存储光刻胶
① 什么是光刻胶以及光刻胶的种类
光刻胶是一种有机化合物,它受紫外光曝光后,在显影液中的溶解度会发生变化。一般光刻胶以液态涂覆在硅片表面上,曝光后烘烤成固态。 1、光刻胶的作用: a、将掩膜板上的图形转移到硅片表面的氧化层中; b、在后续工序中,保护下面的材料(刻蚀或离子注入)。2、光刻胶的物理特性参数: a、分辨率(resolution)。区别硅片表面相邻图形特征的能力。一般用关键尺寸(CD,Critical Dimension)来衡量分辨率。形成的关键尺寸越小,光刻胶的分辨率越好。 b、对比度(Contrast)。指光刻胶从曝光区到非曝光区过渡的陡度。对比度越好,形成图形的侧壁越陡峭,分辨率越好。 c、敏感度(Sensitivity)。光刻胶上产生一个良好的图形所需一定波长光的最小能量值(或最小曝光量)。单位:毫焦/平方厘米或mJ/cm2。光刻胶的敏感性对于波长更短的深紫外光(DUV)、极深紫外光(EUV)等尤为重要。 d、粘滞性/黏度(Viscosity)。衡量光刻胶流动特性的参数。粘滞性随着光刻胶中的溶剂的减少而增加;高的粘滞性会产生厚的光刻胶;越小的粘滞性,就有越均匀的光刻胶厚度。光刻胶的比重(SG,Specific Gravity)是衡量光刻胶的密度的指标。它与光刻胶中的固体含量有关。较大的比重意味着光刻胶中含有更多的固体,粘滞性更高、流动性更差。粘度的单位:泊(poise),光刻胶一般用厘泊(cps,厘泊为1%泊)来度量。百分泊即厘泊为绝对粘滞率;运动粘滞率定义为:运动粘滞率=绝对粘滞率/比重。单位:百分斯托克斯(cs)=cps/SG。 e、粘附性(Adherence)。表征光刻胶粘着于衬底的强度。光刻胶的粘附性不足会导致硅片表面的图形变形。光刻胶的粘附性必须经受住后续工艺(刻蚀、离子注入等)。 f、抗蚀性(Anti-etching)。光刻胶必须保持它的粘附性,在后续的刻蚀工序中保护衬底表面。耐热稳定性、抗刻蚀能力和抗离子轰击能力。 g、表面张力(Surface Tension)。液体中将表面分子拉向液体主体内的分子间吸引力。光刻胶应该具有比较小的表面张力,使光刻胶具有良好的流动性和覆盖。 h、存储和传送(Storage and Transmission)。能量(光和热)可以激活光刻胶。应该存储在密闭、低温、不透光的盒中。同时必须规定光刻胶的闲置期限和存贮温度环境。一旦超过存储时间或较高的温度范围,负胶会发生交联,正胶会发生感光延迟。3、光刻胶的分类 a、根据光刻胶按照如何响应紫外光的特性可以分为两类:负性光刻胶和正性光刻胶。 负性光刻胶(Negative Photo Resist)。最早使用,一直到20世纪70年代。曝光区域发生交联,难溶于显影液。特性:良好的粘附能力、良好的阻挡作用、感光速度快;显影时发生变形和膨胀。所以只能用于2μm的分辨率。 正性光刻胶(Positive Photo Resist)。20世纪70年代,有负性转用正性。正性光刻胶的曝光区域更加容易溶解于显影液。特性:分辨率高、台阶覆盖好、对比度好;粘附性差、抗刻蚀能力差、高成本。 b、根据光刻胶能形成图形的最小光刻尺寸来分:传统光刻胶和化学放大光刻胶。 传统光刻胶。适用于I线(365nm)、H线(405nm)和G线(436nm),关键尺寸在0.35μm及其以上。 化学放大光刻胶(CAR,Chemical Amplified Resist)。适用于深紫外线(DUV)波长的光刻胶。KrF(248nm)和ArF(193nm)。4、光刻胶的具体性质 a、传统光刻胶:正胶和负胶。光刻胶的组成:树脂(resin/polymer),光刻胶中不同材料的粘合剂,给与光刻胶的机械与化学性质(如粘附性、胶膜厚度、热稳定性等);感光剂,感光剂对光能发生光化学反应;溶剂(Solvent),保持光刻胶的液体状态,使之具有良好的流动性;添加剂(Additive),用以改变光刻胶的某些特性,如改善光刻胶发生反射而添加染色剂等。 负性光刻胶。树脂是聚异戊二烯,一种天然的橡胶;溶剂是二甲苯;感光剂是一种经过曝光后释放出氮气的光敏剂,产生的自由基在橡胶分子间形成交联。从而变得不溶于显影液。负性光刻胶在曝光区由溶剂引起泡涨;曝光时光刻胶容易与氮气反应而抑制交联。 正性光刻胶。树脂是一种叫做线性酚醛树脂的酚醛甲醛,提供光刻胶的粘附性、化学抗蚀性,当没有溶解抑制剂存在时,线性酚醛树脂会溶解在显影液中;感光剂是光敏化合物(PAC,Photo Active Compound),最常见的是重氮萘醌(DNQ),在曝光前,DNQ是一种强烈的溶解抑制剂,降低树脂的溶解速度。在紫外曝光后,DNQ在光刻胶中化学分解,成为溶解度增强剂,大幅提高显影液中的溶解度因子至100或者更高。这种曝光反应会在DNQ中产生羧酸,它在显影液中溶解度很高。正性光刻胶具有很好的对比度,所以生成的图形具有良好的分辨率。 b、化学放大光刻胶(CAR,Chemical Amplified Resist)。树脂是具有化学基团保护(t-BOC)的聚乙烯(PHS)。有保护团的树脂不溶于水;感光剂是光酸产生剂(PAG,Photo Acid Generator),光刻胶曝光后,在曝光区的PAG发生光化学反应会产生一种酸。该酸在曝光后热烘(PEB,Post Exposure Baking)时,作为化学催化剂将树脂上的保护基团移走,从而使曝光区域的光刻胶由原来不溶于水转变为高度溶于以水为主要成分的显影液。化学放大光刻胶曝光速度非常
② 光刻胶是用冷藏车运输还是危险品运输
光刻胶的保质期较短,大概在3~6个月左右,在运输过程中需要冷链运输。
因为能量(光和热)可以激活光刻胶。光刻胶必须在存储和处理中受到保护,所以光刻区域使用黄色,并用褐色瓶子来储存。彩色玻璃也可以保护光刻胶,以免受到杂散光的照射,同时必须规定光刻胶的闲置期限和存贮温度环境。一旦超过存储时间或较高的温度范围,负胶会发生交联,正胶会发生感光延迟 。
③ 大家平时都是怎样买芯片的
普通人是不用买芯片的,普通人一般都买成品,如手机,电脑,电视里都有芯片,只有厂家才需要采购芯片的。
④ BP218-14是哪个牌子的光刻胶,是属于正性的吗
光刻胶一般温度较低情况存储比较好,可以放置冰柜中, 显影液,剥离液可以常温存放,放置到储物柜即可
⑤ 进口芯片涨价20%,行业迎来拐点
是的。从去年开始,受疫情的影响,芯片产能受到限制,尤其是欧美的国家。此外随着5G手机芯片用量的大幅提升和关键厂商大幅备货影响,芯片出现了明显的供不应求的现象。而今年受汽车,尤其是新能源汽车等行业复苏的推动, 部分下游仍在持续追单,导致供不应求的格局进一步加剧。
全球芯片短缺引发上游芯片材料供应紧张,企业进口光刻胶困难。此前,央视新闻联播报道,来自全国的十几位材料科学领域研究人员,正围绕光刻胶技术难题开展联合攻关。在价格方面,由于供应紧张,芯片以及核心原材料也随之水涨船高,在数量基本和去年持平的情况下,进口的金额增长了20%,所以可见,芯片的价格仍然在上涨。
(5)存储光刻胶扩展阅读
概念股业绩暴增光刻胶板块强势爆发
目前,半导体市场重心正在向中国转移,国产半导体光刻胶迎发展良机。随着中国成为全球最大的电子产业和半导体消费市场,中国本土晶圆制造产能持续扩大,预计2020年中国晶圆产能将达到每月400万片,并且在产能布局全面涵盖逻辑制程、存储器、特色工艺等领域,有望带动半导体光刻胶需求持续提升。国元证券认为,半导体和面板产业链重塑,国产替代主题下为公司带来巨大成长空间。
A股上市公司中,光刻胶概念股有10余只,其中包括晶瑞股份、南大光电、容大感光等6只个股业绩预喜,其中晶瑞股份业绩预增下限达到120%。此外,容大感光、广信材料、东方材料、飞凯材料、永太科技等在内的大陆企业占据国内 46%左右湿膜光刻胶和光成像阻焊油墨市场份额。另外,技术门槛更高的 LCD 光刻胶,国内也有所突破,主要企业有飞凯材料、永太科技、苏州瑞红(晶瑞股份 100%控股)和北京科华微电子(南大光电持股 31.39%)。
⑥ 光刻显完影沟道里有残余的胶 一般调什么参数
光刻显完影沟道里有残余的胶一般需要调的参数:
1、分辨率(resolution)。区别硅片表面相邻图形特征的能力。一般用关键尺寸(CD,CriticalDimension)来衡量分辨率。形成的关键尺寸越小,光刻胶的分辨
率越好。
2.对比度(Contrast)。指光刻胶从曝光区到非曝光区过渡的陡度。对比度越好,形成图形的侧壁越陡峭,分率越好。
3、敏感度(Sensitivity)。光刻胶上产生一个良好的图形所需一定波长光的最小能量值(或最小曝光量)。单位:毫焦/平方厘米或mJ/cm2。光刻胶的敏感性对于
波长更短的深紫外光(DUV)、极深紫外光(EUV)等尤为重要。
4、粘滞性/黏度(Viscosity)。衡量光刻胶流动特性的参数。粘滞性随着光刻胶中的溶剂的减少而增加;高的粘滞性会产生厚的光刻胶;越小的粘滞性,就有越均
匀的光刻胶厚度。光刻胶的比重(SG,SpecificGravity)是街量光刻胶的密度的指标。它与光刻胶中的固体含量有关。较大的比重意味着光刻胶中含有更多的固体,
粘滞性更高、流动性更差。粘度的单位:泊(poise),光刻胶一般用厘泊(cps,厘泊为1%泊)来度量。百分泊即厘泊为绝对粘滞率;运动粘滞率定义为:运动粘滞
率=绝对粘滞率/比重。单位:百分斯托克斯(cs)=cps/SG。
5、粘附性(Adherence)。表征光刻胶粘着于衬底的强度。光刻胶的粘附性不足会导致硅片表面的图形变形。光刻胶的粘附性必须经受住后续工艺(刻蚀、离子
注入等)。
6.抗蚀性(Anti-etching)。光刻胶必须保持它的粘附性,在后续的刻蚀工序中保护衬底表面。耐热稳定性、抗刻蚀能力和抗离子轰击能力。
7、表面张力(SurfaceTenslon)。液体中将表面分子拉向液体主体内的分子间吸引力。光刻胶应该具有比较小的表面张力,使光刻胶具有良好的流动性和覆盖。
8、存储和传送(StorageandTransmission)。能量(光和热)可以激活光刻胶。应该存储在密闭、低温、不透光的盒中。同时必须规定光刻胶的闲置期限和存
贮温度环境。一旦超过存储时间或较高的温度范围,负胶会发生交联,正胶会发生感光延迟。
⑦ 光刻胶的作用
光刻胶是一大类具有光敏化学作用(或对电子能量敏感)的高分子聚合物材料,是转移紫外曝光或电子束曝照图案的媒介。光刻胶的英文名为resist,又翻译为抗蚀剂、光阻等。光刻胶的作用就是作为抗刻蚀层保护衬底表面。光刻胶只是一种形象的说法,因为光刻胶从外观上呈现为胶状液体。
光刻胶通常是以薄膜形式均匀覆盖于基材表面。当紫外光或电子束的照射时,光刻胶材料本身的特性会发生改变,经过显影液显影后,曝光的负性光刻胶或未曝光的正性光刻胶将会留在衬底表面,这样就将设计的微纳结构转移到了光刻胶上,而后续的刻蚀、沉积等工艺,就可进一步将此图案转移到光刻胶下面的衬底上,最后再使用除胶剂将光刻胶除去就可以了。
2. 光刻胶应用范围
光刻胶广泛应用于集成电路(IC),封装(Packaging),微机电系统(MEMS),光电子器件光子器件(Optoelectronics/Photonics),平板显示器(LED,LCD,OLED),太阳能光伏(Solar PV)等领域。
3.光刻胶分类及类型
光刻胶按其形成图形的极性可以分为:正性光刻胶和负性光刻胶。
正胶指的是聚合物的长链分子因光照而截断成短链分子;负胶指的是聚合物的短链分子因光照而交链长链分子。 短链分子聚合物可以被显影液溶解掉,因此正胶的曝光部分被去掉,而负胶的曝光部分被保留。
①.紫外光刻胶(Photoresist):
各种工艺:喷涂专用胶,化学放大胶,lift-off胶,图形反转胶,高分辨率胶,LIGA用胶等。
各种波长: 深紫外(Deep UV)、I线(i-line)、G线(g-line)、长波(longwave)曝光用光刻胶。
各种厚度: 光刻胶厚度可从几十纳米到上百微米。
②. 电子束光刻胶(电子束抗蚀剂)(E-beam resist)
电子束正胶:PMMA胶,PMMA/MA聚合物, LIGA用胶等。
电子束负胶:高分辨率电子束负胶,化学放大胶(高灵敏度电子束胶)等。
③. 特殊工艺用光刻胶(Special manufacture/experimental sample)
电子束曝光导电胶,耐酸碱保护胶,全息光刻用胶,聚酰亚胺胶(耐高温保护胶)等特殊工艺用胶。
④.配套试剂(Process chemicals)
显影液、去胶液、稀释剂、增附剂(粘附剂)、定影液等。
4.光刻胶成分
光刻胶一般由4部分组成:树脂型聚合物(resin/polymer),溶剂(solvent),光活性物质(photoactive compound,PAC),添加剂(Additive)。 其中,树脂型聚合物是光刻胶的主体,它使光刻胶具有耐刻蚀性能;溶剂使光刻胶处于液体状态,便于涂覆;光活性物质是控制光刻胶对某一特定波长光/电子束/离子束/X射线等感光,并发生相应的化学反应;添加剂是用以改变光刻胶的某些特性,如控制胶的光吸收率/溶解度等。
5.光刻胶的主要技术参数
5.1.灵敏度(Sensitivity)
灵敏度是衡量光刻胶曝光速度的指标。光刻胶的灵敏度越高,所需的曝光剂量越小。单位:毫焦/平方厘米或mJ/cm2。
5.2.分辨率(resolution)
区别硅片表面相邻图形特征的能力。一般用关键尺寸(CD,Critical Dimension)来衡量分辨率。形成的关键尺寸越小,光刻胶的分辨率越好。
光刻胶的分辨率是一个综合指标,影响该指标的因素通常有如下3个方面:
(1) 曝光系统的分辨率。
(2) 光刻胶的对比度、胶厚、相对分子质量等。一般薄胶容易得到高分辨率图形。
(3) 前烘、曝光、显影、后烘等工艺都会影响光刻胶的分辨率。
5.3.对比度(Contrast)
对比度指光刻胶从曝光区到非曝光区过渡的陡度。 对比度越好,越容易形成侧壁陡直的图形和较高的宽高比。
5.4.粘滞性/黏度 (Viscosity)
衡量光刻胶流动特性的参数。黏度通常可以使用光刻胶中聚合物的固体含量来控制。同一种光刻胶根据浓度不同可以有不同的黏度,而不同的黏度决定了该胶的不同的涂胶厚度。
5.5.抗蚀性(Anti-etching)
光刻胶必须保持它的粘附性,在后续的刻蚀工序中保护衬底表面。耐热稳定性、抗刻蚀能力和抗离子轰击能力。
5.6.工艺宽容度(Process latitude)
光刻胶的的前后烘温度、曝光工艺、显影液浓度、显影时间等都会对最后的光刻胶图形产生影响。每一套工艺都有相应的最佳的工艺条件,当实际工艺条件偏离最佳值时要求光刻胶的性能变化尽量小,即有较大的工艺宽容度。 这样的光刻胶对工艺条件的控制就有一定的宽容性。
6.特殊光刻胶介绍
6.1. 化学放大光刻胶(CAR,Chemical Amplified Resist)
化学放大胶中含有一种叫做"光酸酵母"(PAG, Photo Acid Generator)的物质。在光刻胶曝光过程中,PAG分解,首先产生少量的光酸。在曝光后与显影前经过适当温度的烘烤,即后烘(PEB, Post Exposure Baking)这些光酸分子又发连锁反应,产生更多的光酸分子。大量的光酸使光刻胶的曝光部分变成可溶(正胶)或不可溶(负胶)。 主要的化学反应是在后烘过程中发生的,只需要较低的曝光能量来产生初始的光酸,因此化学放大胶通常有很高的灵敏度。
6.2.灰度曝光(Grey Scale Lithography)
灰度曝光可以产生曲面的光刻胶剖面,是制作三维浮雕结构的光学曝光技术之一。灰度曝光的关键在于灰度掩膜板的制作、灰度光刻胶工艺与光刻胶浮雕图形向衬底材料的转移。传统掩膜板只有透光区和不透光区,而灰度掩膜板的透光率则是以灰度等级来表示的。实现灰度掩膜板的方法是改变掩膜的透光点密度。
⑧ 闪存和存储的芯片封装测试什么样
内存,先制造晶圆,随后将芯片的电路元件(晶体管、电阻器和电容器)置于硅晶圆片的分层结构中。构筑电路之前,需先在计算机上对电路进行研发、模拟测试和完善。设计完成后,将制造玻璃光掩模——并为每层电路准备一块光掩模。光掩模是带有小孔或透明体的不透光板,可以让光线以特定形状透过。在无菌的洁净室环境中,晶圆片将经过多步光蚀刻程序的处理,电路每需要一块光掩模即重复一次。光掩模可用于 (a) 确定用于构建集成电路的晶体管、电容器、电阻器或连接器的不同部件,及 (b) 定义设备组装的各层电路图案。接下来,晶圆片将被统一覆盖一层具有一定厚度的光敏液体,称为光刻胶。通过将紫外线光源和晶圆片之间的光掩模对齐,选择晶圆片的暴露部分。光线将穿过该光掩模的透明区域,并将光刻胶暴露在光线中。暴露在紫外线中时,光刻胶将发生化学变化,从而让显影液将曝光的光刻胶去除,并在晶圆片上留下未曝光的部分。电路每多一块光掩模,就需要多重复一次光刻法/光刻胶程序。蚀刻流程中,将在晶圆片上放置湿酸或干离子气体,以去除不受硬化的光刻胶保护的氮化层部分。该操作将在晶圆片上留下与所设计的光掩模形状一致的氮化图案。使用其他化学剂将硬化的光刻胶去除(清除)后,便可以将数以百计的内存芯片以蚀刻的方式嵌入晶圆片上了。在制造流程的第 I 部分中,所有电路元件(晶体管、电阻器和电容器)均在首次掩膜操作中完成构建。接下来,通过生成一组分层,将这些元件连接起来。要开始连接电路元件,需先在晶圆片上覆盖一层玻璃绝缘层(被称为 BPSG),并用接触式掩模确定每个电路元件的接触点(或接触窗)。完成接触窗蚀刻后,整个晶圆片将在一个溅射室内镀上一层薄薄的铝。对铝层加盖金属掩模时,将形成一个薄薄的金属连接或线路网络,构成电路的路径。整个晶圆片随后将覆盖一层玻璃和氮化硅以避免其在组装过程中受损。该保护层被称为钝化层。随后则是最后的掩模和钝化蚀刻程序,从端子(也被称为焊盘)上去除钝化材料。将焊盘用于模具至塑料或陶瓷封装上金属引脚的电气连接,集成电路此时即告完成。将晶圆片发往模具组装前,必须对晶圆片上的每个集成电路进行测试。识别功能和非功能性芯片,并在计算机数据文件中做出标记。然后用金刚石锯将晶圆片切割成独立的芯片。非功能性芯片将被废弃,其余部分则可用于组装。这些独立芯片被称为晶粒。对晶粒进行封装前,会将其安装于引线框上,并用薄金线将芯片上的焊盘与该框相连接,从而在晶粒和引线指之间形成电路。
CPU也是一样,先是制造晶圆,然后影印(Photolithography) 蚀刻(Etching)在经过热处理得到的硅氧化物层上面涂敷一种光阻(Photoresist)物质,紫外线通过印制着CPU复杂电路结构图样的模板照射硅基片,被紫外线照射的地方光阻物质溶解。而为了避免让不需要被曝光的区域也受到光的干扰,必须制作遮罩来遮蔽这些区域。这是个相当复杂的过程,每一个遮罩的复杂程度得用10GB数据来描述。接下来停止光照并移除遮罩,使用特定的化学溶液清洗掉被曝光的光敏抗蚀膜,以及在下面紧贴着抗蚀膜的一层硅。然后,曝光的硅将被原子轰击,使得暴露的硅基片局部掺杂,从而改变这些区域的导电状态,以制造出N井或P井,结合上面制造的基片,CPU的门电路就完成了。为加工新的一层电路,再次生长硅氧化物,然后沉积一层多晶硅,涂敷光阻物质,重复影印、蚀刻过程,得到含多晶硅和硅氧化物的沟槽结构。重复多遍,形成一个3D的结构,这才是最终的CPU的核心。每几层中间都要填上金属作为导体。Intel的Pentium 4处理器有7层,而AMD的Athlon 64则达到了9层。这时的CPU是一块块晶圆,它还不能直接被用户使用,必须将它封入一个陶瓷的或塑料的封壳中,这样它就可以很容易地装在一块电路板上了。封装结构各有不同,但越高级的CPU封装也越复杂,新的封装往往能带来芯片电气性能和稳定性的提升,并能间接地为主频的提升提供坚实可靠的基础。
看清了没有,关键是在影印、蚀刻、分层时,制作的电路是不一样的。CPU复杂电路结构图样的模板比内存芯片的复杂多了。