当前位置:首页 » 存储配置 » 分区式存储管理中硬件提供的支持

分区式存储管理中硬件提供的支持

发布时间: 2022-08-24 04:05:07

Ⅰ 在基本段式存储管理系统中,逻辑地址由什么构成

存储管理的基本原理内存管理方法
内存管理主要包括内存分配和回收、地址变换、内存扩充、内存共享和保护等功能。
下面主要介绍连续分配存储管理、覆盖与交换技术以及页式与段式存储管理等基本概念和原理。
1. 连续分配存储管理方式
连续分配是指为一个用户程序分配连续的内存空间。连续分配有单一连续存储管理和分区式储管理两种方式。
(1)单一连续存储管理
在这种管理方式中,内存被分为两个区域:系统区和用户区。应用程序装入到用户区,可使用用户区全部空间。其特点是,最简单,适用于单用户、单任务的操作系统。CP/M和dos 2.0以下就是采用此种方式。这种方式的最大优点就是易于管理。但也存在着一些问题和不足之处,例如对要求内存空间少的程序,造成内存浪费;程序全部装入,使得很少使用的程序部分也占用—定数量的内存。
(2)分区式存储管理
为了支持多道程序系统和分时系统,支持多个程序并发执行,引入了分区式存储管理。分区式存储管理是把内存分为一些大小相等或不等的分区,操作系统占用其中一个分区,其余的分区由应用程序使用,每个应用程序占用一个或几个分区。分区式存储管理虽然可以支持并发,但难以进行内存分区的共享。
分区式存储管理引人了两个新的问题:内碎片和外碎片。前者是占用分区内未被利用的空间,后者是占用分区之间难以利用的空闲分区(通常是小空闲分区)。为实现分区式存储管理,操作系统应维护的数据结构为分区表或分区链表。表中各表项一般包括每个分区的起始地址、大小及状态(是否已分配)。
分区式存储管理常采用的一项技术就是内存紧缩(compaction):将各个占用分区向内存一端移动,然后将各个空闲分区合并成为一个空闲分区。这种技术在提供了某种程度上的灵活性的同时,也存在着一些弊端,例如:对占用分区进行内存数据搬移占用cpu~t寸间;如果对占用分区中的程序进行“浮动”,则其重定位需要硬件支持。
1)固定分区(nxedpartitioning)。
固定式分区的特点是把内存划分为若干个固定大小的连续分区。分区大小可以相等:这种作法只适合于多个相同程序的并发执行(处理多个类型相同的对象)。分区大小也可以不等:有多个小分区、适量的中等分区以及少量的大分区。根据程序的大小,分配当前空闲的、适当大小的分区。这种技术的优点在于,易于实现,开销小。缺点主要有两个:内碎片造成浪费;分区总数固定,限制了并发执行的程序数目。
2)动态分区(dynamic partitioning)。
动态分区的特点是动态创建分区:在装入程序时按其初始要求分配,或在其执行过程中通过系统调用进行分配或改变分区大小。与固定分区相比较其优点是:没有内碎片。但它却引入了另一种碎片——外碎片。动态分区的分区分配就是寻找某个空闲分区,其大小需大于或等于程序的要求。若是大于要求,则将该分区分割成两个分区,其中一个分区为要求的大小并标记为“占用”,而另一个分区为余下部分并标记为“空闲”。分区分配的先后次序通常是从内存低端到高端。动态分区的分区释放过程中有一个要注意的问题是,将相邻的空闲分区合并成一个大的空闲分区。
下面列出了几种常用的分区分配算法
首先适配法(nrst-fit):按分区在内存的先后次序从头查找,找到符合要求的第一个分区进行分配。该算法的分配和释放的时间性能较好,较大的空闲分区可以被保留在内存高端。但随着低端分区不断划分会产生较多小分区,每次分配时查找时间开销便会增大。
下次适配法(next-fit):按分区在内存的先后次序,从上次分配的分区起查找(到最后{区时再从头开始},找到符合要求的第一个分区进行分配。该算法的分配和释放的时间性能较好,使空闲分区分布得更均匀,但较大空闲分区不易保留。
最佳适配法(best-fit):按分区在内存的先后次序从头查找,找到其大小与要求相差最小的空闲分区进行分配。从个别来看,外碎片较小;但从整体来看,会形成较多外碎片优点是较大的空闲分区可以被保留。
最坏适配法(worst- fit):按分区在内存的先后次序从头查找,找到最大的空闲分区进行分配。基本不留下小空闲分区,不易形成外碎片。但由于较大的空闲分区不被保留,当对内存需求较大的进程需要运行时,其要求不易被满足。
2.覆盖和交换技术
引入覆盖(overlay)技术的目标是在较小的可用内存中运行较大的程序。这种技术常用于多道程序系统之中,与分区式存储管理配合使用。覆盖技术的原理很简单,一个程序的几个代码段或数据段,按照时间先后来占用公共的内存空间。将程序必要部分(常用功能)的代码和数据常驻内存;可选部分(不常用功能)平时存放在外存(覆盖文件)中,在需要时才装入内存。不存在调用关系的模块不必同时装入到内存,从而可以相互覆盖。覆盖技术的缺点是编程时必须划分程序模块和确定程序模块之间的覆盖关系,增加编程复杂度;从外存装入覆盖文件,以时间延长换取空间节省。覆盖的实现方式有两种:以函数库方式实现或操作系统支持。
交换(swapping)技术在多个程序并发执行时,可以将暂时不能执行的程序送到外存中,从而获得空闲内存空间来装入新程序,或读人保存在外存中而处于就绪状态的程序。交换单位为整个进程的地址空间。交换技术常用于多道程序系统或小型分时系统中,与分区式存储管理配合使用又称作“对换”或“滚进/滚出”(roll-in/roll-out)。其优点之一是增加并发运行的程序数目,并给用户提供适当的响应时间;与覆盖技术相比交换技术另一个显着的优点是不影响程序结构。交换技术本身也存在着不足,例如:对换人和换出的控制增加处理器开销;程序整个地址空间都进行对换,没有考虑执行过程中地址访问的统计特性。
3.页式和段式存储管理
在前面的几种存储管理方法中,为进程分配的空间是连续的,使用的地址都是物理地址。如果允许将一个进程分散到许多不连续的空间,就可以避免内存紧缩,减少碎片。基于这一思想,通过引入进程的逻辑地址,把进程地址空间与实际存储空间分离,增加存储管理的灵活性。地址空间和存储空间两个基本概念的定义如下:
地址空间:将源程序经过编译后得到的目标程序,存在于它所限定的地址范围内,这个范围称为地址空间。地址空间是逻辑地址的集合。
存储空间:指主存中一系列存储信息的物理单元的集合,这些单元的编号称为物理地址存储空间是物理地址的集合。
根据分配时所采用的基本单位不同,可将离散分配的管理方式分为以下三种
段式存储管理和段页式存储管理。其中段页式存储管理是前两种结合的产物。
(1)页式存储管理
1)基本原理。将程序的逻辑地址空间划分为固定大小的页(page),而物理内存划分为同样大小的页框(pageframe)。程序加载时,可将任意一页放人内存中任意一个页框,这些页框不必连续,从而实现了离散分配。该方法需要cpu的硬件支持,来实现逻辑地址和物理地址之间的映射。在页式存储管理方式中地址结构由两部构成,前一部分是页号,后一部分为页内地址,如图4-2所示。
这种管理方式的优点是,没有外碎片,每个内碎片不超过页大比前面所讨论的几种管理方式的最大进步是,一个程序不必连续存放。这样就便于改变程序占用空间的大小(主要指随着程序运行,动态生成的数据增多,所要求的地址空间相应增长)。缺点是仍旧要求程序全部装入内存,没有足够的内存,程序就不能执行。
2)页式管理的数据结构。在页式系统中进程建立时,操作系统为进程中所有的页分配页框。当进程撤销时收回所有分配给它的页框。在程序的运行期间,如果允许进程动态地申请空间,操作系统还要为进程申请的空间分配物理页框。操作系统为了完成这些功能,必须记录系统内存中
实际的页框使用情况。操作系统还要在进程切换时,正确地切换两个不同的进程地址空间到物理内存空间的映射。这就要求操作系统要记录每个进程页表的相关信息。为了完成上述的功能,—个页式系统中,一般要采用如下的数据结构。
进程页表:完成逻辑页号(本进程的地址空间)到物理页面号(实际内存空间)的映射。
每个进程有一个页表,描述该进程占用的物理页面及逻辑排列顺序。
物理页面表:整个系统有一个物理页面表,描述物理内存空间的分配使用状况,其数据结构可采用位示图和空闲页链表。
请求表:整个系统有一个请求表,描述系统内各个进程页表的位置和大小,用于地址转换也可以结合到各进程的pcb(进程控制块)里。
3)页式管理地址变换
在页式系统中,指令所给出的地址分为两部分:逻辑页号和页内地址。cpu中的内存管理单元(mmu)按逻辑页号通过查进程页表得到物理页框号,将物理页框号与页内地址相加形成物理地址(见图4-3)。上述过程通常由处理器的硬件直接完成,不需要软件参与。通常,操作系统只需在进程切换时,把进程页表的首地址装入处理器特定的寄存器中即可。一般来说,页表存储在主存之中。这样处理器每访问一个在内存中的操作数,就要访问两次内存。第一次用来查找页表将操作数的逻辑地址变换为物理地址;第二次完成真正的读写操作。这样做时间上耗费严重。为缩短查找时间,可以将页表从内存装入cpu内部的关联存储器(例如,快表)中,实现按内容查找。此时的地址变换过程是:在cpu给出有效地址后,由地址变换机构自动将页号送人快表,并将此页号与快表中的所有页号进行比较,而且这种比较是同时进行的。若其中有与此相匹配的页号,表示要访问的页的页表项在快表中。于是可直接读出该页所对应的物理页号,这样就无需访问内存中的页表。由于关联存储器的访问速度比内存的访问速度快得多。
(2)段式存储管理
1)基本原理。
在段式存储管理中,将程序的地址空间划分为若干个段(segment),这样每个进程有一个二维的地址空间。在前面所介绍的动态分区分配方式中,系统为整个进程分配一个连续的内存空间。而在段式存储管理系统中,则为每个段分配一个连续的分区,而进程中的各个段可以不连续地存放在内存的不同分区中。程序加载时,操作系统为所有段分配其所需内存,这些段不必连续,物理内存的管理采用动态分区的管理方法。在为某个段分配物理内存时,可以采用首先适配法、下次适配法、最佳适配法等方法。在回收某个段所占用的空间时,要注意将收回的空间与其相邻的空间合并。段式存储管理也需要硬件支持,实现逻辑地址到物理地址的映射。程序通过分段划分为多个模块,如代码段、数据段、共享段。这样做的优点是:可以分别编写和编译源程序的一个文件,并且可以针对不同类型的段采取不同的保护,也可以按段为单位来进行共享。总的来说,段式存储管理的优点是:没有内碎片,外碎片可以通过内存紧缩来消除;便于实现内存共享。缺点与页式存储管理的缺点相同,进程必须全部装入内存。
2)段式管理的数据结构。
为了实现段式管理,操作系统需要如下的数据结构来实现进程的地址空间到物理内存空间的映射,并跟踪物理内存的使用情况,以便在装入新的段的时候,合理地分配内存空间。
·进程段表:描述组成进程地址空间的各段,可以是指向系统段表中表项的索引。每段有段基址(baseaddress)。
·系统段表:系统所有占用段。
·空闲段表:内存中所有空闲段,可以结合到系统段表中。
3)段式管理的地址变换。
在段式管理系统中,整个进程的地址空间是二维的,即其逻辑地址由段号和段内地址两部分组成。为了完成进程逻辑地址到物理地址的映射,处理器会查找内存中的段表,由段号得到段的首地址,加上段内地址,得到实际的物理地址(见图4—4)。这个过程也是由处理器的硬件直接完成的,操作系统只需在进程切换时,将进程段表的首地址装入处理器的特定寄存器当中。这个寄存器一般被称作段表地址寄存器。
4.页式和段式系统的区别
页式和段式系统有许多相似之处。比如,两者都采用离散分配方式,且都通过地址映射机构来实现地址变换。但概念上两者也有很多区别,主要表现在:
·页是信息的物理单位,分页是为了实现离散分配方式,以减少内存的外零头,提高内存的利用率。或者说,分页仅仅是由于系统管理的需要,而不是用户的需要。段是信息的逻辑单位,它含有一组其意义相对完整的信息。分段的目的是为了更好地满足用户的需要。
·页的大小固定且由系统决定,把逻辑地址划分为页号和页内地址两部分,是由机器硬件实现的。段的长度不固定,且决定于用户所编写的程序,通常由编译系统在对源程序进行编译时根据信息的性质来划分。
·页式系统地址空间是一维的,即单一的线性地址空间,程序员只需利用一个标识符,即可表示一个地址。分段的作业地址空间是二维的,程序员在标识一个地址时,既需给出段名,又需给出段内地址。


原理作业10. 页式存储管理和段式存储管理的工作原理特点、特点
及优劣。

答:页式管理的基本思想是:为了更好地利用分区存储管理中
所产生的"零头"问题,允许把一个作业存放在不连续的内存块中,
又可以连续运行,它允许只调入用户作业中常用部分,不常用部分
不长期驻留内存,有效提高了内存的利用率。

页式存储管理的工作原理:
A、划分实页:将物理内存划分成位置固定、大小相同的"块"(实页
面)。
B、划分虚页:将用户逻辑地址空间也分成同样大小的页面,成为虚
拟空间的虚页面。
C、建立页表:有时称为页面表或页面映射表(pmt)。每个作业一
张,按虚页号进行登记,其基本的内容有特征位(表示该页是否
在内存、实页号以及对应外存的地址。
D、地址变换:将虚页面的逻辑地址转化为实页面的物理地址,在程
序执行时改变为物理地址,属于作业的动态重定位,一般由地址
转换机构(硬件)完成。

特点:
允许一个作业存放在不连续的内存块中而又能保证作业连续得以运行
,既不需要移动内存中的信息,又可较好地解决零头。

优点:
a、不要求作业存放在连续的内存块中,有效地解决零头。
b、允许用户作业不是一次集中装入内存而是根据需要调入,作业中
不常用部分不长期驻留内存,而本次运行的不用部分根本就不装
入内存。
c、提供了虚存,使用户作业地址空间不再受内存可用空间大小的限
制。

Ⅱ 在页式系统中,用户程序中的页面大小可以不同是对的吗

存储管理的基本原理内存管理方法 内存管理主要包括内存分配和回收、地址变换、内存扩充、内存共享和保护等功能。 下面主要介绍连续分配存储管理、覆盖与交换技术以及页式与段式存储管理等基本概念和原理。 1. 连续分配存储管理方式 连续分配是指为一个用户程序分配连续的内存空间。连续分配有单一连续存储管理和分区式储管理两种方式。 (1)单一连续存储管理 在这种管理方式中,内存被分为两个区域:系统区和用户区。应用程序装入到用户区,可使用用户区全部空间。其特点是,最简单,适用于单用户、单任务的操作系统。CP/M和DOS 2.0以下就是采用此种方式。这种方式的最大优点就是易于管理。但也存在着一些问题和不足之处,例如对要求内存空间少的程序,造成内存浪费;程序全部装入,使得很少使用的程序部分也占用-定数量的内存。 (2)分区式存储管理 为了支持多道程序系统和分时系统,支持多个程序并发执行,引入了分区式存储管理。分区式存储管理是把内存分为一些大小相等或不等的分区,操作系统占用其中一个分区,其余的分区由应用程序使用,每个应用程序占用一个或几个分区。分区式存储管理虽然可以支持并发,但难以进行内存分区的共享。 分区式存储管理引人了两个新的问题:内碎片和外碎片。前者是占用分区内未被利用的空间,后者是占用分区之间难以利用的空闲分区(通常是小空闲分区)。为实现分区式存储管理,操作系统应维护的数据结构为分区表或分区链表。表中各表项一般包括每个分区的起始地址、大小及状态(是否已分配)。 分区式存储管理常采用的一项技术就是内存紧缩(compaction):将各个占用分区向内存一端移动,然后将各个空闲分区合并成为一个空闲分区。这种技术在提供了某种程度上的灵活性的同时,也存在着一些弊端,例如:对占用分区进行内存数据搬移占用CPU~t寸间;如果对占用分区中的程序进行“浮动”,则其重定位需要硬件支持。 1)固定分区(nxedpartitioning)。 固定式分区的特点是把内存划分为若干个固定大小的连续分区。分区大小可以相等:这种作法只适合于多个相同程序的并发执行(处理多个类型相同的对象)。分区大小也可以不等:有多个小分区、适量的中等分区以及少量的大分区。根据程序的大小,分配当前空闲的、适当大小的分区。这种技术的优点在于,易于实现,开销小。缺点主要有两个:内碎片造成浪费;分区总数固定,限制了并发执行的程序数目。 2)动态分区(dynamic partitioning)。 动态分区的特点是动态创建分区:在装入程序时按其初始要求分配,或在其执行过程中通过系统调用进行分配或改变分区大小。与固定分区相比较其优点是:没有内碎片。但它却引入了另一种碎片--外碎片。动态分区的分区分配就是寻找某个空闲分区,其大小需大于或等于程序的要求。若是大于要求,则将该分区分割成两个分区,其中一个分区为要求的大小并标记为“占用”,而另一个分区为余下部分并标记为“空闲”。分区分配的先后次序通常是从内存低端到高端。动态分区的分区释放过程中有一个要注意的问题是,将相邻的空闲分区合并成一个大的空闲分区。 下面列出了几种常用的分区分配算法: 首先适配法(nrst-fit):按分区在内存的先后次序从头查找,找到符合要求的第一个分区进行分配。该算法的分配和释放的时间性能较好,较大的空闲分区可以被保留在内存高端。但随着低端分区不断划分会产生较多小分区,每次分配时查找时间开销便会增大。 下次适配法(next-fit):按分区在内存的先后次序,从上次分配的分区起查找(到最后{区时再从头开始},找到符合要求的第一个分区进行分配。该算法的分配和释放的时间性能较好,使空闲分区分布得更均匀,但较大空闲分区不易保留。 最佳适配法(best-fit):按分区在内存的先后次序从头查找,找到其大小与要求相差最小的空闲分区进行分配。从个别来看,外碎片较小;但从整体来看,会形成较多外碎片优点是较大的空闲分区可以被保留。 最坏适配法(worst- fit):按分区在内存的先后次序从头查找,找到最大的空闲分区进行分配。基本不留下小空闲分区,不易形成外碎片。但由于较大的空闲分区不被保留,当对内存需求较大的进程需要运行时,其要求不易被满足。 2.覆盖和交换技术 引入覆盖(overlay)技术的目标是在较小的可用内存中运行较大的程序。这种技术常用于多道程序系统之中,与分区式存储管理配合使用。覆盖技术的原理很简单,一个程序的几个代码段或数据段,按照时间先后来占用公共的内存空间。将程序必要部分(常用功能)的代码和数据常驻内存;可选部分(不常用功能)平时存放在外存(覆盖文件)中,在需要时才装入内存。不存在调用关系的模块不必同时装入到内存,从而可以相互覆盖。覆盖技术的缺点是编程时必须划分程序模块和确定程序模块之间的覆盖关系,增加编程复杂度;从外存装入覆盖文件,以时间延长换取空间节省。覆盖的实现方式有两种:以函数库方式实现或操作系统支持。 交换(swapping)技术在多个程序并发执行时,可以将暂时不能执行的程序送到外存中,从而获得空闲内存空间来装入新程序,或读人保存在外存中而处于就绪状态的程序。交换单位为整个进程的地址空间。交换技术常用于多道程序系统或小型分时系统中,与分区式存储管理配合使用又称作“对换”或“滚进/滚出”(roll-in/roll-out)。其优点之一是增加并发运行的程序数目,并给用户提供适当的响应时间;与覆盖技术相比交换技术另一个显着的优点是不影响程序结构。交换技术本身也存在着不足,例如:对换人和换出的控制增加处理器开销;程序整个地址空间都进行对换,没有考虑执行过程中地址访问的统计特性。 3.页式和段式存储管理 在前面的几种存储管理方法中,为进程分配的空间是连续的,使用的地址都是物理地址。如果允许将一个进程分散到许多不连续的空间,就可以避免内存紧缩,减少碎片。基于这一思想,通过引入进程的逻辑地址,把进程地址空间与实际存储空间分离,增加存储管理的灵活性。地址空间和存储空间两个基本概念的定义如下: 地址空间:将源程序经过编译后得到的目标程序,存在于它所限定的地址范围内,这个范围称为地址空间。地址空间是逻辑地址的集合。 存储空间:指主存中一系列存储信息的物理单元的集合,这些单元的编号称为物理地址存储空间是物理地址的集合。 根据分配时所采用的基本单位不同,可将离散分配的管理方式分为以下三种 段式存储管理和段页式存储管理。其中段页式存储管理是前两种结合的产物。 (1)页式存储管理 1)基本原理。将程序的逻辑地址空间划分为固定大小的页(page),而物理内存划分为同样大小的页框(pageframe)。程序加载时,可将任意一页放人内存中任意一个页框,这些页框不必连续,从而实现了离散分配。该方法需要CPU的硬件支持,来实现逻辑地址和物理地址之间的映射。在页式存储管理方式中地址结构由两部构成,前一部分是页号,后一部分为页内地址,如图4-2所示。 这种管理方式的优点是,没有外碎片,每个内碎片不超过页大比前面所讨论的几种管理方式的最大进步是,一个程序不必连续存放。这样就便于改变程序占用空间的大小(主要指随着程序运行,动态生成的数据增多,所要求的地址空间相应增长)。缺点是仍旧要求程序全部装入内存,没有足够的内存,程序就不能执行。 2)页式管理的数据结构。在页式系统中进程建立时,操作系统为进程中所有的页分配页框。当进程撤销时收回所有分配给它的页框。在程序的运行期间,如果允许进程动态地申请空间,操作系统还要为进程申请的空间分配物理页框。操作系统为了完成这些功能,必须记录系统内存中 实际的页框使用情况。操作系统还要在进程切换时,正确地切换两个不同的进程地址空间到物理内存空间的映射。这就要求操作系统要记录每个进程页表的相关信息。为了完成上述的功能,-个页式系统中,一般要采用如下的数据结构。 进程页表:完成逻辑页号(本进程的地址空间)到物理页面号(实际内存空间)的映射。 每个进程有一个页表,描述该进程占用的物理页面及逻辑排列顺序。 物理页面表:整个系统有一个物理页面表,描述物理内存空间的分配使用状况,其数据结构可采用位示图和空闲页链表。 请求表:整个系统有一个请求表,描述系统内各个进程页表的位置和大小,用于地址转换也可以结合到各进程的PCB(进程控制块)里。 3)页式管理地址变换 在页式系统中,指令所给出的地址分为两部分:逻辑页号和页内地址。CPU中的内存管理单元(MMU)按逻辑页号通过查进程页表得到物理页框号,将物理页框号与页内地址相加形成物理地址(见图4-3)。上述过程通常由处理器的硬件直接完成,不需要软件参与。通常,操作系统只需在进程切换时,把进程页表的首地址装入处理器特定的寄存器中即可。一般来说,页表存储在主存之中。这样处理器每访问一个在内存中的操作数,就要访问两次内存。第一次用来查找页表将操作数的逻辑地址变换为物理地址;第二次完成真正的读写操作。这样做时间上耗费严重。为缩短查找时间,可以将页表从内存装入CPU内部的关联存储器(例如,快表)中,实现按内容查找。此时的地址变换过程是:在CPU给出有效地址后,由地址变换机构自动将页号送人快表,并将此页号与快表中的所有页号进行比较,而且这种比较是同时进行的。若其中有与此相匹配的页号,表示要访问的页的页表项在快表中。于是可直接读出该页所对应的物理页号,这样就无需访问内存中的页表。由于关联存储器的访问速度比内存的访问速度快得多。 (2)段式存储管理 1)基本原理。 在段式存储管理中,将程序的地址空间划分为若干个段(segment),这样每个进程有一个二维的地址空间。在前面所介绍的动态分区分配方式中,系统为整个进程分配一个连续的内存空间。而在段式存储管理系统中,则为每个段分配一个连续的分区,而进程中的各个段可以不连续地存放在内存的不同分区中。程序加载时,操作系统为所有段分配其所需内存,这些段不必连续,物理内存的管理采用动态分区的管理方法。在为某个段分配物理内存时,可以采用首先适配法、下次适配法、最佳适配法等方法。在回收某个段所占用的空间时,要注意将收回的空间与其相邻的空间合并。段式存储管理也需要硬件支持,实现逻辑地址到物理地址的映射。程序通过分段划分为多个模块,如代码段、数据段、共享段。这样做的优点是:可以分别编写和编译源程序的一个文件,并且可以针对不同类型的段采取不同的保护,也可以按段为单位来进行共享。总的来说,段式存储管理的优点是:没有内碎片,外碎片可以通过内存紧缩来消除;便于实现内存共享。缺点与页式存储管理的缺点相同,进程必须全部装入内存。 2)段式管理的数据结构。 为了实现段式管理,操作系统需要如下的数据结构来实现进程的地址空间到物理内存空间的映射,并跟踪物理内存的使用情况,以便在装入新的段的时候,合理地分配内存空间。 ·进程段表:描述组成进程地址空间的各段,可以是指向系统段表中表项的索引。每段有段基址(baseaddress)。 ·系统段表:系统所有占用段。 ·空闲段表:内存中所有空闲段,可以结合到系统段表中。 3)段式管理的地址变换。 在段式管理系统中,整个进程的地址空间是二维的,即其逻辑地址由段号和段内地址两部分组成。为了完成进程逻辑地址到物理地址的映射,处理器会查找内存中的段表,由段号得到段的首地址,加上段内地址,得到实际的物理地址(见图4-4)。这个过程也是由处理器的硬件直接完成的,操作系统只需在进程切换时,将进程段表的首地址装入处理器的特定寄存器当中。这个寄存器一般被称作段表地址寄存器。 4.页式和段式系统的区别 页式和段式系统有许多相似之处。比如,两者都采用离散分配方式,且都通过地址映射机构来实现地址变换。但概念上两者也有很多区别,主要表现在: ·页是信息的物理单位,分页是为了实现离散分配方式,以减少内存的外零头,提高内存的利用率。或者说,分页仅仅是由于系统管理的需要,而不是用户的需要。段是信息的逻辑单位,它含有一组其意义相对完整的信息。分段的目的是为了更好地满足用户的需要。 ·页的大小固定且由系统决定,把逻辑地址划分为页号和页内地址两部分,是由机器硬件实现的。段的长度不固定,且决定于用户所编写的程序,通常由编译系统在对源程序进行编译时根据信息的性质来划分。 ·页式系统地址空间是一维的,即单一的线性地址空间,程序员只需利用一个标识符,即可表示一个地址。分段的作业地址空间是二维的,程序员在标识一个地址时,既需给出段名,又需给出段内地址。 原理作业10. 页式存储管理和段式存储管理的工作原理特点、特点 及优劣。 答:页式管理的基本思想是:为了更好地利用分区存储管理中 所产生的"零头"问题,允许把一个作业存放在不连续的内存块中, 又可以连续运行,它允许只调入用户作业中常用部分,不常用部分 不长期驻留内存,有效提高了内存的利用率。 页式存储管理的工作原理: A、划分实页:将物理内存划分成位置固定、大小相同的"块"(实页 面)。 B、划分虚页:将用户逻辑地址空间也分成同样大小的页面,成为虚 拟空间的虚页面。 C、建立页表:有时称为页面表或页面映射表(PMT)。每个作业一 张,按虚页号进行登记,其基本的内容有特征位(表示该页是否 在内存、实页号以及对应外存的地址。 D、地址变换:将虚页面的逻辑地址转化为实页面的物理地址,在程 序执行时改变为物理地址,属于作业的动态重定位,一般由地址 转换机构(硬件)完成。 特点: 允许一个作业存放在不连续的内存块中而又能保证作业连续得以运行 ,既不需要移动内存中的信息,又可较好地解决零头。 优点: a、不要求作业存放在连续的内存块中,有效地解决零头。 b、允许用户作业不是一次集中装入内存而是根据需要调入,作业中 不常用部分不长期驻留内存,而本次运行的不用部分根本就不装 入内存。 c、提供了虚存,使用户作业地址空间不再受内存可用空间大小的限 制。 缺点: a、页式管理在内存的共享和保护方面还欠完善。 b、页面大小相同,位置不能动态增加。 c、往往需要多次缺页中断才能把所需的信息完整地调入内存。 段式存储管理的基本思想是:把程序按内容或过程(函数)关系 分成段,每段有自己的名字。一个用户作业或进程所包含的段对应于 一个二维线性虚拟空间,也就是一个二维虚拟存储器。段式管理程序 以段为单位分配内存,然后通过地址映射机构把段式虚拟存储地址转 化为内存中的实际地址。和页式管理一样,段式管理也采用只把那些 经常访问的段驻留内存,而把那些在将来一段时间内不被访问的段放 在外存,待需要时自动调入内存的方法实现二维虚拟存储器。按照作 业的逻辑单位--段,来分配内存,适合程序的逻辑结构,方便用户设 计程序。 段式存储管理的工作原理: A、采用二维地址空间,如段号(S)、页号(P)和页内单元号(D); B、系统建两张表格每一作业一张段表,每一段建立一张页表,段表 指出该段的页表在内存中的位置; C、地址变换机构类似页式机制,只是前面增加一项段号。 特点: a、每一段分成若干页,再按页式管理,页间不要求连续; b、用分段方法分配管理作业,用分页方法分配管理内存; 优点: 便于段的共享和保护、段的动态增长以及动态连接。 缺点: 为了消除零头和允许段的动态增长,需要花费CPU的大量时间在内存 中移动作业的分段,而且段的大小也给外存管理带来困难。

Ⅲ 操作系统页式存储管理的问题

存储管理的基本原理内存管理方法 内存管理主要包括内存分配和回收、地址变换、内存扩充、内存共享和保护等功能。 下面主要介绍连续分配存储管理、覆盖与交换技术以及页式与段式存储管理等基本概念和原理。 1. 连续分配存储管理方式 连续分配是操作系统页式存储管理的问题

Ⅳ *操作系统的存储管理的主要内容是什么

这是我收集的你看全吗问题一:⑴ 存储管理的实质是什么?(对内存的管理,主要对内存中用户区进行管理)⑵ 多道程序中,为方便用户和充分利用内存以提高内存利用率,内存管理的任务是什么?(内存空间的分配和回收、内存空间的共享、存储保护、地址映射、内存扩充)。⑶ 如何实现存储保护?
答:在多道程序系统中,内存中既有操作系统,又有许多用户程序。为使系统正常运行,避免内存中各程序相互干扰,必须对内存中的程序和数据进行保护。
1、防止地址越界
对进程所产生的地址必须加以检查,发生越界时产生中断,由操作系统进行相应处理。
2、防止操作越权
对属于自己区域的信息,可读可写;
对公共区域中允许共享的信息或获得授权可使用的信息,可读而不可修改;
对未获授权使用的信息,不可读、不可写。
存储保护一般以硬件保护机制为主,软件为辅,因为完全用软件实现系统开销太大,速度成倍降低。当发生越界或非法操作时,硬件产生中断,进入操作系统处理(4) 物理存储器分几类?(内存、外存、缓存)⑸ 虚存储器的含义是什么?(两层含义)
答:虚存储器有两层含义,一是指用户程序的逻辑地址构成的地址空间;二是指当内存容量不满足用户要求时,采用一种将内存空间与外存空间有机地结合在一起,利用内外存自动调度的方法构成一个大的存储器,从而给用户程序提供更大的访问空间。⑹ 什么叫物理地址?什么叫逻辑地址?什么叫地址映射?地址映射分哪几类?(静态、动态)
答:物理地址是内存中各存储单元的编号,即存储单元的真实地址,它是可识别、可寻址并实际存在的。
用户程序经过编译或汇编形成的目标代码,通常采用相对地址形式,其首地址为零,其余指令中的地址都是相对首地址而定。这个相对地址就称为逻辑地址或虚拟地址。逻辑地址不是内存中的物理地址,不能根据逻辑地址到内存中存取信息。
为了保证CPU执行程序指令时能正确访问存储单元,需要将用户程序中的逻辑地址转运行时可由机器直接寻址的物理地址,这一过程称为地址映射或地址重定位。
地址映射可分为两类:
1、静态地址映射2、动态地址映射问题二:⑴ 怎样对内存进行分区?(静态、动态;等长、不等长)
答:对内存空间的划分是可以静态的,也可以动态的;可以是等长的,也可以不等长。
静态划分是指系统运行之前就将内存空间划分成若干区域,通常,分配给进程的内存可能比进程实际所需的区域长。
动态划分是在系统运行过程中才划分内存空间。这样,系统可按进程所需要的存储空间大小为其分配恰好满足要求的一个或多个区域。
等长分区是将存储空间划分为若干个长度相同的区域。
不等长分区则是将存储空间划分若干个长度不同的区域。⑵ 根据分区情况,从如何实现进程的内存分配?
答:1、静态等长分区的分配
2、动态异长分区的分配⑶ 什么叫碎片?(零散的小空闲区) 怎样解决碎片问题?(紧凑技术)
答:所谓碎片是指内存中出现的一些零散的小空闲区域。
解决碎片的方法是移动所有占用区域,使所有的空闲区合并成一片连续区域。这一过程称为紧凑,这一技术就是紧凑技术。。问题三:⑴ 存储管理方案有哪些?(分区管理、页式管理、段式管理、段页式管理、虚拟存储管理)⑵ 分区管理的基本思想是什么?主要缺点是什么?
基本思想:将内存划分成若干连续的区域,称为分区,每个分区装入一个运行作业。
主要缺点:不能充分利用内存,也不能实现对内存的扩充。⑶ 什么是固定分区?什么是可变分区?各有什么优缺点?
答:固定分区:系统将内存划分为若干固定的分区,当作业申请内存时,系统为其选择一个适当的分区,并装入内存运行。由于分区大小是事先固定的,因而可容纳作业的大小受到限制,而且当用户作业的地址空间小于分区的存储空间时,浪费了一些存储空间。
可变分区:是指在作业装入内存时建立分区,使分区的大小正好与作业要求的存储空间相等。引入可变分区方法,使内存分配有较大的灵活性,也提高了内存利用率。但是可变分区会引起碎片的产生。⑷ 分区管理可以采用的内存分配策略是什么?
首先适应算法、最佳适应算法、最坏适应算法。⑸ 为实现地址映射和存储保护,系统为用户程序提供了哪些寄存器?
基址寄存器、限长寄存器;上界寄存器、下界寄存器。问题四:⑴ 试述页式存储管理的基本原理
① 内存划分。
② 逻辑地址空间划分。
③ 页面大小。
④ 内存分配。⑵ 试述页式存储管理的实现方法
① 建立页表。② 建立空闲页面表。
③ 硬件支持。④ 地址映射过程。⑶ 为了提高存取速度,可以使用快表技术。试述这一技术是如何实现的?
答:快表技术是在地址映射机构中增加一个小容量的联想寄存器(相联存储器),它由高速寄存器组成,成为一张快表,快表用来存放当前访问最频繁的少数活动页的页号。
在快表中,除了逻辑页号、物理页号对应外,还增加了几位。特征位表示该行是否为空,用0表示空,用1表示有内容;访问位表示该页是否被访问过,用0表示未访问,1表示已访问,这是为了淘汰那些用得很少甚至不用的页面而设置的。
快表只存放当前进程最活跃的少数几页,随着进程的推进,快表内容动态更新。当用户程序需要存取数据时,根据该数据所在逻辑页号在快表中找出对应的物理页号,然后拼接页内地址,以形成物理地址;如果在快表中没有相应的逻辑页号,则地址映射仍然通过内存中的页表进行,得到物理页号后须将该物理页号填到快表的空闲单元中。有无空闲单元,则根据淘汰算法淘汰某一行,再填入新得到的页号。实际上查找快表和查找内存页表是并行进行的,一旦发现快表中有与所查页号一致的逻辑页号就停止查找内存页表。问题五:⑴ 试述段页式存储管理的基本思想
答:段页式存储管理的基本思想是:
1、用页式方法来分配和管理内存空间,即把内存划分成若干大小相等的页面;
2、用段式方法对用户程序按照其内在的逻辑关系划分成若干段;
3、再按照划分内存页面的大小,把每一段划分成若干大小相等的页面;
4、用户程序的逻辑地址由三部分组成,形式如下:
段号页号页内地址
5、内存是以页为基本单位分配给每个用户程序的,在逻辑上相邻的页面内存不一定相邻。⑵ 如何实现段页式存储管理
答:1、建立段表2、建立页表3、建立内存空闲页面表4、硬件支持5、地址映射过程问题六:⑴ 虚拟存储技术的基本思想
答:虚拟存储技术的基本思想是利用大容量的外存来扩充内存,产生一个比有限的实际内存空间大得多的、逻辑的虚拟内存空间,以便能够有效地支持多道程序系统的实现和大型作业运行的需要,从而增强系统的处理能力。⑵ 虚拟存储技术的理论基础(局部性原理)
答:程序局部性原理:虚拟存储管理的效率与程序局部性程序有很大关系。根据统计,进程运行时,在一段时间内,其程序的执行往往呈现出高度的局限性,包括时间局部性和空间局部性。
1、时间局部性:是指若一条指令被执行,则在不久,它可能再被执行。
2、空间局部性:是指一旦一个存储单元被访问,那它附近的单元也将很快被访问。⑶ 虚拟存储管理的基本原理
答:虚拟存储的基本原理是:当进程要求运行时,不是将它的全部信息装入内存,而将将其一部分先装入内存,另一部分暂时留在外存。进程在运行过程中,要使用的信息不在内存时,发生中断,由操作系统将它们调入内存,以保证进程的正常运行。⑷ 虚拟存储管理的分类
答:虚拟存储管理分为:虚拟页式、虚拟段式和虚拟段页式。⑸ 以虚拟页式存储管理为例介绍虚拟存储管理的实现过程
答:虚拟页式存储管理的基本思想是,在进程开始执行之前,不是装全部页面,而是只装一个(甚至0个)页面,然后根据进程执行的需要,动态地装入其它页面。
1、页表 2、缺页中断处理3、页面淘汰⑹ 在虚存中,页面在内存与外存中频繁地调试,系统效率急剧下降,称为颠簸。试说明产生颠簸的原因。通过什么方式可以防止颠簸的发生?
答:颠簸是由缺页率高而引起的。
系统规定缺页率的上界和下界。当运行进程缺页率高于上界时,表明所分给它的物理页面数过少,应当增加;反之,当运行进行缺页率低于下界时,表明所分给它的物理页面数过多,可以减少。这样,根据缺页率反馈可动态调整物理页面的分配,以防止颠簸的发生。

Ⅳ 为实现分页存储管理 需要哪些硬件支持

分页式存储管理的基本原理:采用分页存储器允许把一个作业存放到若干不相邻的分区中,既可免去移动信息的工作,又可尽量减少主存的碎片。分页式存储管理的基本原理如下: 1、 页框:物理地址分成大小相等的许多区,每个区称为一块; 2、址分成大小相等的区,区的大小与块的大小相等,每个称一个页面。 3、 逻辑地址形式:与此对应,分页存储器的逻辑地址由两部分组成,页号和单元号。逻辑地址格式为 页号 单元号(页内地址) 采用分页式存储管理时,逻辑地址是连续的。所以,用户在编制程序时仍只须使用顺序的地址,而不必考虑如何去分页。 4、页表和地址转换:如何保证程序正确执行呢?采用的办法是动态重定位技术,让程序的指令执行时作地址变换,由于程序段以页为单位,所以,我们给每个页设立一个重定位寄存器,这些重定位寄存器的集合便称页表。页表是操作系统为每个用户作业建立的,用来记录程序页面和主存对应页框的对照表,页表中的每一栏指明了程序中的一个页面和分得的页框的对应关系。绝对地址=块号*块长+单元号 以上从拓扑结构角度分析了对称式与非对称式虚拟存储方案的异同,实际从虚拟化存储的实现原理来讲也有两种方式;即数据块虚拟与虚拟文件系统. 数据块虚拟存储方案着重解决数据传输过程中的冲突和延时问题.在多交换机组成的大型Fabric结构的SAN中,由于多台主机通过多个交换机端口访问存储设备,延时和数据块冲突问题非常严重.数据块虚拟存储方案利用虚拟的多端口并行技术,为多台客户机提供了极高的带宽,最大限度上减少了延时与冲突的发生,在实际应用中,数据块虚拟存储方案以对称式拓扑结构为表现形式. 虚拟文件系统存储方案着重解决大规模网络中文件共享的安全机制问题.通过对不同的站点指定不同的访问权限,保证网络文件的安全.在实际应用中,虚拟文件系统存储方案以非对称式拓扑结构为表现形式. 虚拟存储技术,实际上是虚拟存储技术的一个方面,特指以CPU时间和外存空间换取昂贵内存空间的操作系统中的资源转换技术 基本思想:程序,数据,堆栈的大小可以超过内存的大小,操作系统把程序当前使用的部分保留在内存,而把其他部分保存在磁盘上,并在需要时在内存和磁盘之间动态交换,虚拟存储器支持多道程序设计技术 目的:提高内存利用率 管理方式 A 请求式分页存储管理 在进程开始运行之前,不是装入全部页面,而是装入一个或零个页面,之后根据进程运行的需要,动态装入其他页面;当内存空间已满,而又需要装入新的页面时,则根据某种算法淘汰某个页面,以便装入新的页面 B 请求式分段存储管理 为了能实现虚拟存储,段式逻辑地址空间中的程序段在运行时并不全部装入内存,而是如同请求式分页存储管理,首先调入一个或若干个程序段运行,在运行过程中调用到哪段时,就根据该段长度在内存分配一个连续的分区给它使用.若内存中没有足够大的空闲分区,则考虑进行段的紧凑或将某段或某些段淘汰出去,这种存储管理技术称为请求式分段存储管理
,分页式存储管理的基本原理:采用分页存储器允许把一个作业存放到若干不相邻的分区中,既可免去移动信息的工作,又可尽量减少主存的碎片。分页式存储管理的基本原理如下: 1、 页框:物理地址分成大小相等的许多区,每个区称为一块; 2、址分成大小相等的区,区的大小与块的大小相等,每个称一个页面。 3、 逻辑地址形式:与此对应,分页存储器的逻辑地址由两部分组成,页号和单元号。逻辑地址格式为 页号 单元号(页内地址) 采用分页式存储管理时,逻辑地址是连续的。所以,用户在编制程序时仍只须使用顺序的地址,而不必考虑如何去分页。 4、页表和地址转换:如何保证程序正确执行呢?采用的办法是动态重定位技术,让程序的指令执行时作地址变换,由于程序段以页为单位,所以,我们给每个页设立一个重定位寄存器,这些重定位寄存器的集合便称页表。页表是操作系统为每个用户作业建立的,用来记录程序页面和主存对应页框的对照表,页表中的每一栏指明了程序中的一个页面和分得的页框的对应关系。绝对地址=块号*块长+单元号 以上从拓扑结构角度分析了对称式与非对称式虚拟存储方案的异同,实际从虚拟化存储的实现原理来讲也有两种方式;即数据块虚拟与虚拟文件系统. 数据块虚拟存储方案着重解决数据传输过程中的冲突和延时问题.在多交换机组成的大型Fabric结构的SAN中,由于多台主机通过多个交换机端口访问存储设备,延时和数据块冲突问题非常严重.数据块虚拟存储方案利用虚拟的多端口并行技术,为多台客户机提供了极高的带宽,最大限度上减少了延时与冲突的发生,在实际应用中,数据块虚拟存储方案以对称式拓扑结构为表现形式. 虚拟文件系统存储方案着重解决大规模网络中文件共享的安全机制问题.通过对不同的站点指定不同的访问权限,保证网络文件的安全.在实际应用中,虚拟文件系统存储方案以非对称式拓扑结构为表现形式. 虚拟存储技术,实际上是虚拟存储技术的一个方面,特指以CPU时间和外存空间换取昂贵内存空间的操作系统中的资源转换技术 基本思想:程序,数据,堆栈的大小可以超过内存的大小,操作系统把程序当前使用的部分保留在内存,而把其他部分保存在磁盘上,并在需要时在内存和磁盘之间动态交换,虚拟存储器支持多道程序设计技术 目的:提高内存利用率 管理方式 A 请求式分页存储管理 在进程开始运行之前,不是装入全部页面,而是装入一个或零个页面,之后根据进程运行的需要,动态装入其他页面;当内存空间已满,而又需要装入新的页面时,则根据某种算法淘汰某个页面,以便装入新的页面 B 请求式分段存储管理 为了能实现虚拟存储,段式逻辑地址空间中的程序段在运行时并不全部装入内存,而是如同请求式分页存储管理,首先调入一个或若干个程序段运行,在运行过程中调用到哪段时,就根据该段长度在内存分配一个连续的分区给它使用.若内存中没有足够大的空闲分区,则考虑进行段的紧凑或将某段或某些段淘汰出去,这种存储管理技术称为请求式分段存储管理,,分页式存储管理的基本原理:采用分页存储器允许把一个作业存放到若干不相邻的分区中,既可免去移动信息的工作,又可尽量减少主存的碎片。分页式存储管理的基本原理如下: 1、 页框:物理地址分成大小相等的许多区,每个区称为一块; 2、址分成大小相等的区,区的大小与块的大小相等,每个称一个页面。 3、 逻辑地址形式:与此对应,分页存储器的逻辑地址由两部分组成,页号和单元号。逻辑地址格式为 页号 单元号(页内地址) 采用分页式存储管理时,逻辑地址是连续的。所以,用户在编制程序时仍只须使用顺序的地址,而不必考虑如何去分页。 4、页表和地址转换:如何保证程序正确执行呢?采用的办法是动态重定位技术,让程序的指令执行时作地址变换,由于程序段以页为单位,所以,我们给每个页设立一个重定位寄存器,这些重定位寄存器的集合便称页表。页表是操作系统为每个用户作业建立的,用来记录程序页面和主存对应页框的对照表,页表中的每一栏指明了程序中的一个页面和分得的页框的对应关系。绝对地址=块号*块长+单元号 以上从拓扑结构角度分析了对称式与非对称式虚拟存储方案的异同,实际从虚拟化存储的实现原理来讲也有两种方式;即数据块虚拟与虚拟文件系统. 数据块虚拟存储方案着重解决数据传输过程中的冲突和延时问题.在多交换机组成的大型Fabric结构的SAN中,由于多台主机通过多个交换机端口访问存储设备,延时和数据块冲突问题非常严重.数据块虚拟存储方案利用虚拟的多端口并行技术,为多台客户机提供了极高的带宽,最大限度上减少了延时与冲突的发生,在实际应用中,数据块虚拟存储方案以对称式拓扑结构为表现形式. 虚拟文件系统存储方案着重解决大规模网络中文件共享的安全机制问题.通过对不同的站点指定不同的访问权限,保证网络文件的安全.在实际应用中,虚拟文件系统存储方案以非对称式拓扑结构为表现形式. 虚拟存储技术,实际上是虚拟存储技术的一个方面,特指以CPU时间和外存空间换取昂贵内存空间的操作系统中的资源转换技术 基本思想:程序,数据,堆栈的大小可以超过内存的大小,操作系统把程序当前使用的部分保留在内存,而把其他部分保存在磁盘上,并在需要时在内存和磁盘之间动态交换,虚拟存储器支持多道程序设计技术 目的:提高内存利用率 管理方式 A 请求式分页存储管理 在进程开始运行之前,不是装入全部页面,而是装入一个或零个页面,之后根据进程运行的需要,动态装入其他页面;当内存空间已满,而又需要装入新的页面时,则根据某种算法淘汰某个页面,以便装入新的页面 B 请求式分段存储管理 为了能实现虚拟存储,段式逻辑地址空间中的程序段在运行时并不全部装入内存,而是如同请求式分页存储管理,首先调入一个或若干个程序段运行,在运行过程中调用到哪段时,就根据该段长度在内存分配一个连续的分区给它使用.若内存中没有足够大的空闲分区,则考虑进行段的紧凑或将某段或某些段淘汰出去,这种存储管理技术称为请求式分段存储管理,,分页式存储管理的基本原理:采用分页存储器允许把一个作业存放到若干不相邻的分区中,既可免去移动信息的工作,又可尽量减少主存的碎片。分页式存储管理的基本原理如下: 1、 页框:物理地址分成大小相等的许多区,每个区称为一块; 2、址分成大小相等的区,区的大小与块的大小相等,每个称一个页面。 3、 逻辑地址形式:与此对应,分页存储器的逻辑地址由两部分组成,页号和单元号。逻辑地址格式为 页号 单元号(页内地址) 采用分页式存储管理时,逻辑地址是连续的。所以,用户在编制程序时仍只须使用顺序的地址,而不必考虑如何去分页。 4、页表和地址转换:如何保证程序正确执行呢?采用的办法是动态重定位技术,让程序的指令执行时作地址变换,由于程序段以页为单位,所以,我们给每个页设立一个重定位寄存器,这些重定位寄存器的集合便称页表。页表是操作系统为每个用户作业建立的,用来记录程序页面和主存对应页框的对照表,页表中的每一栏指明了程序中的一个页面和分得的页框的对应关系。绝对地址=块号*块长+单元号 以上从拓扑结构角度分析了对称式与非对称式虚拟存储方案的异同,实际从虚拟化存储的实现原理来讲也有两种方式;即数据块虚拟与虚拟文件系统. 数据块虚拟存储方案着重解决数据传输过程中的冲突和延时问题.在多交换机组成的大型Fabric结构的SAN中,由于多台主机通过多个交换机端口访问存储设备,延时和数据块冲突问题非常严重.数据块虚拟存储方案利用虚拟的多端口并行技术,为多台客户机提供了极高的带宽,最大限度上减少了延时与冲突的发生,在实际应用中,数据块虚拟存储方案以对称式拓扑结构为表现形式. 虚拟文件系统存储方案着重解决大规模网络中文件共享的安全机制问题.通过对不同的站点指定不同的访问权限,保证网络文件的安全.在实际应用中,虚拟文件系统存储方案以非对称式拓扑结构为表现形式. 虚拟存储技术,实际上是虚拟存储技术的一个方面,特指以CPU时间和外存空间换取昂贵内存空间的操作系统中的资源转换技术 基本思想:程序,数据,堆栈的大小可以超过内存的大小,操作系统把程序当前使用的部分保留在内存,而把其他部分保存在磁盘上,并在需要时在内存和磁盘之间动态交换,虚拟存储器支持多道程序设计技术 目的:提高内存利用率 管理方式 A 请求式分页存储管理 在进程开始运行之前,不是装入全部页面,而是装入一个或零个页面,之后根据进程运行的需要,动态装入其他页面;当内存空间已满,而又需要装入新的页面时,则根据某种算法淘汰某个页面,以便装入新的页面 B 请求式分段存储管理 为了能实现虚拟存储,段式逻辑地址空间中的程序段在运行时并不全部装入内存,而是如同请求式分页存储管理,首先调入一个或若干个程序段运行,在运行过程中调用到哪段时,就根据该段长度在内存分配一个连续的分区给它使用.若内存中没有足够大的空闲分区,则考虑进行段的紧凑或将某段或某些段淘汰出去,这种存储管理技术称为请求式分段存储管理,,分页式存储管理的基本原理:采用分页存储器允许把一个作业存放到若干不相邻的分区中,既可免去移动信息的工作,又可尽量减少主存的碎片。分页式存储管理的基本原理如下: 1、 页框:物理地址分成大小相等的许多区,每个区称为一块; 2、址分成大小相等的区,区的大小与块的大小相等,每个称一个页面。 3、 逻辑地址形式:与此对应,分页存储器的逻辑地址由两部分组成,页号和单元号。逻辑地址格式为 页号 单元号(页内地址) 采用分页式存储管理时,逻辑地址是连续的。所以,用户在编制程序时仍只须使用顺序的地址,而不必考虑如何去分页。 4、页表和地址转换:如何保证程序正确执行呢?采用的办法是动态重定位技术,让程序的指令执行时作地址变换,由于程序段以页为单位,所以,我们给每个页设立一个重定位寄存器,这些重定位寄存器的集合便称页表。页表是操作系统为每个用户作业建立的,用来记录程序页面和主存对应页框的对照表,页表中的每一栏指明了程序中的一个页面和分得的页框的对应关系。绝对地址=块号*块长+单元号 以上从拓扑结构角度分析了对称式与非对称式虚拟存储方案的异同,实际从虚拟化存储的实现原理来讲也有两种方式;即数据块虚拟与虚拟文件系统. 数据块虚拟存储方案着重解决数据传输过程中的冲突和延时问题.在多交换机组成的大型Fabric结构的SAN中,由于多台主机通过多个交换机端口访问存储设备,延时和数据块冲突问题非常严重.数据块虚拟存储方案利用虚拟的多端口并行技术,为多台客户机提供了极高的带宽,最大限度上减少了延时与冲突的发生,在实际应用中,数据块虚拟存储方案以对称式拓扑结构为表现形式. 虚拟文件系统存储方案着重解决大规模网络中文件共享的安全机制问题.通过对不同的站点指定不同的访问权限,保证网络文件的安全.在实际应用中,虚拟文件系统存储方案以非对称式拓扑结构为表现形式. 虚拟存储技术,实际上是虚拟存储技术的一个方面,特指以CPU时间和外存空间换取昂贵内存空间的操作系统中的资源转换技术 基本思想:程序,数据,堆栈的大小可以超过内存的大小,操作系统把程序当前使用的部分保留在内存,而把其他部分保存在磁盘上,并在需要时在内存和磁盘之间动态交换,虚拟存储器支持多道程序设计技术 目的:提高内存利用率 管理方式 A 请求式分页存储管理 在进程开始运行之前,不是装入全部页面,而是装入一个或零个页面,之后根据进程运行的需要,动态装入其他页面;当内存空间已满,而又需要装入新的页面时,则根据某种算法淘汰某个页面,以便装入新的页面 B 请求式分段存储管理 为了能实现虚拟存储,段式逻辑地址空间中的程序段在运行时并不全部装入内存,而是如同请求式分页存储管理,首先调入一个或若干个程序段运行,在运行过程中调用到哪段时,就根据该段长度在内存分配一个连续的分区给它使用.若内存中没有足够大的空闲分区,则考虑进行段的紧凑或将某段或某些段淘汰出去,这种存储管理技术称为请求式分段存储管理,,分页式存储管理的基本原理:采用分页存储器允许把一个作业存放到若干不相邻的分区中,既可免去移动信息的工作,又可尽量减少主存的碎片。分页式存储管理的基本原理如下: 1、 页框:物理地址分成大小相等的许多区,每个区称为一块; 2、址分成大小相等的区,区的大小与块的大小相等,每个称一个页面。 3、 逻辑地址形式:与此对应,分页存储器的逻辑地址由两部分组成,页号和单元号。逻辑地址格式为 页号 单元号(页内地址) 采用分页式存储管理时,逻辑地址是连续的。所以,用户在编制程序时仍只须使用顺序的地址,而不必考虑如何去分页。 4、页表和地址转换:如何保证程序正确执行呢?采用的办法是动态重定位技术,让程序的指令执行时作地址变换,由于程序段以页为单位,所以,我们给每个页设立一个重定位寄存器,这些重定位寄存器的集合便称页表。页表是操作系统为每个用户作业建立的,用来记录程序页面和主存对应页框的对照表,页表中的每一栏指明了程序中的一个页面和分得的页框的对应关系。绝对地址=块号*块长+单元号 以上从拓扑结构角度分析了对称式与非对称式虚拟存储方案的异同,实际从虚拟化存储的实现原理来讲也有两种方式;即数据块虚拟与虚拟文件系统. 数据块虚拟存储方案着重解决数据传输过程中的冲突和延时问题.在多交换机组成的大型Fabric结构的SAN中,由于多台主机通过多个交换机端口访问存储设备,延时和数据块冲突问题非常严重.数据块虚拟存储方案利用虚拟的多端口并行技术,为多台客户机提供了极高的带宽,最大限度上减少了延时与冲突的发生,在实际应用中,数据块虚拟存储方案以对称式拓扑结构为表现形式. 虚拟文件系统存储方案着重解决大规模网络中文件共享的安全机制问题.通过对不同的站点指定不同的访问权限,保证网络文件的安全.在实际应用中,虚拟文件系统存储方案以非对称式拓扑结构为表现形式. 虚拟存储技术,实际上是虚拟存储技术的一个方面,特指以CPU时间和外存空间换取昂贵内存空间的操作系统中的资源转换技术 基本思想:程序,数据,堆栈的大小可以超过内存的大小,操作系统把程序当前使用的部分保留在内存,而把其他部分保存在磁盘上,并在需要时在内存和磁盘之间动态交换,虚拟存储器支持多道程序设计技术 目的:提高内存利用率 管理方式 A 请求式分页存储管理 在进程开始运行之前,不是装入全部页面,而是装入一个或零个页面,之后根据进程运行的需要,动态装入其他页面;当内存空间已满,而又需要装入新的页面时,则根据某种算法淘汰某个页面,以便装入新的页面 B 请求式分段存储管理 为了能实现虚拟存储,段式逻辑地址空间中的程序段在运行时并不全部装入内存,而是如同请求式分页存储管理,首先调入一个或若干个程序段运行,在运行过程中调用到哪段时,就根据该段长度在内存分配一个连续的分区给它使用.若内存中没有足够大的空闲分区,则考虑进行段的紧凑或将某段或某些段淘汰出去,这种存储管理技术称为请求式分段存储管理,,分页式存储管理的基本原理:采用分页存储器允许把一个作业存放到若干不相邻的分区中,既可免去移动信息的工作,又可尽量减少主存的碎片。分页式存储管理的基本原理如下: 1、 页框:物理地址分成大小相等的许多区,每个区称为一块; 2、址分成大小相等的区,区的大小与块的大小相等,每个称一个页面。 3、 逻辑地址形式:与此对应,分页存储器的逻辑地址由两部分组成,页号和单元号。逻辑地址格式为 页号 单元号(页内地址) 采用分页式存储管理时,逻辑地址是连续的。所以,用户在编制程序时仍只须使用顺序的地址,而不必考虑如何去分页。 4、页表和地址转换:如何保证程序正确执行呢?采用的办法是动态重定位技术,让程序的指令执行时作地址变换,由于程序段以页为单位,所以,我们给每个页设立一个重定位寄存器,这些重定位寄存器的集合便称页表。页表是操作系统为每个用户作业建立的,用来记录程序页面和主存对应页框的对照表,页表中的每一栏指明了程序中的一个页面和分得的页框的对应关系。绝对地址=块号*块长+单元号 以上从拓扑结构角度分析了对称式与非对称式虚拟存储方案的异同,实际从虚拟化存储的实现原理来讲也有两种方式;即数据块虚拟与虚拟文件系统. 数据块虚拟存储方案着重解决数据传输过程中的冲突和延时问题.在多交换机组成的大型Fabric结构的SAN中,由于多台主机通过多个交换机端口访问存储设备,延时和数据块冲突问题非常严重.数据块虚拟存储方案利用虚拟的多端口并行技术,为多台客户机提供了极高的带宽,最大限度上减少了延时与冲突的发生,在实际应用中,数据块虚拟存储方案以对称式拓扑结构为表现形式. 虚拟文件系统存储方案着重解决大规模网络中文件共享的安全机制问题.通过对不同的站点指定不同的访问权限,保证网络文件的安全.在实际应用中,虚拟文件系统存储方案以非对称式拓扑结构为表现形式. 虚拟存储技术,实际上是虚拟存储技术的一个方面,特指以CPU时间和外存空间换取昂贵内存空间的操作系统中的资源转换技术 基本思想:程序,数据,堆栈的大小可以超过内存的大小,操作系统把程序当前使用的部分保留在内存,而把其他部分保存在磁盘上,并在需要时在内存和磁盘之间动态交换,虚拟存储器支持多道程序设计技术 目的:提高内存利用率 管理方式 A 请求式分页存储管理 在进程开始运行之前,不是装入全部页面,而是装入一个或零个页面,之后根据进程运行的需要,动态装入其他页面;当内存空间已满,而又需要装入新的页面时,则根据某种算法淘汰某个页面,以便装入新的页面 B 请求式分段存储管理 为了能实现虚拟存储,段式逻辑地址空间中的程序段在运行时并不全部装入内存,而是如同请求式分页存储管理,首先调入一个或若干个程序段运行,在运行过程中调用到哪段时,就根据该段长度在内存分配一个连续的分区给它使用.若内存中没有足够大的空闲分区,则考虑进行段的紧凑或将某段或某些段淘汰出去,这种存储管理技术称为请求式分段存储管理,,分页式存储管理的基本原理:采用分页存储器允许把一个作业存放到若干不相邻的分区中,既可免去移动信息的工作,又可尽量减少主存的碎片。分页式存储管理的基本原理如下: 1、 页框:物理地址分成大小相等的许多区,每个区称为一块; 2、址分成大小相等的区,区的大小与块的大小相等,每个称一个页面。 3、 逻辑地址形式:与此对应,分页存储器的逻辑地址由两部分组成,页号和单元号。逻辑地址格式为 页号 单元号(页内地址) 采用分页式存储管理时,逻辑地址是连续的。所以,用户在编制程序时仍只须使用顺序的地址,而不必考虑如何去分页。 4、页表和地址转换:如何保证程序正确执行呢?采用的办法是动态重定位技术,让程序的指令执行时作地址变换,由于程序段以页为单位,所以,我们给每个页设立一个重定位寄存器,这些重定位寄存器的集合便称页表。页表是操作系统为每个用户作业建立的,用来记录程序页面和主存对应页框的对照表,页表中的每一栏指明了程序中的一个页面和分得的页框的对应关系。绝对地址=块号*块长+单元号 以上从拓扑结构角度分析了对称式与非对称式虚拟存储方案的异同,实际从虚拟化存储的实现原理来讲也有两种方式;即数据块虚拟与虚拟文件系统. 数据块虚拟存储方案着重解决数据传输过程中的冲突和延时问题.在多交换机组成的大型Fabric结构的SAN中,由于多台主机通过多个交换机端口访问存储设备,延时和数据块冲突问题非常严重.数据块虚拟存储方案利用虚拟的多端口并行技术,为多台客户机提供了极高的带宽,最大限度上减少了延时与冲突的发生,在实际应用中,数据块虚拟存储方案以对称式拓扑结构为表现形式. 虚拟文件系统存储方案着重解决大规模网络中文件共享的安全机制问题.通过对不同的站点指定不同的访问权限,保证网络文件的安全.在实际应用中,虚拟文件系统存储方案以非对称式拓扑结构为表现形式. 虚拟存储技术,实际上是虚拟存储技术的一个方面,特指以CPU时间和外存空间换取昂贵内存空间的操作系统中的资源转换技术 基本思想:程序,数据,堆栈的大小可以超过内存的大小,操作系统把程序当前使用的部分保留在内存,而把其他部分保存在磁盘上,并在需要时在内存和磁盘之间动态交换,虚拟存储器支持多道程序设计技术 目的:提高内存利用率 管理方式 A 请求式分页存储管理 在进程开始运行

Ⅵ 分页存储管理需要哪些硬件支持

分页式存储管理的基本原理:采用分页存储器允许把一个作业存放到若干不相邻的分区中,既可免去移动信息的工作,又可尽量减少主存的碎片。分页式存储管理的基本原理如下: 1、 页框:物理地址分成大小相等的许多区,每个区称为一块; 2、址分成大...

Ⅶ 在内存管理系统中为什么让连续分配方式访问速度快,而

连续分配存储管理方式

连续分配是指为一个用户程序分配连续的内存空间。连续分配有单一连续存储管理和分区式储管理两种方式。

1、单一连续存储管理在这种管理方式中,内存被分为两个区域:系统区和用户区。应用程序装入到用户区,可使用用户区全部空间。其特点是,最简单,适用于单用户、单任务的操作系统。CP/M和DOS 2.0以下就是采用此种方式。

这种方式的最大优点就是易于管理。但也存在着一些问题和不足之处,例如对要求内存空间少的程序,造成内存浪费;程序全部装入,使得很少使用的程序部分也占用—定数量的内存。

2、分区式存储管理为了支持多道程序系统和分时系统,支持多个程序并发执行,引入了分区式存储管理。分区式存储管理是把内存分为一些大小相等或不等的分区,操作系统占用其中一个分区,其余的分区由应用程序使用,每个应用程序占用一个或几个分区。分区式存储管理虽然可以支持并发,但难以进行内存分区的共享。

内存操作系统(RAM
OS)是一种启动后不依赖硬盘的操作系统,其启动后会将所有文件加载到内存运行,运行速度快,绝对不会中毒,还能更好保护系统的核心文件不受破坏。

内存操作系统早在win98时代就已出现,由于硬盘速度的限制和内存条价格的降低,内存操作系统现在已完全突破硬件的限制,在启动后可以将硬盘断电,完全不依赖硬盘运行。但目前其应用范围还较窄,主要应用有学校教学机房等。

Ⅷ 分区存储管理中常用哪些分配策略

1、固定分区存储管理
其基本思想是将内存划分成若干固定大小的分区,每个分区中最多只能装入一个作业。当作业申请内存时,系统按一定的算法为其选择一个适当的分区,并装入内存运行。由于分区大小是事先固定的,因而可容纳作业的大小受到限制,而且当用户作业的地址空间小于分区的存储空间时,造成存储空间浪费。

一、空间的分配与回收

系统设置一张“分区分配表”来描述各分区的使用情况,登记的内容应包括:分区号、起始地址、长度和占用标志。其中占用标志为“0”时,表示目前该分区空闲;否则登记占用作业名(或作业号)。有了“分区分配表”,空间分配与回收工作是比较简单的。

二、地址转换和存储保护

固定分区管理可以采用静态重定位方式进行地址映射。

为了实现存储保护,处理器设置了一对“下限寄存器”和“上限寄存器”。当一个已经被装入主存储器的作业能够得到处理器运行时,进程调度应记录当前运行作业所在的分区号,且把该分区的下限地址和上限地址分别送入下限寄存器和上限寄存器中。处理器执行该作业的指令时必须核对其要访问的绝对地址是否越界。

三、多作业队列的固定分区管理

为避免小作业被分配到大的分区中造成空间的浪费,可采用多作业队列的方法。即系统按分区数设置多个作业队列,将作业按其大小排到不同的队列中,一个队列对应某一个分区,以提高内存利用率。

2、可变分区存储管理
可变分区存储管理不是预先将内存划分分区,而是在作业装入内存时建立分区,使分区的大小正好与作业要求的存储空间相等。这种处理方式使内存分配有较大的灵活性,也提高了内存利用率。但是随着对内存不断地分配、释放操作会引起存储碎片的产生。

一、空间的分配与回收

采用可变分区存储管理,系统中的分区个数与分区的大小都在不断地变化,系统利用“空闲区表”来管理内存中的空闲分区,其中登记空闲区的起始地址、长度和状态。当有作业要进入内存时,在“空闲区表”中查找状态为“未分配”且长度大于或等于作业的空闲分区分配给作业,并做适当调整;当一个作业运行完成时,应将该作业占用的空间作为空闲区归还给系统。

可以采用首先适应算法、最佳(优)适应算法和最坏适应算法三种分配策略之一进行内存分配。

二、地址转换和存储保护

可变分区存储管理一般采用动态重定位的方式,为实现地址重定位和存储保护,系统设置相应的硬件:基址/限长寄存器(或上界/下界寄存器)、加法器、比较线路等。

基址寄存器用来存放程序在内存的起始地址,限长寄存器用来存放程序的长度。处理机在执行时,用程序中的相对地址加上基址寄存器中的基地址,形成一个绝对地址,并将相对地址与限长寄存器进行计算比较,检查是否发生地址越界。

三、存储碎片与程序的移动

所谓碎片是指内存中出现的一些零散的小空闲区域。由于碎片都很小,无法再利用。如果内存中碎片很多,将会造成严重的存储资源浪费。解决碎片的方法是移动所有的占用区域,使所有的空闲区合并成一片连续区域,这一技术称为移动技术(紧凑技术)。移动技术除了可解决碎片问题还使内存中的作业进行扩充。显然,移动带来系统开销加大,并且当一个作业如果正与外设进行I/O时,该作业是无法移动的。

3、页式存储管理

基本原理

1.等分内存

页式存储管理将内存空间划分成等长的若干区域,每个区域的大小一般取2的整数幂,称为一个物理页面有时称为块。内存的所有物理页面从0开始编号,称作物理页号。

2.逻辑地址

系统将程序的逻辑空间按照同样大小也划分成若干页面,称为逻辑页面也称为页。程序的各个逻辑页面从0开始依次编号,称作逻辑页号或相对页号。每个页面内从0开始编址,称为页内地址。程序中的逻辑地址由两部分组成:

逻辑地址
页号p
页内地址 d

3.内存分配

系统可用一张“位示图”来登记内存中各块的分配情况,存储分配时以页面(块)为单位,并按程序的页数多少进行分配。相邻的页面在内存中不一定相邻,即分配给程序的内存块之间不一定连续。

对程序地址空间的分页是系统自动进行的,即对用户是透明的。由于页面尺寸为2的整数次幂,故相对地址中的高位部分即为页号,低位部分为页内地址。

3.5.2实现原理

1.页表

系统为每个进程建立一张页表,用于记录进程逻辑页面与内存物理页面之间的对应关系。地址空间有多少页,该页表里就登记多少行,且按逻辑页的顺序排列,形如:

逻辑页号
主存块号

0
B0

1
B1

2
B2

3
B3

2.地址映射过程

页式存储管理采用动态重定位,即在程序的执行过程中完成地址转换。处理器每执行一条指令,就将指令中的逻辑地址(p,d)取来从中得到逻辑页号(p),硬件机构按此页号查页表,得到内存的块号B’,便形成绝对地址(B’,d),处理器即按此地址访问主存。

3.页面的共享与保护

当多个不同进程中需要有相同页面信息时,可以在主存中只保留一个副本,只要让这些进程各自的有关项中指向内存同一块号即可。同时在页表中设置相应的“存取权限”,对不同进程的访问权限进行各种必要的限制。

4、段式存储管理

基本原理

1.逻辑地址空间

程序按逻辑上有完整意义的段来划分,称为逻辑段。例如主程序、子程序、数据等都可各成一段。将一个程序的所有逻辑段从0开始编号,称为段号。每一个逻辑段都是从0开始编址,称为段内地址。

2.逻辑地址

程序中的逻辑地址由段号和段内地址(s,d)两部分组成。

3.内存分配

系统不进行预先划分,而是以段为单位进行内存分配,为每一个逻辑段分配一个连续的内存区(物理段)。逻辑上连续的段在内存不一定连续存放。

3.6.2实现方法

1.段表

系统为每个进程建立一张段表,用于记录进程的逻辑段与内存物理段之间的对应关系,至少应包括逻辑段号、物理段首地址和该段长度三项内容。

2.建立空闲区表

系统中设立一张内存空闲区表,记录内存中空闲区域情况,用于段的分配和回收内存。

3.地址映射过程

段式存储管理采用动态重定位,处理器每执行一条指令,就将指令中的逻辑地址(s,d)取来从中得到逻辑段号(s),硬件机构按此段号查段表,得到该段在内存的首地址S’, 该段在内存的首地址S’加上段内地址d,便形成绝对地址(S’+d),处理器即按此地址访问主存。

5、段页式存储管理

页式存储管理的特征是等分内存,解决了碎片问题;段式存储管理的特征是逻辑分段,便于实现共享。为了保持页式和段式上的优点,结合两种存储管理方案,形成了段页式存储管理。

段页式存储管理的基本思想是:把内存划分为大小相等的页面;将程序按其逻辑关系划分为若干段;再按照页面的大小,把每一段划分成若干页面。程序的逻辑地址由三部分组成,形式如下:

逻辑地址
段号s
页号p
页内地址d

内存是以页为基本单位分配给每个程序的,在逻辑上相邻的页面内存不一定相邻。

系统为每个进程建立一张段表,为进程的每一段各建立一张页表。地址转换过程,要经过查段表、页表后才能得到最终的物理地址。

热点内容
循迹小车算法 发布:2024-12-22 22:28:41 浏览:82
scss一次编译一直生成随机数 发布:2024-12-22 22:04:24 浏览:956
嫁接睫毛加密 发布:2024-12-22 21:50:12 浏览:975
linuxbin文件的安装 发布:2024-12-22 21:46:07 浏览:798
vlcforandroid下载 发布:2024-12-22 21:45:26 浏览:664
电脑做网关把数据发送至服务器 发布:2024-12-22 21:44:50 浏览:432
新华三代理什么牌子的服务器 发布:2024-12-22 21:33:21 浏览:342
欢太会员密码是什么 发布:2024-12-22 20:57:28 浏览:74
sqllocaldb 发布:2024-12-22 20:07:08 浏览:127
如何找到我的服务器 发布:2024-12-22 19:52:14 浏览:301