段式虚拟存储器
Ⅰ 虚拟存储器按地址格式不同可分为哪几种
根据地址格式不同,虚拟存储器分为:页式虚拟存储器、段式虚拟存储器和段页式虚拟存储器。
Ⅱ 试说明虚拟存储器的涵义,它与物理存储器有什么区别
试说明虚拟存储器的涵义,它与物理存储器有什么区别
页面虚拟存储器与段式虚拟存储器区别:
1、页面虚拟存储器
页式虚拟存储系统中,虚拟空间分成页,称为逻辑页;主存空间也分成同样大小的页,称为物理页。页表中每一个虚存逻辑页号有一个表目,表目内容包含该逻辑页所在的主存页面地址(物理页号),用它作为实存地址的高字段,与虚存地址的页内行地址字段相拼接,产生完整的实主存地址,据此来访问主存。
2、段式虚拟存储器
段式虚拟存储器是按程序的逻辑结构划分地址空间,段的长度是随意的,并且允许伸长,它的优点是消除了内存零头,易于实现存储保护,便于程序动态装配;缺点是调入操作复杂。将这两种方法结合起来便构成段页式调度。在段页式调度中把物理空间分成页,程序按模块分段,每个段再分成与物理空间页同样小的页面。
Ⅲ 页面虚拟存储器与段式虚拟存储器的区别
页面虚拟存储器与段式虚拟存储器区别:
1、页面虚拟存储器
页式虚拟存储系统中,虚拟空间分成页,称为逻辑页;主存空间也分成同样大小的页,称为物理页。页表中每一个虚存逻辑页号有一个表目,表目内容包含该逻辑页所在的主存页面地址(物理页号),用它作为实存地址的高字段,与虚存地址的页内行地址字段相拼接,产生完整的实主存地址,据此来访问主存。
2、段式虚拟存储器
段式虚拟存储器是按程序的逻辑结构划分地址空间,段的长度是随意的,并且允许伸长,它的优点是消除了内存零头,易于实现存储保护,便于程序动态装配;缺点是调入操作复杂。将这两种方法结合起来便构成段页式调度。在段页式调度中把物理空间分成页,程序按模块分段,每个段再分成与物理空间页同样小的页面。
Ⅳ 什么是段页式虚拟存储器有什么特点
段式虚拟存储器是按程序的逻辑结构划分地址空间,段的长度是随意的,并且允许伸长,它的优点是消除了内存零头,易于实现存储保护,便于程序动态装配;缺点是调入操作复杂。将这两种方法结合起来便构成段页式调度。在段页式调度中把物理空间分成页,程序按模块分段,每个段再分成与物理空间页同样小的页面。
Ⅳ 虚拟内存的调度介绍
1、页式虚存地址映射页式虚拟存储系统中,虚地址空间被分成等长大小的页,称为逻辑页;主存空间也被分成同样大小的页,称为物理页。相应地,虚地址分为两个字段:高字段为逻辑页号,低字段为页内地址(偏移量);实存地址也分两个字段:高字段为物理页号,低字段为页内地址。通过页表可以把虚地址(逻辑地址)转换成物理地址。
在大多数系统中,每个进程对应一个页表。页表中对应每一个虚存页面有一个表项,表项的内容包含该虚存页面所在的主存页面的地址(物理页号),以及指示该逻辑页是否已调入主存的有效位。地址变换时,用逻辑页号作为页表内的偏移地址索引页表(将虚页号看作页表数组下标)并找到相应物理页号,用物理页号作为实存地址的高字段,再与虚地址的页内偏移量拼接,就构成完整的物理地址。现代的中央处理机通常有专门的硬件支持地址变换。
2、转换后援缓冲器由于页表通常在主存中,因而即使逻辑页已经在主存中,也至少要访问两次物理存储器才能实现一次访存,这将使虚拟存储器的存取时间加倍。为了避免对主存访问次数的增多,可以对页表本身实行二级缓存,把页表中的最活跃的部分存放在高速存储器中,组成快表。这个专用于页表缓存的高速存储部件通常称为转换后援缓冲器(TLB)。保存在主存中的完整页表则称为慢表。
3、内页表是虚地址到主存物理地址的变换表,通常称为内页表。与内页表对应的还有外页表,用于虚地址与辅存地址之间的变换。当主存缺页时,调页操作首先要定位辅存,而外页表的结构与辅存的寻址机制密切相关。例如对磁盘而言,辅存地址包括磁盘机号、磁头号、磁道号和扇区号等。 段是按照程序的自然分界划分的长度可以动态改变的区域。通常,程序员把子程序、操作数和常数等不同类型的数据划分到不同的段中,并且每个程序可以有多个相同类型的段。在段式虚拟存储系统中,虚地址由段号和段内地址(偏移量)组成。虚地址到实主存地址的变换通过段表实现。每个程序设置一个段表,段表的每一个表项对应一个段。每个表项至少包含下面三个字段:
(1)有效位:指明该段是否已经调入实存。
(2)段起址:指明在该段已经调入实存的情况下,该段在实存中的首地址。
(3)段长:记录该段的实际长度。设置段长字段的目的是为了保证访问某段的地址空间时,段内地址不会超出该段长度导致地址越界而破坏其他段。段表本身也是一个段,可以存在辅存中,但一般驻留在主存中。
段式虚拟存储器有许多优点:
①段的逻辑独立性使其易于编译、管理、修改和保护,也便于多道程序共享。②段长可以根据需要动态改变,允许自由调度,以便有效利用主存空间。段式虚拟存储器也有一些缺点:
①因为段的长度不固定,主存空间分配比较麻烦。②容易在段间留下许多外碎片,造成存储空间利用率降低。
③由于段长不一定是2的整数次幂,因而不能简单地像分页方式那样用虚地址和实地址的最低若干二进制位作为段内偏移量,并与段号进行直接拼接,必须用加法操作通过段起址与段内偏移量的求和运算求得物理地址。因此,段式存储管理比页式存储管理方式需要更多的硬件支持。 段页式虚拟存储器是段式虚拟存储器和页式虚拟存储器的结合。实存被等分成页。每个程序则先按逻辑结构分段,每段再按照实存的页大小分页,程序按页进行调入和调出操作,但可按段进行编程、保护和共享。它把程序按逻辑单位分段以后,再把每段分成固定大小的页。程序对主存的调入调出是按页面进行的,但它又可以按段实现共享和保护,兼备页式和段式的优点。缺点是在映象过程中需要多次查表。在段页式虚拟存储系统中,每道程序是通过一个段表和一组页表来进行定位的。段表中的每个表目对应一个段,每个表目有一个指向该段的页表起始地址及该段的控制保护信息。由页表指明该段各页在主存中的位置以及是否已装入、已修改等状态信息。如果有多个用户在机器上运行,多道程序的每一道需要一个基号,由它指明该道程序的段表起始地址。虚拟地址格式如下: 基号 段号 页号 页内地址
Ⅵ 虚拟存储器技术主要用于解决什么问题简述虚拟存储器的基本工作原理。
虚拟存储器技术主要解决电脑内存不够的问题,电脑中所运行的程序均需经由内存执行,若执行的程序占用内存很大或很多,则会导致内存消耗殆尽。
为解决该问题,Windows中运用了虚拟内存技术,即匀出一部分硬盘空间来充当内存使用。当内存耗尽时,电脑就会自动调用硬盘来充当内存,以缓解内存的紧张。若计算机运行程序或操作所需的随机存储器(RAM)不足时,则 Windows 会用虚拟存储器进行补偿。
工作原理
1、中央处理器访问主存的逻辑地址分解成组号a和组内地址b,并对组号a进行地址变换,即将逻辑组号a作为索引,查地址变换表,以确定该组信息是否存放在主存内。
2、如该组号已在主存内,则转而执行④;如果该组号不在主存内,则检查主存中是否有空闲区,如果没有,便将某个暂时不用的组调出送往辅存,以便将这组信息调入主存。
3、从辅存读出所要的组,并送到主存空闲区,然后将那个空闲的物理组号a和逻辑组号a登录在地址变换表中。
4、从地址变换表读出与逻辑组号a对应的物理组号a。
5、从物理组号a和组内字节地址b得到物理地址。
6、根据物理地址从主存中存取必要的信息。
(6)段式虚拟存储器扩展阅读:
相关概念
1、实地址与虚地址
用户编制程序时使用的地址称为虚地址或逻辑地址,其对应的存储空间称为虚存空间或逻辑地址空间;而计算机物理内存的访问地址则称为实地址或物理地址,其对应的存储空间称为物理存储空间或主存空间。程序进行虚地址到实地址转换的过程称为程序的再定位。
2、虚拟内存的访问过程
虚存空间的用户程序按照虚地址编程并存放在辅存中。程序运行时,由地址变换机构依据当时分配给该程序的实地址空间把程序的一部分调入实存。
每次访存时,首先判断该虚地址所对应的部分是否在实存中:如果是,则进行地址转换并用实地址访问主存;否则,按照某种算法将辅存中的部分程序调度进内存,再按同样的方法访问主存。
3、异构体系
从虚存的概念可以看出,主存-辅存的访问机制与cache-主存的访问机制是类似的。这是由cache存储器、主存和辅存构成的三级存储体系中的两个层次。cache和主存之间以及主存和辅存之间分别有辅助硬件和辅助软硬件负责地址变换与管理,以便各级存储器能够组成有机的三级存储体系。
Ⅶ 段页式虚拟存储器中由虚拟地址向实际地址转换的过程需要查几次表,这些表示如
摘要 段式虚拟存储器:段式虚拟存储器的基本思想是:按照程序的逻辑结构划分段,!主存以段为单位进行分配。由于段是按照程序的自然边界划分的,因此每个段的长度各不相同,并且程序员通常还会把不同类型的数据划分到不同的段中。