当前位置:首页 » 存储配置 » 二叉树链式存储结构

二叉树链式存储结构

发布时间: 2022-08-08 04:44:06

A. 怎么把二叉树的链式存储结构转化为顺序存储结构

二叉树的链式存储是指:两个儿子结点分别用指针指向。而存储结构值的是:假设该结点在数组中的位置为 i ,则它的左儿子的位置为 2i ,右儿子为 2i + 1. ( i 从1开始)

所以你只要创建一个数组,从链式存储的根节点开始,用中序遍历遍历树,按中序遍历的顺序存储在数组中。即可完成顺序存储结构的转化。

相关的遍历你可以查看相关资料,中序遍历即访问顺序为左儿子-根-右儿子的顺序访问。

希望对你有所帮助。

B. 二叉树 两种存储结构的优缺点

顺序存储可能会浪费空间,但是读取某个指定的节点的时候效率比较高,链式存储相对二叉树比较大的时候浪费空间较少,但是读取某个指定节点的时候效率偏低O(nlogn)。

在数据的顺序存储中,由于每个元素的存储位置都可以通过简单计算得到,所以访问元素的时间都相同;而在数据的链接存储中,由于每个元素的存储位置保存在它的前驱或后继结点中,所以只有当访问到其前驱结点或后继结点后才能够按指针访问到。


(2)二叉树链式存储结构扩展阅读:

分类:

顺序存储方法它是把逻辑上相邻的结点存储在物理位置相邻的存储单元里,结点间的逻辑关系由存储单元的邻接关系来体现,由此得到的存储表示称为顺序存储结构。顺序存储结构是一种最基本的存储表示方法,通常借助于程序设计语言中的数组来实现。

链接存储方法它不要求逻辑上相邻的结点在物理位置上亦相邻,结点间的逻辑关系是由附加的指针字段表示的。由此得到的存储表示称为链式存储结构,链式存储结构通常借助于程序设计语言中的指针类型来实现。

C. 二叉树的链式存储结构的数据结构定义、创建、先序和后序遍历,并将结果序列输出。

1、建立一个单链表,并从屏幕显示单链表元素列表。

2、从键盘输入一个数,查找在以上创建的单链表中是否存在该数;如果存在,显示它的位置;如果不存在,给出相应提示。

3、在上述的单链表中的指定位置插入指定的元素

4、删除上述单链表中指定位置的元素。

源程序:头文件

#include<iostream.h>
#include<malloc.h>
typedef char ElemType;
typedef int Status;
#define OK 1
#define ERROR 0
typedef struct LNode{
ElemType data;
LNode *next;
}LNode,*LinkList;

void about(){ //版本信息
cout<<"单链表的操作"
}

void showmenu(){ //功能列表
cout<<endl <<" **********功能**********"<<endl
<<" * 1.输出单链表的全部数据*"<<endl
<<" * 2.查找链表元素 *"<<endl
<<" * 3.链表插入元素 *"<<endl
<<" * 4.链表删除元素 *"<<endl
<<" * 5.结束 *"<<endl
<<" ************************"<<endl
<<"请输入所需功能: ";
}

//*******查看输入的全部数据*********
void PrintList(LinkList L){
LinkList p;
cout<<endl<<"你输入的数据为: ";
p=L->next; //从头结点开始扫描
while(p){ //顺指针向后扫描,直到p->next为NULL或i=j为止
cout<<p->data;
p=p->next; }
cout<<endl; }

//逆序输入 n 个数据元素,建立带头结点的单链表
void CreateList_L(LinkList &L, int n) {
int i;
LinkList p;
L = new LNode;
L->next = NULL; // 先建立一个带头结点的单链表
cout<<"逆序输入 n 个数据元素,建立带头结点的单链表"<<endl;
for (i = n; i > 0; --i) {
p = new LNode;
cin>>p->data; // 输入元素值
p->next = L->next; L->next = p; // 插入
}
}

// L是带头结点的链表的头指针,以 e 返回第 i 个元素
Status GetElem_L(LinkList L, int i, ElemType &e) {
int j;
LinkList p;
p = L->next; j = 1; // p指向第一个结点,j为计数器
while (p && j<i) { p = p->next; ++j; } // 顺指针向后查找,直到 p 指向第 i 个元素或 p 为空
if ( !p || j>i )
return ERROR; // 第 i 个元素不存在
e = p->data; // 取得第 i 个元素
return OK;
}

// 本算法在链表中第i 个结点之前插入新的元素 e
Status ListInsert_L(LinkList L, int i, ElemType e) {
int j;
LinkList p,s;
p = L; j = 0;
while (p && j < i-1)
{ p = p->next; ++j; } // 寻找第 i-1 个结点
if (!p || j > i-1)
return ERROR; // i 大于表长或者小于1
s = new LNode; // 生成新结点
if ( s == NULL) return ERROR;
s->data = e;
s->next = p->next; p->next = s; // 插入
return OK;
}

Status ListDelete_L(LinkList L, int i, ElemType &e)
{LinkList p,q;
int j;
p = L; j = 0;
while (p->next && j < i-1) { p = p->next; ++j; }
// 寻找第 i 个结点,并令 p 指向其前趋

if (!(p->next) || j > i-1)
return ERROR; // 删除位置不合理
q = p->next; p->next = q->next; // 删除并释放结点
e = q->data; free(q);
return OK;
}

#include"LinkList.h"
void main()
{LinkList L;
int n,choice,i;
ElemType e;
about();
cout<<"请输入链表中元素的个数";
cin>>n;
CreateList_L(L, n);
showmenu(); //功能列表
cin>>choice;
while(choice!=5)
{ //输入时候退出程序
switch(choice){
case 1:PrintList(L);break; //1.查看输入的全部数据
case 2:{
cout<<"输入你要查找的元素的位置: ";
cin>>i;GetElem_L(L, i, e);
cout<<"第"<<i<<"个元素的值是"<<e<<endl;
break;} //2.查找链表元素
case 3:
{cout<<"请输入你要插入元素的位置i: ";
cin>>i;
cout<<endl<<"请输入你要插入元素的值: ";
cin>>e;
ListInsert_L(L, i,e);
break;} //3.链表插入元素
case 4:
{cout<<"请输入你要删除元素的位置";
cin>>i;
ListDelete_L(L, i, e) ;
break;} //4.链表删除元素
default:cout<<"输入错误,请输入-5,输入重显示功能表^_^ "<<endl;
}
cout<<endl<<"输入功能序号:";
cin>>choice;
}

}

D. 试分析二叉树的存储时如何实现的,分别介绍二叉树的顺序存储和链式存储 .

4.二叉树的存储结构
(1)顺序存储方式

type node=record
data:datatype
l,r:integer;
end;
var tr:array[1..n] of node;

(2)链表存储方式,如:
type btree=^node;
node=record
data:datatye;
lchild,rchild:btree;
end;

E. 顺序存储是二叉树常用的存储结构吗

二叉树的存储结构
二叉树是非线性结构,即每个数据结点至多只有一个前驱,但可以有多个后继。它可采用顺序存储结构和链式存储结构。
1.顺序存储结构
二叉树的顺序存储,就是用一组连续的存储单元存放二叉树中的结点。因此,必须把二叉树的所有结点安排成为一个恰当的序列,结点在这个序列中的相互位置能反映出结点之间的逻辑关系,用编号的方法从树根起,自上层至下层,每层自左至右地给所有结点编号,缺点是有可能对存储空间造成极大的浪费,在最坏的情况下,一个深度为k且只有k个结点的右单支树需要2k-1个结点存储空间。依据二叉树的性质,完全二叉树和满二叉树采用顺序存储比较合适,树中结点的序号可以唯一地反映出结点之间的逻辑关系,这样既能够最大可能地节省存储空间,又可以利用数组元素的下标值确定结点在二叉树中的位置,以及结点之间的关系。图5-5(a)是一棵完全二叉树,图5-5(b)给出的图5-5(a)所示的完全二叉树的顺序存储结构。

(a) 一棵完全二叉树 (b) 顺序存储结构
图5-5 完全二叉树的顺序存储示意图
对于一般的二叉树,如果仍按从上至下和从左到右的顺序将树中的结点顺序存储在一维数组中,则数组元素下标之间的关系不能够反映二叉树中结点之间的逻辑关系,只有增添一些并不存在的空结点,使之成为一棵完全二叉树的形式,然后再用一维数组顺序存储。如图5-6给出了一棵一般二叉树改造后的完全二叉树形态和其顺序存储状态示意图。显然,这种存储对于需增加许多空结点才能将一棵二叉树改造成为一棵完全二叉树的存储时,会造成空间的大量浪费,不宜用顺序存储结构。最坏的情况是右单支树,如图5-7 所示,一棵深度为k的右单支树,只有k个结点,却需分配2k-1个存储单元。

(a) 一棵二叉树 (b) 改造后的完全二叉树

(c) 改造后完全二叉树顺序存储状态
图5-6 一般二叉树及其顺序存储示意图

(a) 一棵右单支二叉树 (b) 改造后的右单支树对应的完全二叉树

(c) 单支树改造后完全二叉树的顺序存储状态
图5-7 右单支二叉树及其顺序存储示意图
结构5-1二叉树的顺序存储

#define Maxsize 100 //假设一维数组最多存放100个元素
typedef char Datatype; //假设二叉树元素的数据类型为字符
typedef struct
{ Datatype bt[Maxsize];
int btnum;
}Btseq;

2.链式存储结构
二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。
通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址。其结点结构为:

其中,data域存放某结点的数据信息;lchild与rchild分别存放指向左孩子和右孩子的指针,当左孩子或右孩子不存在时,相应指针域值为空(用符号∧或NULL表示)。利用这样的结点结构表示的二叉树的链式存储结构被称为二叉链表,如图5-8所示。

(a) 一棵二叉树 (b) 二叉链表存储结构
图5-8 二叉树的二叉链表表示示意图
为了方便访问某结点的双亲,还可以给链表结点增加一个双亲字段parent,用来指向其双亲结点。每个结点由四个域组成,其结点结构为:

这种存储结构既便于查找孩子结点,又便于查找双亲结点;但是,相对于二叉链表存储结构而言,它增加了空间开销。利用这样的结点结构表示的二叉树的链式存储结构被称为三叉链表。
图5-9给出了图5-8 (a)所示的一棵二叉树的三叉链表表示。

图5-9二叉树的三叉链表表示示意图
尽管在二叉链表中无法由结点直接找到其双亲,但由于二叉链表结构灵活,操作方便,对于一般情况的二叉树,甚至比顺序存储结构还节省空间。因此,二叉链表是最常用的二叉树存储方式。
结构5-2二叉树的链式存储
#define datatype char //定义二叉树元素的数据类型为字符
typedef struct node //定义结点由数据域,左右指针组成
{ Datatype data;
struct node *lchild,*rchild;
}Bitree;

F. 分别写出线性表的链式存储结构、二叉树的二叉链表存储机构的类C语言描述

线性表的链式存储结构:
typedef int ElemType;
typedef struct LNode
{
ElemType data;
struct LNode *next;
}LNode,*LinkList;
(被封装好的每个节点,都有一个数据域data和一个指针域*next用于指向下一个节点)
二叉树的二叉链表:
typedef int TElemType;
typedef struct BiTNode
{
TElemType data;
struct BiTNode *lchild,*rchild;
}BiTNode,*BiTree;
(被封装好的每个节点,都有一个数据域data和两个指针域 *lchild,*rchild分别指向左右子树)

需要什么类型的数据作为数据域可更改,或者typedef int ElemType;和typedef int TElemType;中的int,比如改为char、float等或者自定义数据类型。

G. 采用顺序存储方法和链式存储方法分别画出图6.1所示二叉树的存储结构。【在线等】

线性是线性,顺序是顺序,线性是逻辑结构,顺序是储存结构,两者不是一个概念。线性是指一个节点只有一个子节点,而树,或二叉树一个节点后有多个子节点,且子节点不能相互联系。

顺序存储可能会浪费空间(在非完全二叉树的时候),但是读取某个指定的节点的时候效率比较高。

链式存储相对二叉树比较大的时候浪费空间较少,但是读取某个指定节点的时候效率偏低。

二叉树的顺序存储,寻找后代节点和祖先节点都非常方便,但对于普通的二叉树,顺序存储浪费大量的存储空间,同样也不利于节点的插入和删除。因此顺序存储一般用于存储完全二叉树。

链式存储相对顺序存储节省存储空间,插入删除节点时只需修改指针,但回寻找指定节点时很不方便。不过普通答的二叉树一般是用链式存储结构。

(7)二叉树链式存储结构扩展阅读:

(1)完全二叉树——若设二叉树的高度为h,除第h层外,其它各层 (1~h-1) 的结点数都达到最大个数,第h层有叶子结点,并且叶子结点都是从左到右依次排布,这就是完全二叉树。

(2)满二叉树——除了叶结点外每一个结点都有左右子叶且叶子结点都处在最底层的二叉树。

(3)平衡二叉树——平衡二叉树又被称为AVL树(区别于AVL算法),它是一棵二叉排序树,且具有以下性质:是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。

二叉树是树的一种特殊情形,是一种更简单而且应用更加广泛的树。

H. 二叉树的结构及画法

二叉树的结构有顺序存储和链式存储两种存储结构,其中顺序存储是通过数组实现的,从上到下,从左到右的顺序依次存放根、左孩子、右孩子;链式存储是通过指针实现的,一个结点有三个域:左指针、数据域、右指针。

I. 设二叉树bt存储结构如下

字符a是根结点,a的左分支是b,而a没有右分支.

二叉树示意图:

a
/
b
/
cd
//
efg
//
hi
/
j

二叉树的(链式)逻辑结构示意图:

#a^
/
#b#
/
#c^#d#
//
^e^#f^#g^
//
^h^#i^
/
^j^

上述示意图,符号#表示指针域,符号^表示NULL(空指针)

先序遍历序列:abcedfhgij
中序遍历序列:ecbhfdjiga
后序遍历序列:echfjigdba


//C语言测试程序

#include"stdio.h"
#include"stdlib.h"
structtree
{
chardata;
structtree*left;
structtree*right;
};
typedefstructtreetreenode;
typedeftreenode*btree;

btreecreatebtree(char*data,intpos,intmaxPos)//递归创建法
{
btreenewnode;

if(data[pos]==0||pos>maxPos)
{
returnNULL;
}
else
{
newnode=(btree)malloc(sizeof(treenode));
newnode->data=data[pos];
newnode->left=createbtree(data,2*pos,maxPos);
newnode->right=createbtree(data,2*pos+1,maxPos);
returnnewnode;
}
}

voidpreorder(btreeptr)//先序遍历(递归法)
{
if(ptr!=NULL)
{
printf("%C",ptr->data);
preorder(ptr->left);
preorder(ptr->right);
}
}

voidinorder(btreeptr)//中序遍历(递归法)
{
if(ptr!=NULL)
{
inorder(ptr->left);
printf("%C",ptr->data);
inorder(ptr->right);
}
}

voidpostorder(btreeptr)//后序遍历(递归法)
{
if(ptr!=NULL)
{
postorder(ptr->left);
postorder(ptr->right);
printf("%C",ptr->data);
}
}

intmain()
{
btreeroot=NULL;
inti;

chardata[64]={0,'a','b',0,'c','d',0,0,
'e',0,'f','g',0,0,0,0,
0,0,0,0,'h',0,'i',0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,'j',0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0};
root=createbtree(data,1,63);
printf("二叉树的顺序存储内容:");
for(i=1;i<64;i++)
{
if(data[i]==0)
{
printf("^");
}
else
{
printf("%c",data[i]);
}
}

printf(" 二叉树的先序遍历序列:");
preorder(root);
printf(" 二叉树的中序遍历序列:");
inorder(root);
printf(" 二叉树的后序遍历序列:");
postorder(root);

printf(" ");
return0;
}

J. 双向链表是二叉树的链式存储结构,这句话不对,为什么

这句话本身其实也没有什么问题,因为二叉数不一定满足二叉,只是他最大的限度是二叉而已,只有完全二叉树满足每一个非叶子节点都是二叉,而双向链表是双向与树的无向性完全一样
只要链表的首尾不相接他就是一棵特殊的二叉树
——链

热点内容
实简ftp软件怎么改服务器文件 发布:2025-01-11 10:09:39 浏览:555
qb充值源码 发布:2025-01-11 10:00:21 浏览:27
c语言元编程 发布:2025-01-11 09:53:02 浏览:343
线切割割圆怎么编程 发布:2025-01-11 09:52:23 浏览:172
怎么选女孩子的配置 发布:2025-01-11 09:47:33 浏览:671
python获取header 发布:2025-01-11 09:47:32 浏览:493
iis7上传大小 发布:2025-01-11 09:41:38 浏览:507
拍摄脚本是什么工作 发布:2025-01-11 09:39:12 浏览:786
魅族安卓8什么时候更新 发布:2025-01-11 09:27:58 浏览:362
电脑板我的世界登录密码多少 发布:2025-01-11 09:15:43 浏览:284