻的分区中,既可免去移动信息的工作,又可尽量减少主存的碎片。分页式存储管理的基本原理如下: 1、 页框:物理地址分成大小相等的许多区,每个区称为一块
Ⅳ RAM和flash储存芯片为什么要分块分页
形象点说,每个数据存放的地方就像是一个小房子,每个房子都有一个地址。整个内存就像是一座城市,如果给每个房子从1开始编号,最后指不定要到多少号,找起来也麻烦,于是有了街区(页)的概念。cpu找一个数据,有两部分地址,基本地址,偏移地址。用基本地址找到这个页(东山路),然后用偏移地址(001号)找到具体位置。就是这样。
块跟页的概念差不多,多用于外部存储器。
Ⅵ 计算机管理内存的方法有哪些优缺点是什么
内存管理是操作系统最重要的一部分,它决定了操作系统的性能。为了说明如何进行内存访问的操作,有必要先介绍有关内存管理的一些术语及背景。
2.1 虚拟内存
所谓虚拟内存就是用硬盘空间来弥补计算机物理内存不足的技术。Windows操作系统用虚拟内存来动态管理运行时的交换文件。为了提供比实际物理内存还多的内存容量,Windows操作系统占用了硬盘上的一部分空间作为虚拟内存。当CPU有要求时,首先会读取内存中的资料。当内存容量不够用时,Windows就会将需要暂时存储的数据写入硬盘。所以,计算机的内存大小等于实际物理内存容量加上“分页文件”(就是交换文件)的大小。Windows 98中分页文件名采用Win386.swp形式,而Windows 2K/XP/2003中采用pagefile.sys,默认位于系统分区的根目录下,具有隐藏属性。如果需要的话,“分页文件”会动用硬盘上所有可以使用的空间。
安装好Windows以后,系统采用默认的设置自动处理虚拟内存,为了优化系统的 工作性能,根据Windows操作系统中虚拟内存的设置方法,可以自己动手设置内存管理参数。
2.2 CPU工作模式
计算机系统有不同的工作模式,在不同的模式下,CPU的寻址方式是不一样的,通常见到的CPU工作模式如下所述。
2.2.1.实模式
实模式是为了Pentium处理器与8086/8088兼容而设置的。8086和8088只能工作于实模式,而80286及以上的处理器可工作于实模式或者保护模式下。实模式操作方式只允许微处理器寻址第一个1MB的存储空间,从0x00000~0xFFFFF。在实模式下的存储器寻址是段地址+偏移地址。例如段寄存器的内容是0x1000,则它寻址开始于0x10000的段,偏移量大小从0x0000~0xFFFF,即偏移量的空间大小是216=64KB。
2.2.2.保护地址模式
保护地址模式又称为虚拟地址存储管理方式。保护模式下主要有两种特征。
(1)内存分段管理
在保护模式下,各个16位的段寄存器里面放置的是选择符。各项任务共享的内存空间由全局选择符来索引;而某个任务独立使用的内存空间由局部选择符来索引。由选择符的高13位作为偏移量,再以CPU内部事先初始化好的GDTR(全局描述符表寄存器)中的32位基地址为基,可以获得相应的描述符。由描述符中的线性地址决定段的基地址。再利用指令(或其他方式)给出的偏移量,便可以得到线性地址,即
线性地址=段线性基地址+偏移量
保护模式采用上面介绍的分段管理,可以实现的存储器寻址范围为4GB,通常把通过段变换获得的地址称为线性地址。这种线性地址是同32位物理地址对应的,为了获得更大的寻址范围,还可以对线性地址实行分页管理。在保护模式下,处理器通过CRO控制寄存器的PG(page)位进行管理,当PG=0时,由段变换获得的线性地址可直接作为物理地址使用;若PG=1,则进一步进行页变换。
(2)内存分页管理
分页管理的基本思想是将内存分为大小固定为4KB或者1MB的若干页,通过一定机制对内存进行管理。与前面的分段管理类似,程序或数据将根据其长度分配若干页。为了进行页面管理,在分页管理机制中采用了页表、页目录对线性地址作页变换。
2.3 逻辑、线性和物理地址
在保护地址模式下,经常遇到三种地址:逻辑地址(Logical Address)、线性地址(Linear Address)和物理地址(Physical Address)。CPU通过分段机制将逻辑地址转换为线性地址,再通过分页机制将线性地址转换为物理地址。
(1)逻辑地址
这是内存地址的精确描述,通常表示为十六进制:xxxx:YYYYYYYY,这里xxxx为selector(选择器),而YYYYYYYY是针对selector所选择的段地址的线性偏移量。除了指定xxxx的具体数值外,还可使用具体的段寄存器的名字来替代,如CS(代码段),DS(数据段),ES(扩展段),FS(附加数据段#1),GS(附加数据段#2)和SS(堆栈段)。这些符号都来自旧的“段:偏移量”风格,在 8086 实模式下使用此种方式来指定“far pointers”(远指针)。
(2)线性地址
线性地址是逻辑地址到物理地址变换之间的中间层,是处理器可寻址的内存空间(称为线性地址空间)中的地址。程序代码会产生逻辑地址,或者说是段中的偏移地址,加上相应段的基地址就生成了一个线性地址。
如果启用了分页机制,那么线性地址可以再经变换以产生一个物理地址。若没有启用分页机制,那么线性地址直接就是物理地址。不过,在开启分页功能之后,一个线性地址可能没有相对映的物理地址,因为它所对应的内存可能被交换到硬盘中。32位线性地址可用于定位4GB存储单元。
(3)物理地址
所谓物理地址,就是指系统内存的真正地址。对于32 位的操作系统,它的范围为0x00000000~0xFFFFFFFF,共有4GB。只有当CPU工作于分页模式时,此种类型的地址才会变得非常“有趣”。本质上,一个物理地址是CPU插脚上可测量的电压。操作系统通过设立页表将线性地址映射为物理地址。Windows 2K/XP所用页表布局的某些属性对于调试软件开发人员非常有用。
2.4 存储器分页管理机制
程序代码和数据必须驻留在内存中才能得以运行,然而系统内存量很有限,往往不能容纳一个完整程序的所有代码和数据,特别是在多任务系统中,如Windows,可能需要同时打开多个执行程序,如画图程序,浏览器等,想让内存驻留所有这些程序显然不大可能,因此首先能想到的就是将程序分割成小部分,只让当前系统运行它所有需要的那部分留在内存,其他部分都留在硬盘(虚拟内存)。当系统处理完当前任务片段后,再从外存中调入下一个待运行的任务片段。于是,存储器分页管理机制随之而被发明。
如前所述,在保护模式下,控制寄存器CR0中的最高位PG位控制分页管理机制是否生效。如果PG=1,分页机制生效,把线性地址转换为物理地址。如果PG=0,分页机制无效,线性地址就直接作为物理地址。必须注意,只有在保护方式下分页机制才可能生效。只有在保证使PE位为1的前提下,才能够使PG位为1,否则将引起通用保护 故障。
分页机制把线性地址空间和物理地址空间分别划分为大小相同的块。这样的块称为页。通过在线性地址空间的页与物理地址空间的页之间建立映射,分页机制可以实现线性地址到物理地址的转换。线性地址空间的页与物理地址空间的页之间的映射可根据需要来确定。线性地址空间的任何一页,可以映射为物理地址空间中的任何一页。
2.5 线性地址到物理地址的转换
线性地址空间的页到物理地址空间的页之间的映射用表来描述。目前所见到的有4KB和1MB大小的物理分页,对于4KB页面的分页,线性地址到物理地址的转换过程如图所示。对于1MB页面分页,线性地址到物理地址的转换与4KB的基本相似,不同的是线性地址的低22位对应一个物理页面。
对于4KB页面的线性地址到物理地址的转换示意图
对于4KB页面分页,页映射表的第一级称为页目录表,存储在一个物理页中。页目录表共有1024个页目录项(PDE,page directory entry),其中,每个PDE为4字节长,包含对应第二级表所在物理地址空间页的页码。页映射表的第二级称为页表,每张页表也被存储在一个物理页中。每张页表有1024个页表项(PTE,page table entry),每个PTE为4字节长,其中PTE的低12位用来存放诸如“页是否存在于内存”或“页的权限”等信息。
一个线性地址大小为4个字节(32bit),包含着找到物理地址的信息,分为3个部分:第22位到第31位这10位(最高10位)是页目录中的索引,第12位到第21位这10位是页表中的索引,第0位到第11位这12位(低12位)是页内偏移。在把一个线性地址转换成物理地址时,CPU首先根据CR3中的值,找到页目录所在的物理页。然后根据线性地址的第22位到第31位这10位(最高的10bit)的值作为索引,找到相应的PDE,其中含有这个虚拟地址所对应页表的物理地址。有了页表的物理地址,再把虚拟地址的第12位到第21位这10位的值作为索引,找到该页表中相应的PTE,其中就有这个虚拟地址所对应物理页的物理地址。最后用线性地址的最低12位,也就是页内偏移,加上这个物理页的物理地址,就得到了该线性地址所对应的物理地址。
Ⅶ 存储器的原理是什么
存储器讲述工作原理及作用
介绍
存储器(Memory)是现代信息技术中用于保存信息的记忆设备。其概念很广,有很多层次,在数字系统中,只要能保存二进制数据的都可以是存储器;在集成电路中,一个没有实物形式的具有存储功能的电路也叫存储器,如RAM、FIFO等;在系统中,具有实物形式的存储设备也叫存储器,如内存条、TF卡等。计算机中全部信息,包括输入的原始数据、计算机程序、中间运行结果和最终运行结果都保存在存储器中。它根据控制器指定的位置存入和取出信息。有了存储器,计算机才有记忆功能,才能保证正常工作。计算机中的存储器按用途存储器可分为主存储器(内存)和辅助存储器(外存),也有分为外部存储器和内部存储器的分类方法。外存通常是磁性介质或光盘等,能长期保存信息。内存指主板上的存储部件,用来存放当前正在执行的数据和程序,但仅用于暂时存放程序和数据,关闭电源或断电,数据会丢失。
2.按存取方式分类
(1)随机存储器(RAM):如果存储器中任何存储单元的内容都能被随机存取,且存取时间与存储单元的物理位置无关,则这种存储器称为随机存储器(RAM)。RAM主要用来存放各种输入/输出的程序、数据、中间运算结果以及存放与外界交换的信息和做堆栈用。随机存储器主要充当高速缓冲存储器和主存储器。
(2)串行访问存储器(SAS):如果存储器只能按某种顺序来存取,也就是说,存取时间与存储单元的物理位置有关,则这种存储器称为串行访问存储器。串行存储器又可分为顺序存取存储器(SAM)和直接存取存储器(DAM)。顺序存取存储器是完全的串行访问存储器,如磁带,信息以顺序的方式从存储介质的始端开始写入(或读出);直接存取存储器是部分串行访问存储器,如磁盘存储器,它介于顺序存取和随机存取之间。
(3)只读存储器(ROM):只读存储器是一种对其内容只能读不能写入的存储器,即预先一次写入的存储器。通常用来存放固定不变的信息。如经常用作微程序控制存储器。目前已有可重写的只读存储器。常见的有掩模ROM(MROM),可擦除可编程ROM(EPROM),电可擦除可编程ROM(EEPROM).ROM的电路比RAM的简单、集成度高,成本低,且是一种非易失性存储器,计算机常把一些管理、监控程序、成熟的用户程序放在ROM中。
3.按信息的可保存性分类
非永久记忆的存储器:断电后信息就消失的存储器,如半导体读/写存储器RAM。
永久性记忆的存储器:断电后仍能保存信息的存储器,如磁性材料做成的存储器以及半导体ROM。
4.按在计算机系统中的作用分
根据存储器在计算机系统中所起的作用,可分为主存储器、辅助存储器、高速缓冲存储器、控制存储器等。为了解决对存储器要求容量大,速度快,成本低三者之间的矛盾,目前通常采用多级存储器体系结构,即使用高速缓冲存储器、主存储器和外存储器。
能力影响
从写命令转换到读命令,在某个时间访问某个地址,以及刷新数据等操作都要求数据总线在一定时间内保持休止状态,这样就不能充分利用存储器通道。此外,宽并行总线和DRAM内核预取都经常导致不必要的大数据量存取。在指定的时间段内,存储器控制器能存取的有用数据称为有效数据速率,这很大程度上取决于系统的特定应用。有效数据速率随着时间而变化,常低于峰值数据速率。在某些系统中,有效数据速率可下降到峰值速率的10%以下。
通常,这些系统受益于那些能产生更高有效数据速率的存储器技术的变化。在CPU方面存在类似的现象,最近几年诸如AMD和 TRANSMETA等公司已经指出,在测量基于CPU的系统的性能时,时钟频率不是唯一的要素。存储器技术已经很成熟,峰值速率和有效数据速率或许并不比以前匹配的更好。尽管峰值速率依然是存储器技术最重要的参数之一,但其他结构参数也可以极大地影响存储器系统的性能。
影响有效数据速率的参数
有几类影响有效数据速率的参数,其一是导致数据总线进入若干周期的停止状态。在这类参数中,总线转换、行周期时间、CAS延时以及RAS到CAS的延时(tRCD)引发系统结构中的大部分延迟问题。
总线转换本身会在数据通道上产生非常长的停止时间。以GDDR3系统为例,该系统对存储器的开放页不断写入数据。在这期间,存储器系统的有效数据速率与其峰值速率相当。不过,假设100个时钟周期中,存储器控制器从读转换到写。由于这个转换需要6个时钟周期,有效的数据速率下降到峰值速率的 94%。在这100个时钟周期中,如果存储器控制器将总线从写转换到读的话,将会丢失更多的时钟周期。这种存储器技术在从写转换到读时需要15个空闲周期,这会将有效数据速率进一步降低到峰值速率的79%。表1显示出针几种高性能存储器技术类似的计算结果。
显然,所有的存储器技术并不相同。需要很多总线转换的系统设计师可以选用诸如XDR、RDRAM或者DDR2这些更高效的技术来提升性能。另一方面,如果系统能将处理事务分组成非常长的读写序列,那么总线转换对有效带宽的影响最小。不过,其他的增加延迟现象,例如库(bank)冲突会降低有效带宽,对性能产生负面影响。
DRAM技术要求库的页或行在存取之前开放。一旦开放,在一个最小周期时间,即行周期时间(tRC)结束之前,同一个库中的不同页不能开放。对存储器开放库的不同页存取被称为分页遗漏,这会导致与任何tRC间隔未满足部分相关的延迟。对于还没有开放足够周期以满足tRC间隙的库而言,分页遗漏被称为库冲突。而tRC决定了库冲突延迟时间的长短,在给定的DRAM上可用的库数量直接影响库冲突产生的频率。
大多数存储器技术有4个或者8个库,在数十个时钟周期具有tRC值。在随机负载情况下,那些具有8个库的内核比具有4个库的内核所发生的库冲突更少。尽管tRC与库数量之间的相互影响很复杂,但是其累计影响可用多种方法量化。
存储器读事务处理
考虑三种简单的存储器读事务处理情况。第一种情况,存储器控制器发出每个事务处理,该事务处理与前一个事务处理产生一个库冲突。控制器必须在打开一个页和打开后续页之间等待一个tRC时间,这样增加了与页循环相关的最大延迟时间。在这种情况下的有效数据速率很大程度上决定于I/O,并主要受限于DRAM内核电路。最大的库冲突频率将有效带宽削减到当前最高端存储器技术峰值的20%到30%。
在第二种情况下,每个事务处理都以随机产生的地址为目标。此时,产生库冲突的机会取决于很多因素,包括tRC和存储器内核中库数量之间的相互作用。tRC值越小,开放页循环地越快,导致库冲突的损失越小。此外,存储器技术具有的库越多,随机地址存取库冲突的机率就越小。
第三种情况,每个事务处理就是一次页命中,在开放页中寻址不同的列地址。控制器不必访问关闭页,允许完全利用总线,这样就得到一种理想的情况,即有效数据速率等于峰值速率。
第一种和第三种情况都涉及到简单的计算,随机情况受其他的特性影响,这些特性没有包括在DRAM或者存储器接口中。存储器控制器仲裁和排队会极大地改善库冲突频率,因为更有可能出现不产生冲突的事务处理,而不是那些导致库冲突的事务处理。
然而,增加存储器队列深度未必增加不同存储器技术之间的相对有效数据速率。例如,即使增加存储器控制队列深度,XDR的有效数据速率也比 GDDR3高20%。存在这种增量主要是因为XDR具有更高的库数量以及更低的tRC值。一般而言,更短的tRC间隔、更多的库数量以及更大的控制器队列能产生更高的有效带宽。
实际上,很多效率限制现象是与行存取粒度相关的问题。tRC约束本质上要求存储器控制器从新开放的行中存取一定量的数据,以确保数据管线保持充满。事实上,为保持数据总线无中断地运行,在开放一个行之后,只须读取很少量的数据,即使不需要额外的数据。
另外一种减少存储器系统有效带宽的主要特性被归类到列存取粒度范畴,它规定了每次读写操作必须传输的数据量。与之相反,行存取粒度规定每个行激活(一般指每个RAS的CAS操作)需要多少单独的读写操作。列存取粒度对有效数据速率具有不易于量化的巨大影响。因为它规定一个读或写操作中需要传输的最小数据量,列存取粒度给那些一次只需要很少数据量的系统带来了问题。例如,一个需要来自两列各8字节的16字节存取粒度系统,必须读取总共32字节以存取两个位置。因为只需要32个字节中的16个字节,系统的有效数据速率降低到峰值速率的50%。总线带宽和脉冲时间长度这两个结构参数规定了存储器系统的存取粒度。
总线带宽是指连接存储器控制器和存储器件之间的数据线数量。它设定最小的存取粒度,因为对于一个指定的存储器事务处理,每条数据线必须至少传递一个数据位。而脉冲时间长度则规定对于指定的事务处理,每条数据线必须传递的位数量。每个事务处理中的每条数据线只传一个数据位的存储技术,其脉冲时间长度为1。总的列存取粒度很简单:列存取粒度=总线宽度×脉冲时间长度。
很多系统架构仅仅通过增加DRAM器件和存储总线带宽就能增加存储系统的可用带宽。毕竟,如果4个400MHz数据速率的连接可实现 1.6GHz的总峰值带宽,那么8个连接将得到3.2GHz。增加一个DRAM器件,电路板上的连线以及ASIC的管脚就会增多,总峰值带宽相应地倍增。
首要的是,架构师希望完全利用峰值带宽,这已经达到他们通过物理设计存储器总线所能达到的最大值。具有256位甚或512位存储总线的图形控制器已并不鲜见,这种控制器需要1,000个,甚至更多的管脚。封装设计师、ASIC底层规划工程师以及电路板设计工程师不能找到采用便宜的、商业上可行的方法来对这么多信号进行布线的硅片区域。仅仅增加总线宽度来获得更高的峰值数据速率,会导致因为列存取粒度限制而降低有效带宽。
假设某个特定存储技术的脉冲时间长度等于1,对于一个存储器处理,512位宽系统的存取粒度为512位(或者64字节)。如果控制器只需要一小段数据,那么剩下的数据就被浪费掉,这就降低了系统的有效数据速率。例如,只需要存储系统32字节数据的控制器将浪费剩余的32字节,进而导致有效的数据速率等于50%的峰值速率。这些计算都假定脉冲时间长度为1。随着存储器接口数据速率增加的趋势,大多数新技术的最低脉冲时间长度都大于1。
选择技巧
存储器的类型将决定整个嵌入式系统的操作和性能,因此存储器的选择是一个非常重要的决策。无论系统是采用电池供电还是由市电供电,应用需求将决定存储器的类型(易失性或非易失性)以及使用目的(存储代码、数据或者两者兼有)。另外,在选择过程中,存储器的尺寸和成本也是需要考虑的重要因素。对于较小的系统,微控制器自带的存储器就有可能满足系统要求,而较大的系统可能要求增加外部存储器。为嵌入式系统选择存储器类型时,需要考虑一些设计参数,包括微控制器的选择、电压范围、电池寿命、读写速度、存储器尺寸、存储器的特性、擦除/写入的耐久性以及系统总成本。
选择存储器时应遵循的基本原则
1、内部存储器与外部存储器
一般情况下,当确定了存储程序代码和数据所需要的存储空间之后,设计工程师将决定是采用内部存储器还是外部存储器。通常情况下,内部存储器的性价比最高但灵活性最低,因此设计工程师必须确定对存储的需求将来是否会增长,以及是否有某种途径可以升级到代码空间更大的微控制器。基于成本考虑,人们通常选择能满足应用要求的存储器容量最小的微控制器,因此在预测代码规模的时候要必须特别小心,因为代码规模增大可能要求更换微控制器。目前市场上存在各种规模的外部存储器器件,我们很容易通过增加存储器来适应代码规模的增加。有时这意味着以封装尺寸相同但容量更大的存储器替代现有的存储器,或者在总线上增加存储器。即使微控制器带有内部存储器,也可以通过增加外部串行EEPROM或闪存来满足系统对非易失性存储器的需求。
2、引导存储器
在较大的微控制器系统或基于处理器的系统中,设计工程师可以利用引导代码进行初始化。应用本身通常决定了是否需要引导代码,以及是否需要专门的引导存储器。例如,如果没有外部的寻址总线或串行引导接口,通常使用内部存储器,而不需要专门的引导器件。但在一些没有内部程序存储器的系统中,初始化是操作代码的一部分,因此所有代码都将驻留在同一个外部程序存储器中。某些微控制器既有内部存储器也有外部寻址总线,在这种情况下,引导代码将驻留在内部存储器中,而操作代码在外部存储器中。这很可能是最安全的方法,因为改变操作代码时不会出现意外地修改引导代码。在所有情况下,引导存储器都必须是非易失性存储器。
可以使用任何类型的存储器来满足嵌入式系统的要求,但终端应用和总成本要求通常是影响我们做出决策的主要因素。有时,把几个类型的存储器结合起来使用能更好地满足应用系统的要求。例如,一些PDA设计同时使用易失性存储器和非易失性存储器作为程序存储器和数据存储器。把永久的程序保存在非易失性ROM中,而把由用户下载的程序和数据存储在有电池支持的易失性DRAM中。不管选择哪种存储器类型,在确定将被用于最终应用系统的存储器之前,设计工程师必须仔细折中考虑各种设计因素。
Ⅷ 什么是内存分页存储管理
分页存储管理是将各进程的地址空间分成大小相等的页,把内存的存储空间也分成与页大小相同的片,称为物理块。在分配存储空间时,以块为单位来分配。
优点:有效解决存储器的零头问题,能在更高的程度上进行多道程序设计,从而相应提高了存储器和CPU的利用率。
缺点:采用动态地址变换为增加计算机成本和降低CPU的速度。表格占内存空间,费时来管理表格。存在页内碎片。作业动态的地址空间受内存容量限制。
Ⅸ 内存分页机制是相对于虚拟内存 还是虚拟内存和物理内存都采用分页机制
这是一种虚拟存储器的实现方法。
虚拟存储器的思想是程序、数据和堆栈的大小都有可能超过物理内存大小,由操作系统把当前使用的放在内存,而不需要的放在磁盘。
而绝大部分操作系统使用的虚拟存储器技术就是分页技术。
为了虚拟内存的使用方便,以页为的单位,换页管理内存
Ⅹ 80486系统中,存储器为什么要分段分段的原则是什么
80386和80486cpu的地址线和数据线各为32,也就是说在实模式下该cpu访问的最大存储地址空间为2^32=4GB。那么如果我要访问的地址的空间起始地址超过了4GB呢?那怎么办,是不是就没办法了呢?
为解决这一问题,在这里提到的就是保护模式,保护模式下程序员可以获得更大的存储地址空间(即虚拟地址)。这样,对于80286来说,偏移量为16位,每个段最大为64KB,可提供的虚拟存储空间为1GB(2^30个字节)。对于386和486CPU来说,偏移量为32位,每个段最大为4GB,可提供的虚拟存储空间为2^46=64TB。保护模式下对存储器分段也就是这个原理,这也是为了方便管理存储器而采用的更有效的方法。后面也有比分段管理更高级的分页管理机制。当然,这是后话了。(这个和寄存器间接寻址类似却略有不同)。
没看懂的话建议您去看一些比较基础的书籍,原理性的东西。这本《微机原理》貌似就不错,呵呵。希望对你有所帮助。