数字存储技术
A. 存储技术发展历史
最早的外置存储器可以追溯到19世纪末。为了解决人口普查的需要,霍列瑞斯首先把穿孔纸带改造成穿孔卡片。
他把每个人所有的调查项目依次排列于一张卡片,然后根据调查结果在相应项目的位置上打孔。在以后的计算机系统里,用穿孔卡片输入数据的方法一直沿用到20世纪70年代,数据处理也发展成为电脑的主要功能之一。
2、磁带
UNIVAC-I第一次采用磁带机作外存储器,首先用奇偶校验方法和双重运算线路来提高系统的可靠性,并最先进行了自动编程的试验。此时这个磁带长达1200英寸、包含8个磁道,每英寸可存储128bits,每秒可记录12800个字符,容量也达到史无前例的184KB。从 此之后,磁带经历了迅速发展,后来广泛应用了录音、影像领域。
3、软盘(见过这玩意的一定是80后)
1967年 IBM公司推出世界上第一张“软盘”,直径32英寸。随着技术的发展,软盘的尺寸一直在减小,容量也在不断提升,大小从8英寸,减到到5.25英寸软盘,以及到后来的3.5英寸软盘,容量却从最早的81KB到后来的1.44MB。在80-90年代3.5英寸软盘达到了巅峰。直到CD-ROM、USB存储设备出现后,软盘销量才逐渐下滑。
4、CD
CD也就是我们常说的光盘、光盘,诞生于1982年,最早用于数字音频存储。1985年,飞利浦和索尼将其引入PC,当时称之为CD-ROM(只 读),后来又发展成CD-R(可读)。因为声频CD的巨大成功,今天这种媒体的用途已经扩大到进行数据储存,目的是数据存档和传递。
5、磁盘
第一台磁盘驱动器是由IBM于1956年生产,可存储5MB数据,总共使用了50个24英寸盘片。到1973年,IBM推出第一个现代“温彻斯特”磁盘驱动器3340,使用了密封组件、润滑主轴和小质量磁头。此后磁盘的容量一度提升MB到GB再到TB。
6、DVD
数字多功能光盘,简称DVD,是一种光盘存储器。起源于上世纪60年代,荷兰飞利浦公司的研究人员开始使用激光光束进行记录和重放信息的研究。1972年,他们的研究获得了成功,1978年投放市场。最初的产品就是大家所熟知的激光视盘(LD,Laser Vision Disc)系统。它们的直径多是120毫米左右。容量目前最大可到17.08GB。
7、闪存
浅谈存储器的进化历程
闪存(Flash Memory)是一种长寿命的非易失性(在断电情况下仍能保持所存储的数据信+息)的存储器。包含U盘、SD卡、CF卡、记忆棒等等种类。在1984年,东芝公司的发明人舛冈富士雄首先提出了快速闪存存储器(此处简称闪存)的概念。与传统电脑内存不同,闪存的特点是非易失性(也就是所存储的数据在主机掉电后不会丢失),其记录速度也非常快。Intel是世界上第一个生产闪存并将其投放市场的公司。到目前为止闪存形态多样,存储容量也不断扩展到256GB甚至更高。
随着存储器的更新换代,存储容量越来越大,读写速度也越来越快,企业级硬盘单盘容量已经达到10TB以上,目前使用的SSD固态硬盘,读速度达:3000+MB/s,写速度达:1700MB/s,用起来美滋滋啊。
B. 名词解释:存储技术
卡片式存储设备
卡片式存储设备算来算去只有几种,而且都是利用半导体技术来储存资料。存储卡的原理和RAM一样,区别只在于是否使用“Volatile"或“Non-volatile"(后者在没有电源时,存储设备内的资料也能永久保存)技术。
卡片式存储器的应用领域有:
1.数字相机 要算使用存储卡最多的IT产品,数字相机绝对是头一个。由于数字相机需要有一定的容量来储存相片,而且质量越高的相片要求越大的容量,所以数字相机足以保障存储卡有一定的市场。
2.MP3随身听因特网使MP3音乐垂手可得,也使MP3随身听有可能取代MD或CD随身听。而MP3随身听想要保存MP3歌曲文件,办法就是使用存储卡。通常,一部MP3随身听内置的是32MB的存储卡(只能存放约10首歌曲),消费者往往会多买一张64MB的存储卡来保存歌曲。这样就会增大存储卡的销售。
8mm磁带
8mm磁带:是一种由Exabyte公司开发、适合于大中型网络和多用户系统的大容量磁带。8mm磁带驱动器也采用螺旋扫描技术,而且磁带较宽,因而存储容量极高,一盒磁带的最高容量可达150GB
存储卡
这里说的存储卡是用来储存数据资料并且可以在电脑上使用的数据存储卡!
1.CF卡CF卡是最早推出的存储卡,也是大家都比较青睐的存储卡。CF卡得以普及的原因很多,其中比较重要的一点就是物美价廉。比起其他数码存储卡,CF卡单位容量的存储成本差不多是最低的,速度也比较快,而且大容量的CF卡比较容易买到。
我们可以接触的到CF卡分为CFType I/CF Type II两种类型。由于CF存储卡的插槽可以向下兼容,因此TypeII插槽既可以使CF TypeII卡又可以使用CFType I卡;而Type I插槽则只能使用CFType I卡,而不能使用CFType II卡,朋友们在选购和使用的时候一定要注意。
2.SD卡 SD卡体积小巧,广泛应用在数码相机上,是由日本的松下公司、东芝公司和SanDisk公司共同开发的一种全新的存储卡产品,最大的特点就是通过加密功能,保证数据资料的安全保密。SD卡在外形上同MultiMedia Card卡保持一致,并且兼容MMC卡接口规范。不过注意的是,在某些产品例如手机上,SD卡和MMS卡是不能兼容的。SD 卡在售价方面要高于同容量的MultiMedia Card卡。
3.MS卡在5年前,索尼公司生产了它自己的闪存记忆卡,就是记忆棒—MemoryStick。其应用于索尼公司出的数码产品,掌上电脑、MP3、数码相机、数码摄像机等等数码设备。由Memory Stick所衍生出来的Memory Stick PRO和Memory Stick DUO也是索尼记忆棒向高容量和小体积发展的产物。
4.SM卡SM卡最早是由东芝公司推出的,它仅仅是将存储芯片封装起来,自身不包含控制电路,所有的读写操作安全依赖于使用它的设备。尽管由于结构简单可以做得很薄,在便携性方面优于CF卡,但兼容性差是其致命之伤,一张SM卡一旦在MP3播放器上使用过,数码相机就可能不能再读写。其市场表现已呈龙钟之态,不会再有更多新的设备支持它。
5.MMC卡MMC卡是由Sandisk和西门子于1997年联手推出的,它普及还沾了点SD卡的光。后来推出的SD卡标准中保留了设备对MMC卡的兼容,就是说虽然使用MMC卡的设备无法使用SD卡,而使用SD卡的设备却可以毫无障碍地使用MMC卡,在某些时候使得MMC顺利成为SD卡的代替品。MMC卡的大小和SD基本一样,比SD卡要薄一点,不过在读取速度上还是SD强。因此价格也是MMC比较便宜。
6.xD图像卡xD图像卡是继上面几种存储卡而后生的存储卡产品,是由富士胶卷和奥林巴斯光学工业为SM卡的后续产品成功开发的产品。它的特点是集体积更小、容量更大于一身,xD图像卡设计只有一张邮票那么大,未来图像存储能力高达令人惊叹的8GB。
数字线性磁带
DLT(Digital Linear Tape,数字线性磁带)源于1/2英寸磁带机,它出现很早,主要用于数据的实时采集。DLT每盒容量高达40GB以上,成本较低,主要定位于中、高级的服务器市场与磁带库系统。
先进的智能型磁带
AIT(先进的智能型磁带)是SONY公司在快速访问高密度磁带录制技术方面的最新创新,现已成为磁带机工业标准。AIT使用一种磁带盒上含有记忆体晶片的磁带,通过在微型晶片上记录磁带上文件的位置,大大减少了存取时间。
数字音频磁带
ST(Digital Audio Tape:数字音频磁带)磁带:该磁带宽为0.15英寸(4mm),又叫4毫米磁带。ST磁带盒较小,体积仅为73mm×54mm×10.5mm,比一般录音机磁带盒还小。但由于该磁带存储系统采用了螺旋扫描技术,使得该磁带具有很高的存储容量。
差分备份
差分备份(Differential Backup) 就是每次备份的数据是相对于上一次全备份之后新增加的和修改过的数据。差分备份无需每天都做系统完全备份,因此备份所需时间短,并节省磁带空间,它的灾难恢复也很方便,系统管理员只需两盘磁带,即系统全备份的磁带与发生灾难前一天的备份磁带,就可以将系统完全恢复。
映像备份
映像备份(Image copies)不压缩、不打包、直接COPY独立文件(数据文件、归档日志、控制文件),类似操作系统级的文件备份。而且只能COPY到磁盘,不能到磁带。
差异备份
复制自上一次普通备份或增量备份以来被创建或更改的文件的备份。它不将文件标记为已经备份(换句话说,没有清除存档属性)。如果您要执行普通备份和差异备份的组合,则还原文件和文件夹将需要上次已执行过普通备份和差异备份。
SAN
SAN(Storage Area Network―存储区域网络)一类专门用于提供企业商务数据或运营商数据的存储和备份管理的网络。因为是基于网络化的存储,SAN比传统的存储和备份技术拥有更大的容量和更强的性能。通过专门的存储管理软件,可以直接在SAN里的大型主机、服务器或其它服务端电脑上添加硬盘和磁带设备。现在大多数的SAN是基于光纤信道交换机和集线器的。通常SAN被配置成网络的后端部分,存在于数据中心或者服务器场之后
Failover(故障恢复
Failover(故障恢复):功能相当的系统组件替代故障组件的一种自动替代系统。经常使用于连接到相同存储设备和主机计算机的智能控制器。如果其中之一的控制器故障,故障恢复开始启用,其他正常的控制器将负担其I/O工作。
备份记录
备份记录(plicated record)文件记录的复制品。保存在文件库中,与原文件分开存放,是为了防止关键性文件或数据丢失而备制的。也称复制记录。
备份集
备份集(Backup sets)顾名思义就是一次备份的集合,它包含本次备份的所有备份片。一个备份集根据备份的类型不同,可能构成一个完全备份或增量备份。
Backup(备份)
Backup(备份):存储在非易失性存储介质上的数据集合,这些数据用来进行原始数据丢失或者不可访问条件下的数据恢复。为了保证恢复时备份的可用性,备份必须一致性状态下通过拷贝原始数据来实现。
容错
容错:系统在其某一组件故障时仍继续正常工作的功能。容错功能一般通过冗余组件设计来实现。
iSCSI
iSCSI:连接到一个TCP/IP网络的直接寻址的存储库,通过块I/O SCSI指令对其进行访问。ISCSI是一种基于开放的工业标准,通过它可以用TCP/IP对SCSI(小型计算机系统接口--一种数据传输的公共协议)指令进行封装,这样就可以使这些指令能够通过基于IP(以太网或千兆位以太网)“网络”进行传输。这一标准的目的是允许使用现有的以太网网络传输SCSI指令和数据,而这一过程完全不依赖于地点。对这一产品的另外一种描述是,它是连接到TCP/IP网络的存储,但可以使用与DAS和SAN存储一样的I/O指令对其进行访问。
C. 信息资源存储有哪些主要技术
1.印刷技术。采用各种印刷技术把文字图像记录在纸上,便于阅读流通。存储密度低,加工难以自动化。
2.光学缩微技术,利用光学缩微技术将文字图像记录在感光材料上,存储密度高,便于收藏,但是阅读设备投资高。
3.磁录光录技术,利用磁录光录技术将声音和图像记录在磁性和光学材料,存储密度高内容直观。表达力强。
4.计算机存储技术,将文字图像音视频转为数字化信息,以磁光盘和网络载体等,密度高,读取快高,速远距传输。
(1).数据压缩技术。数据压缩可以分为无损压缩和有损压缩两大类 。
(2).数据库技术。数据库技术是计算机处理与存储数据的最有效最成功的技术。
(3)文字、图像和语音的识别技术
(4)图像扫描与处理技术
(5)信息数字化技术,将模拟信号形式的音视频转化为数字化音视频的音视频信息数字化技术
D. 存储技术的DAT技术
DAT(Digital Audio Tape)技术又可以称为数码音频磁带技术,也叫4mm磁带机技术,DAT使用影像磁带式技术—旋转磁头和按对角方式穿越4mm磁带宽度的螺旋式扫描磁道来达到快速访问数据的目的,即使是很小的磁带盒也可达到很高的容量。这种技术后来也使用8mm磁带盒。最初是由惠普公司(HP)与索尼公司(SONY)共同开发出来的。这种技术以螺旋扫描记录(Helical Scan Recording)为基础,将数据转化为数字后再存储下来,早期的DAT技术主要应用于声音的记录,后来随着这种技术的不断完善,又被应用在数据存储领域里。4mm的DAT经历了DDS-1、DDS-2、DDS-3、DDS-4几种技术阶段,容量跨度在1GB-12GB。目前一盒DAT磁带的存储量可以达到12GB,压缩后则可以达到24GB。DAT技术主要应用于用户系统或局域网。
E. 为什么说数据存储技术已经比较完美
你好~
因为至少在纠错方面已经没什么需要改进了。
可靠的数据存储是IT行业的关键,也是现代生活的关键。虽然我们把这当成理所当然的事情,但是这其中存在什么样的谎言呢?数据视频专家,IT写手John Watkinson带你了解数据存储的相关细节,以及对未来存储技术发展的猜想。千万别烧糊大脑噢。
电脑之所以使用二进制,是因为数字简化为0和1后,由两股不同电压呈现出来时,最容易被区分开。
在闪存中,我们可以用一束绝缘电子保存这些电压。但是在其他存储设备中,则需要物理模型。
以磁带或硬盘为例,我们先看看小环境内磁化的方向,N-S或S-N。在光盘中,差异则以有没有小坑表现出来。
生物学里,DNA就是一种数据记录,这种记录以离散状态的化学物质为基础。“比特”的差别会导致变异,而变异则导致进化或是导致某种蛋白质的缺失而致病。数据记录对生命而言至关重要。
二进制的媒介并不在乎所呈现的数据是什么。一旦我们可以放心记录二进制数据,我们就会把音频,视频,图片,文本,CAD文件和电脑程序放到相同的媒介上,然后完整复制。
这些数据类型之间的唯一差别是其中的一些数据需要在一个特定时间内重复生成。
时机,可靠性,持续时长及成本
不同的存储媒介有不同的特点,没有哪种介质尽善尽美。硬盘在读取密集型应用上存储性能最佳,但是硬盘不能从驱动中移除。尽管硬盘的数据记录密度一直比光盘的大,但是你花个几秒钟就可以置换出光盘。而且,光盘的贴标成本也很低,所以适合大规模发行。
闪存可提供快速访问,而且体积很小,不过它的可持续写入周期存在局限。尽管闪存替代了以前的软磁盘,但是软磁盘技术并没消失。它还存在于航空公司,火车票,信用卡和酒店门房钥匙的磁条中。条形码就是个很好的例子。
在闪存中,存储密度是由单个电荷井的精细构造程度来决定。但是光盘技术的发展不仅可以保存越来越多的信息,而且可解析的数据也越来越小。
U盘中的芯片:没有活动部件,可直接使用
在旋转内存中,无论是磁盘还是光盘的,都存在两个问题:我们要尽可能收集多一点轨道,同时要尽可能多地把数据放到轨道中。
这些轨道极其狭窄,需要主动跟踪伺服系统使磁头可以持续被记录下来,而不受耐受力和温度改变的影响。为了减少磨损,用于收集的磁头和磁盘之间是不接触的。
光盘会盯着轨道,虽然是从微观角度,但却是由磁力驱动,磁头掠过磁盘上方几纳米处的气膜。自相矛盾的是,它是闪存,没有会带来磨损的活动部件。
编码
磁盘会扫描自己的轨道,然后按顺序收集数据。我们不能只是在磁盘轨道上写入原始数据,因为如果这些数据包含了相同的比特,那么就无法区分这些比特,读取器的同一性也会丢失。相反,数据是通过一个名为信道编码的进程来修改。信道编码的功能之一就是保障信号中的时钟内容,而不考虑真正的数据样式。
在光盘中,追踪和聚焦是过滤数据后,通过收集光圈查看数据追踪的对称性来执行。信道编码的第二个功能是去除数据追踪的DC和低频内容,使过滤更有效。圆形光点很难分辨轨道上距离太近的数据。
大众媒体
第一款量产的纠错应用存在于压缩盘中,1982年上市,这是在Reed和Solomon的论文发表22年之后。CD的光学技术是早期的镭射影碟,那么它的不足在哪里呢?
首先,数字音频光盘要实时播放。播放器不会把错误视为电脑本身的功能,所以必须得将其纠正。再者,如果CD使用的系统比Reed-Solomon编码更简单,那么这个系统将会更大--因此,将影响到便携式和汽车播放器市场。第三,Reed-Solomon纠错系统是复杂的,在LSI芯片上部署比较经济。
早在十年前,用于制作压缩光盘的所有技术早已出现,但是直到LSI Logic 公司的芯片性能跨过某个特定门槛,其性能才突然变得经济实用。
同理,之后也是在LSI技术可以用消费者可接受的价格执行实时MPEG解码时,我们才看到了DVD的流行。
综合
所有光盘用来客服这些问题的技术都被称为分组编码。比如,如果所有可能的14比特的结合体都被排序,且以波形描绘出来,就可以选择出最容易记录的。
分组编码如何限制记录的频率呢?在a) 表示的最高频率点,转换间隔了三个信道位。这样信道位的记录密度就成了三倍。注意h)是无效编码。最长的信道位运行于g),而i) 无效编码。
上图显示出,我们排除了改变太紧密的模式,因此记录的最高频率被减少了三分之一。
我们还排除了1和0之间存在较大差异的模式,因为那样带来的是我们不想要的直流偏移。267保留了我们许可的模式,比起要记录八个比特的256模式要好,剩下可同时使用的模式少之又少。
EFM
Kees Immink的数据编码技巧使用14个信道位的模式来记录八比特--因此,其名称就是EFM(eight to fourteen molation)。三种合并的比特被放在各组之间,防止边界出现混乱,所以17信道位被用于每个数据的记录。这样是违背直觉的,直到你意识到编码规则将信道位的记录密度提升三倍。所以,我们以3 x 8/17胜出,密度比率为1.41。
是信道编码机制本身增加了41%的播放时间。笔者认为在30年前能做到如此是非常不错的。
压缩光盘和MiniDisc使用的EFM技术借助了波长为780纳米的激光。DVD使用的是其变体,EFM+,激光波长减为了650纳米。
蓝光格式也使用分组编码,但不是EFM。而是信道模拟,称为信道调制,也称1.7PP调制。它的密度比率要稍逊一些,但由于使用了波长为405纳米的激光,所以存储密度有所增加。这种激光其实并不是蓝色的。
磁带记录器的磁头有两极,就好像微型马蹄铁,当磁头扫描轨道时,两极之间的有限距离会产生孔径效应。
下图显示出频率响应就像一个梳子状的过滤器,带有周期性的暗码。传统的磁带记录被限制在下面第一个暗码的波段部分,但是在第一和第二个暗码之间,则由部分响应技术来掌控,这样就把数据容量翻了一番。
所有磁性记录器都存在磁头间隙导致的回放信号a) 的暗码问题。在b) 显示的部分响应中,磁头感知不到奇数位的数据,于是会回放偶数位的数据。一个比特之后,两个偶数位数据就会被恢复。
如果数据太小,以至于其中一个数据(奇数位置)其实就在磁头间隙处,那么磁头的两极却只能识别两边偶数位置的数据,然后输出。这两种数据相加就成了第三级信号。磁头会交替重复生成交叉存取的奇数和偶数数据流。
使用两股数据流的合适信道编码,那么给定数据流的外部层级就可以轮流使用,这样就更具可预测性,而读取器也可以掌握这种预见性使数据更为可靠。这就是现如今让硬盘容量超乎想象之大的PRML编码。
纠错
在真实世界中,热活力或无线电干扰都是影响我们记录的因素。显然,用二进制记录是最难被干扰的。如果有一比特的数据被干扰,那么会引起整个数据的改变,因为1会变成0或者0会变成1。如此明显的改变会被纠错系统检测出来。在二进制中,如果有一个比特是错误的,那么只需把它设置为相反的那个数就可以了。因此,二进制的纠错是比较容易的,真正的难点在于找出有错的那个比特。
使用二进制以及具备有效纠错/数据整合系统的存储设备可以再次生成所记录的相同数据。换言之,数据的质量从本质上是透明的,因为从媒介质量那里,它就已经实现了去耦。
有了纠错系统,我们还能在任意类型的介质上做记录,包括没有经过优化的介质,如火车票。以条形码为例,只有当印有条形码的产品靠近读取器时,纠错系统才会执行任务:要确认已经发现条形码。
市场存在减少数据存储成本的压力,这就意味着要把更多数据放入给定空间内。
没有哪种介质是完美的,所有介质都存在物理缺陷。由于数据越来越小,这些缺陷就显得越来越大,所以缺陷导致数据出错的几率也在增加。
纠错需要在真实数据中加入检测数据,所以让人感觉记录效率会被降低,因为执行这些检测也要占用空间。事实上,少数额外的检测任务会让记录密度翻倍,所以这是存储容量的净增加。
一旦了解到这一点,就会明白纠错是很重要的一项技术。
第一个实用型的纠错代码是Richard Hamming 1950年开发的。Reed-Solomon编码则是1960年发布。纠错代码的发展史其实只有十年。
纠错要向真实信息添加检测数据,要优先于记录,从这些信息中进行计算。这些信息和检测数据一起形成了一种代码字,这表示它具备了一些可测试的特性,如通过特定的数学表达式来区分。播放器会对这些特性进行测试,如果发现数据有错,就不能获取可测试的特性。余数不会是零,而是被称为综合症的一种模式。通过分析这种综合症可以纠错。
在特定有限域上的Reed-Solomon 多项式代码
在Reed-Solomon代码中,有若干对不同的数学表达式,它们被用来计算校验符。一个错误会导致两种综合症。解出两个方程,就可能发现错误的位置以及导致综合症出现的错误模式。
错误被呈现并被纠正
如果没有可靠性和存储密度,那么我们现在所使用的这一切将不复存在。我们的数码照相机所拍的照片会被光点破坏,那样我们会更喜欢使用传统胶卷。
如果没有Reed-Solomon纠错系统,那么压缩光盘怎么会出现呢?
借助纠错系统,记录密度会持续增长,直到极限。每个比特使用一个电子的闪存;一个磁化分子代表一个比特的磁盘;使用超短波长的光盘。或许它会被冠以别的什么名称。在达到极值前,存储容量会呈平稳态势。
力臻完美
最先由Claude Shannon依照科学原理总结出的信息理论决定了纠错系统的理论局限性,就好像热动力学原理对热引擎效率的局限一样。
但,在真实世界里,没有机器会达到理论效率极值。Reed-Solomon纠错代码就是以信息理论设定的理论极值来操作。所以不会再有更强大的代码了。
纠错系统的纠错能力是显而易见的。笔者之所以对此表示怀疑,是因为纠错理论专业且神秘,以至于不懂的人根本不敢涉足,因而只能留给懂这些东西的人来处理。
尽管,纠错系统编码的局限性已经出现,但并不意味着不会再有新突破。纠错和信道编码都需要对信息进行编码和解码,而这就遵循摩尔定律。
因此,编码系统的成本和规模都会随着时间的发展而减小,或者其复杂性会增加,使得新应用成为可能。尽管如此,如果未来出现新的二进制数据存储设备,使用的是我们闻所未闻的介质,纠错系统将仍然是基于Reed-Solomon编码。
希望可以帮助到你~
F. 大数据时代的安防数据存储安全
大数据时代的安防数据存储安全
近几年随着平安城市、智能交通、智能楼宇等行业的快速发展,大集成、大联网推动安防行业进入了大数据时代。安防行业大数据的存在已经被越来越多的人熟知,特别是安防行业海量的非结构化视频数据,以及飞速增长的特征数据(卡口过车数据、人像抓拍数据、异常行为数据等),带动了大数据的数据安全一系列问题,吸引着行业的关注。
大数据引发监控数据安全性问题突出
大数据的本质是系统通过处理采集到的所有数据,去提取其特征和共性的信息。通过大数据的处理使得所有的数据都有价值。通过大数据的处理,把传统认为没有价值的信息也能够产生非常有价值的信息,这就叫做数据挖掘。同样的数据摆在我们面前不同的挖掘方法,不同的挖掘目标可以为各种各样的业务的应用产生有价值的信息。对于安防行业,监控技术如今正面临日新月异的变革,模拟视频监控正在向IP网络监控转变,巨大转变的同时对安全性也提出了更高的要求。我们探讨数据安全,包括产品本身的物理安全和产生数据的安全。所以,大数据时代引发监控数据安全性问题有以下几点:
1、基础设备的风险:包括监控中心的存储设备、服务器和前端节点设备的安全性、网络设备的安全性、传输线缆的安全性等。设备的安全可靠是整个大数据安防系统安全运行的基础。
2、信息存取的风险:包括用户非法访问、数据丢失、数据被篡改等。系统信息的安全,主要运用各种加密技术、存储技术、及备份方案来达到系统信息的安全。
3、信息在网络上传输的风险:包括视频信息、录像数据信息、用户信息等在传输过程中保密性、完整性的保障以及传输链路上的节点设备的安全。另外还包括前端采集设备、社会监控资源接入公安监控专网的安全。
4、系统运行的风险:包括接入设备的识别和认证、设备运行故障、软件病毒、恶意代码、以及设备控制的优先级调度等。系统运行时的风险控制主要依靠视频监控软件平台来保障,该软件平台可以完成设备管理、故障监控、访问控制、用户管理、鉴权机制等一系列的功能来保障整个系统的安全运行。
基于以上4点,从存储设备的角度我们主要谈及前面两点。
大数据也催生监控存储方式变革
在一个时代下,必然会发生诸多变革。
视频监控的存储技术和介质从VCR模拟存储、DVR数字存储,逐渐向NVR、NAS、SAN等网络存储发展。而在存储方式上,主要有集中式存储和分布式存储两种。大数据意味着海量的数据,也意味着更复杂、更敏感的数据,这些数据会吸引更多的潜在攻击者。为此,我们关注点是,大数据下的信息安全问题将衍生新的机遇,提升安防的价值。
随着安防形势的复杂多变和大数据时代的来临,对视频录像文件分析的需求越来越多。视频监控系统中也越来越多的使用了高级的数据存储设备和系统,例如专业的磁盘阵列系统等等。同理,安防行业使用这些专业存储设备时,需要充分了解这些软硬件的特性,而不要仅仅把它们当作超级外接大硬盘来使用。在系统设计和实施过程中可以充分利用这些设备中自带的一些数据保护软件来保护自己的数据。常用和流行的数据安全保护技术主要有以下七种:
磁盘阵列:磁盘阵列是指把多个类型、容量、接口甚至品牌一致的专用磁盘或普通硬盘连成一个阵列,使其以更快的速度、准确、安全的方式读写磁盘数据,从而加快数据读取速度、提高数据保存的安全性。
SAN:SAN允许服务器在共享存储装置的同时仍能高速传送数据。这一方案具有带宽高、可用性高、容错能力强的优点,而且它可以轻松升级,容易管理,有助于改善整个系统的总体成本状况。我们推荐FCSAN方案,它能为大数据时代的视频监控,相较于IPSAN方案,大幅减少存储设备台数,从而大幅降低成本,在数据安全方面由于自身设备超高的稳定性和性能来得以保障。
数据备份:备份管理包括数据备份的计划,自动操作,备份日志的保存。
双机容错:双机容错的目的在于保证系统数据和服务的在线性,即当某一系统发生故障时,仍然能够正常的向网络系统提供数据和服务,使得系统不至于停顿,双机容错的目的在于保证数据不丢失和系统不停机。
NAS解决方案通常配置为作为文件服务的设备,由工作站或服务器通过网络协议和应用程序来进行文件访问,大多数NAS链接在工作站客户机和NAS文件共享设备之间进行。这些链接依赖于企业的网络基础设施来正常运行;NAS提供视频监控系统后期视频文件批量处理分析的基本可能。
数据迁移:由在线存储设备和离线存储设备共同构成一个协调工作的存储系统,该系统在在线存储和离线存储设备间动态的管理数据,使得访问频率高的数据存放于性能较高的在线存储设备中,而访问频率低的数据存放于较为廉价的离线存储设备中;视频录像的归档可以充分利用高级存储设备的数据迁移手段;分层存储有效降低存储系统的整体成本。
异地容灾:以异地实时备份为基础的、高效的、可靠的远程数据存储,在各单位的IT系统中,必然有核心部分,通常称之为生产中心。往往给生产中心配备一个备份中心,改备份中心是远程的,并且在生产中心的内部已经实施了各种各样的数据保护。不管怎么保护,当火灾、地震这种灾难发生时,一旦生产中心瘫痪了,备份中心会接管生产,继续提供服务;视频监控的多中心配置越来越多,各个中心的系统和数据容灾应该借鉴IT的容灾技术考虑。
结束语
大数据是继云计算、物联网之后信息产业当前科技创新、产业政策及国家安全领域的又一次知识新增长点。在大数据的背景下信息安全面临着很多的挑战,特别是现阶段视频监控已有的信息安全手段已经不能满足大数据时代的信息安全的实际要求,因此研究大数据时代视频监控所面临的信息安全问题具有重要意义。
以上是小编为大家分享的关于大数据时代的安防数据存储安全的相关内容,更多信息可以关注环球青藤分享更多干货
G. 数据的存储方法有哪些
什么是分布式存储
分布式存储是一种数据存储技术,它通过网络使用企业中每台机器上的磁盘空间,这些分散的存储资源构成了虚拟存储设备,数据分布存储在企业的各个角落。
分布式存储系统,可在多个独立设备上分发数据。传统的网络存储系统使用集中存储服务器来存储所有数据。存储服务器成为系统性能的瓶颈,也是可靠性和安全性的焦点,无法满足大规模存储应用的需求。分布式网络存储系统采用可扩展的系统结构,使用多个存储服务器共享存储负载,利用位置服务器定位存储信息,不仅提高了系统的可靠性,可用性和访问效率,而且易于扩展。
分布式存储的优势
可扩展:分布式存储系统可以扩展到数百甚至数千个这样的集群大小,并且系统的整体性能可以线性增长。
低成本:分布式存储系统的自动容错和自动负载平衡允许在低成本服务器上构建分布式存储系统。此外,线性可扩展性还能够增加和降低服务器的成本,并实现分布式存储系统的自动操作和维护。
高性能:无论是针对单个服务器还是针对分布式存储群集,分布式存储系统都需要高性能。
易用性:分布式存储系统需要提供方便易用的界面。此外,他们还需要拥有完整的监控和操作工具,并且可以轻松地与其他系统集成。
杉岩分布式统一存储USP
利用分布式技术将标准x86服务器的HDD、SSD等存储介质抽象成资源池,对上层应用提供标准的块、文件、对象访问接口,
同时提供清晰直观的统一管理界面,减少部署和运维成本,满足高性能、高可靠、高可扩展性的大规模存储资源池的建设需求。
H. 信息存储技术的背景 应用 发展以及趋势
信息存储技术作为信息技术的核心之一,一直伴随着、同时推动着IT业各方面技术的协同发展,是当今IT领域中少数发展最为迅速的热点之一。纸的发明记载了人类的历史和文明,现代信息存储技术则大大超越了纸张记录的含义。21世纪是数字化和多媒体化的信息时代,现代信息社会和经济的发展,所产生的信息量每年以指数方式上升,出现了信息爆炸的态势。据UC Berkley 2001年公布的数据显示,未来3年内所产生的数据将超过过去4万年中产生数据的总和,而且93%的新生成的信息为数字形式。当上世纪50年代计算机技术初现时,存储容量还只是以千位字节计…http://www.cnki.com.cn/Article/CJFD2006-CXJL200605012.htm
I. DNA存储技术的优点
DNA存储技术作为数字存储媒介的显着优点之一是容量大。DNA分子是一种令人难以置信的密集存储介质,1克DNA能够存储大约2拍字节,相当于大约300万张CD。
用DNA存储数据保存时间可能长达数千年。与硬盘、磁带等存储介质不同的是,DNA不需要经常维护。就读取方式而言,DNA存储不涉及兼容问题。
J. 结构化数据存储技术有哪些
在信息社会,信息可以划分为两大类。一类信息能够用数据或统一的结构加以表示,我们称之为结构化数据,如数字、符号;而另一类信息无法用数字或统一的结构表示,如文本、图像、声音、网页等,我们称之为非结构化数据。结构化数据属于非结构化数据,是非结构化数据的特例。