大数据的存储技术
‘壹’ 简述大数据与存储器间的关系简述中国集成电路技术的发展历程。(答案要多点)
摘要 亲,您好!大数据和存储看似是两个不相关的名词。但是随着大数据时代的来临,大数据和存储技术和有了联系。大数据想要保留肯定离不开数据存储,就算存放在数据库,也离不开存储技术。大数据存储是将这些数据集持久化到计算机中。所以今天我们就来说说大数据存储技术。
‘贰’ 大数据时代下的三种存储架构
大数据时代下的三种存储架构_数据分析师考试
大数据时代,移动互联、社交网络、数据分析、云服务等应用的迅速普及,对数据中心提出革命性的需求,存储基础架构已经成为IT核心之一。政府、军队军工、科研院所、航空航天、大型商业连锁、医疗、金融、新媒体、广电等各个领域新兴应用层出不穷。数据的价值日益凸显,数据已经成为不可或缺的资产。作为数据载体和驱动力量,存储系统成为大数据基础架构中最为关键的核心。
传统的数据中心无论是在性能、效率,还是在投资收益、安全,已经远远不能满足新兴应用的需求,数据中心业务急需新型大数据处理中心来支撑。除了传统的高可靠、高冗余、绿色节能之外,新型的大数据中心还需具备虚拟化、模块化、弹性扩展、自动化等一系列特征,才能满足具备大数据特征的应用需求。这些史无前例的需求,让存储系统的架构和功能都发生了前所未有的变化。
基于大数据应用需求,“应用定义存储”概念被提出。存储系统作为数据中心最核心的数据基础,不再仅是传统分散的、单一的底层设备。除了要具备高性能、高安全、高可靠等特征之外,还要有虚拟化、并行分布、自动分层、弹性扩展、异构资源整合、全局缓存加速等多方面的特点,才能满足具备大数据特征的业务应用需求。
尤其在云安防概念被热炒的时代,随着高清技术的普及,720P、1080P随处可见,智能和高清的双向需求、动辄500W、800W甚至上千万更高分辨率的摄像机面市,大数据对存储设备的容量、读写性能、可靠性、扩展性等都提出了更高的要求,需要充分考虑功能集成度、数据安全性、数据稳定性,系统可扩展性、性能及成本各方面因素。
目前市场上的存储架构如下:
(1)基于嵌入式架构的存储系统
节点NVR架构主要面向小型高清监控系统,高清前端数量一般在几十路以内。系统建设中没有大型的存储监控中心机房,存储容量相对较小,用户体验度、系统功能集成度要求较高。在市场应用层面,超市、店铺、小型企业、政法行业中基本管理单元等应用较为广泛。
(2)基于X86架构的存储系统
平台SAN架构主要面向中大型高清监控系统,前端路数成百上千甚至上万。一般多采用IPSAN或FCSAN搭建高清视频存储系统。作为监控平台的重要组成部分,前端监控数据通过录像存储管理模块存储到SAN中。
此种架构接入高清前端路数相对节点NVR有了较高提升,具备快捷便利的可扩展性,技术成熟。对于IPSAN而言,虽然在ISCSI环节数据并发读写传输速率有所消耗,但其凭借扩展性良好、硬件平台通用、海量数据可充分共享等优点,仍然得到很多客户的青睐。FCSAN在行业用户、封闭存储系统中应用较多,比如县级或地级市高清监控项目,大数据量的并发读写对千兆网络交换提出了较大的挑战,但应用FCSAN构建相对独立的存储子系统,可以有效解决上述问题。
面对视频监控系统大文件、随机读写的特点,平台SAN架构系统不同存储单元之间的数据共享冗余方面还有待提高;从高性能服务器转发视频数据到存储空间的策略,从系统架构而言也增加了隐患故障点、ISCSI带宽瓶颈导致无法充分利用硬件数据并发性能、接入前端数据较少。上述问题催生了平台NVR架构解决方案。
该方案在系统架构上省去了存储服务器,消除了上文提到的性能瓶颈和单点故障隐患。大幅度提高存储系统的写入和检索速度;同时也彻底消除了传统文件系统由于供电和网络的不稳定带来的文件系统损坏等问题。
平台NVR中存储的数据可同时供多个客户端随时查询,点播,当用户需要查看多个已保存的视频监控数据时,可通过授权的视频监控客户端直接查询并点播相应位置的视频监控数据进行历史图像的查看。由于数据管理服务器具有监控系统所有监控点的录像文件的索引,因此通过平台CMS授权,视频监控客户端可以查询并点播整个监控系统上所有监控点的数据,这个过程对用户而言也是透明的。
(3)基于云技术的存储方案
当前,安防行业可谓“云”山“物”罩。随着视频监控的高清化和网络化,存储和管理的视频数据量已有海量之势,云存储技术是突破IP高清监控存储瓶颈的重要手段。云存储作为一种服务,在未来安防监控行业有着客观的应用前景。
与传统存储设备不同,云存储不仅是一个硬件,而是一个由网络设备、存储设备、服务器、软件、接入网络、用户访问接口以及客户端程序等多个部分构成的复杂系统。该系统以存储设备为核心,通过应用层软件对外提供数据存储和业务服务。
一般分为存储层、基础管理层、应用接口层以及访问层。存储层是云存储系统的基础,由存储设备(满足FC协议、iSCSI协议、NAS协议等)构成。基础管理层是云存储系统的核心,其担负着存储设备间协同工作,数据加密,分发以及容灾备份等工作。应用接口层是系统中根据用户需求来开发的部分,根据不同的业务类型,可以开发出不同的应用服务接口。访问层指授权用户通过应用接口来登录、享受云服务。其主要优势在于:硬件冗余、节能环保、系统升级不会影响存储服务、海量并行扩容、强大的负载均衡功能、统一管理、统一向外提供服务,管理效率高,云存储系统从系统架构、文件结构、高速缓存等方面入手,针对监控应用进行了优化设计。数据传输可采用流方式,底层采用突破传统文件系统限制的流媒体数据结构,大幅提高了系统性能。
高清监控存储是一种大码流多并发写为主的存储应用,对性能、并发性和稳定性等方面有很高的要求。该存储解决方案采用独特的大缓存顺序化算法,把多路随机并发访问变为顺序访问,解决了硬盘磁头因频繁寻道而导致的性能迅速下降和硬盘寿命缩短的问题。
针对系统中会产生PB级海量监控数据,存储设备的数量达数十台上百台,因此管理方式的科学高效显得十分重要。云存储可提供基于集群管理技术的多设备集中管理工具,具有设备集中监控、集群管理、系统软硬件运行状态的监控、主动报警,图像化系统检测等功能。在海量视频存储检索应用中,检索性能尤为重要。传统文件系统中,文件检索采用的是“目录-》子目录-》文件-》定位”的检索步骤,在海量数据的高清视频监控,目录和文件数量十分可观,这种检索模式的效率就会大打折扣。采用序号文件定位可以有效解决该问题。
云存储可以提供非常高的的系统冗余和安全性。当在线存储系统出现故障后,热备机可以立即接替服务,当故障恢复时,服务和数据回迁;若故障机数据需要调用,可以将故障机的磁盘插入到冷备机中,实现所有数据的立即可用。
对于高清监控系统,随着监控前端的增加和存储时间的延长,扩展能力十分重要。市场中已有友商可提供单纯针对容量的扩展柜扩展模式和性能容量同步线性扩展的堆叠扩展模式。
云存储系统除上述优点之外,在平台对接整合、业务流程梳理、视频数据智能分析深度挖掘及成本方面都将面临挑战。承建大型系统、构建云存储的商业模式也亟待创新。受限于宽带网络、web2.0技术、应用存储技术、文件系统、P2P、数据压缩、CDN技术、虚拟化技术等的发展,未来云存储还有很长的路要走。
以上是小编为大家分享的关于大数据时代下的三种存储架构的相关内容,更多信息可以关注环球青藤分享更多干货
‘叁’ 大数据处理的五大关键技术及其应用
作者 | 网络大数据
来源 | 产业智能官
数据处理是对纷繁复杂的海量数据价值的提炼,而其中最有价值的地方在于预测性分析,即可以通过数据可视化、统计模式识别、数据描述等数据挖掘形式帮助数据科学家更好的理解数据,根据数据挖掘的结果得出预测性决策。其中主要工作环节包括:
大数据采集 大数据预处理 大数据存储及管理 大数据分析及挖掘 大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。一、大数据采集技术
数据是指通过RFID射频数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得的各种类型的结构化、半结构化(或称之为弱结构化)及非结构化的海量数据,是大数据知识服务模型的根本。重点要突破分布式高速高可靠数据爬取或采集、高速数据全映像等大数据收集技术;突破高速数据解析、转换与装载等大数据整合技术;设计质量评估模型,开发数据质量技术。
大数据采集一般分为:
大数据智能感知层:主要包括数据传感体系、网络通信体系、传感适配体系、智能识别体系及软硬件资源接入系统,实现对结构化、半结构化、非结构化的海量数据的智能化识别、定位、跟踪、接入、传输、信号转换、监控、初步处理和管理等。必须着重攻克针对大数据源的智能识别、感知、适配、传输、接入等技术。
基础支撑层:提供大数据服务平台所需的虚拟服务器,结构化、半结构化及非结构化数据的数据库及物联网络资源等基础支撑环境。重点攻克分布式虚拟存储技术,大数据获取、存储、组织、分析和决策操作的可视化接口技术,大数据的网络传输与压缩技术,大数据隐私保护技术等。
二、大数据预处理技术
完成对已接收数据的辨析、抽取、清洗等操作。
抽取:因获取的数据可能具有多种结构和类型,数据抽取过程可以帮助我们将这些复杂的数据转化为单一的或者便于处理的构型,以达到快速分析处理的目的。
清洗:对于大数据,并不全是有价值的,有些数据并不是我们所关心的内容,而另一些数据则是完全错误的干扰项,因此要对数据通过过滤“去噪”从而提取出有效数据。
三、大数据存储及管理技术
大数据存储与管理要用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。重点解决复杂结构化、半结构化和非结构化大数据管理与处理技术。主要解决大数据的可存储、可表示、可处理、可靠性及有效传输等几个关键问题。开发可靠的分布式文件系统(DFS)、能效优化的存储、计算融入存储、大数据的去冗余及高效低成本的大数据存储技术;突破分布式非关系型大数据管理与处理技术,异构数据的数据融合技术,数据组织技术,研究大数据建模技术;突破大数据索引技术;突破大数据移动、备份、复制等技术;开发大数据可视化技术。
开发新型数据库技术,数据库分为关系型数据库、非关系型数据库以及数据库缓存系统。其中,非关系型数据库主要指的是NoSQL数据库,分为:键值数据库、列存数据库、图存数据库以及文档数据库等类型。关系型数据库包含了传统关系数据库系统以及NewSQL数据库。
开发大数据安全技术:改进数据销毁、透明加解密、分布式访问控制、数据审计等技术;突破隐私保护和推理控制、数据真伪识别和取证、数据持有完整性验证等技术。
四、大数据分析及挖掘技术
大数据分析技术:改进已有数据挖掘和机器学习技术;开发数据网络挖掘、特异群组挖掘、图挖掘等新型数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破用户兴趣分析、网络行为分析、情感语义分析等面向领域的大数据挖掘技术。
数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。
数据挖掘涉及的技术方法很多,有多种分类法。根据挖掘任务可分为分类或预测模型发现、数据总结、聚类、关联规则发现、序列模式发现、依赖关系或依赖模型发现、异常和趋势发现等等;根据挖掘对象可分为关系数据库、面向对象数据库、空间数据库、时态数据库、文本数据源、多媒体数据库、异质数据库、遗产数据库以及环球网Web;根据挖掘方法分,可粗分为:机器学习方法、统计方法、神经网络方法和数据库方法。
机器学习中,可细分为归纳学习方法(决策树、规则归纳等)、基于范例学习、遗传算法等。统计方法中,可细分为:回归分析(多元回归、自回归等)、判别分析(贝叶斯判别、费歇尔判别、非参数判别等)、聚类分析(系统聚类、动态聚类等)、探索性分析(主元分析法、相关分析法等)等。神经网络方法中,可细分为:前向神经网络(BP算法等)、自组织神经网络(自组织特征映射、竞争学习等)等。数据库方法主要是多维数据分析或OLAP方法,另外还有面向属性的归纳方法。
数据挖掘主要过程是:根据分析挖掘目标,从数据库中把数据提取出来,然后经过ETL组织成适合分析挖掘算法使用宽表,然后利用数据挖掘软件进行挖掘。传统的数据挖掘软件,一般只能支持在单机上进行小规模数据处理,受此限制传统数据分析挖掘一般会采用抽样方式来减少数据分析规模。
数据挖掘的计算复杂度和灵活度远远超过前两类需求。一是由于数据挖掘问题开放性,导致数据挖掘会涉及大量衍生变量计算,衍生变量多变导致数据预处理计算复杂性;二是很多数据挖掘算法本身就比较复杂,计算量就很大,特别是大量机器学习算法,都是迭代计算,需要通过多次迭代来求最优解,例如K-means聚类算法、PageRank算法等。
从挖掘任务和挖掘方法的角度,着重突破:
可视化分析。数据可视化无论对于普通用户或是数据分析专家,都是最基本的功能。数据图像化可以让数据自己说话,让用户直观的感受到结果。 数据挖掘算法。图像化是将机器语言翻译给人看,而数据挖掘就是机器的母语。分割、集群、孤立点分析还有各种各样五花八门的算法让我们精炼数据,挖掘价值。这些算法一定要能够应付大数据的量,同时还具有很高的处理速度。 预测性分析。预测性分析可以让分析师根据图像化分析和数据挖掘的结果做出一些前瞻性判断。 语义引擎。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。语言处理技术包括机器翻译、情感分析、舆情分析、智能输入、问答系统等。 数据质量和数据管理。数据质量与管理是管理的最佳实践,透过标准化流程和机器对数据进行处理可以确保获得一个预设质量的分析结果。预测分析成功的7个秘诀
预测未来一直是一个冒险的命题。幸运的是,预测分析技术的出现使得用户能够基于历史数据和分析技术(如统计建模和机器学习)预测未来的结果,这使得预测结果和趋势变得比过去几年更加可靠。
尽管如此,与任何新兴技术一样,想要充分发挥预测分析的潜力也是很难的。而可能使挑战变得更加复杂的是,由不完善的策略或预测分析工具的误用导致的不准确或误导性的结果可能在几周、几个月甚至几年内才会显现出来。
预测分析有可能彻底改变许多的行业和业务,包括零售、制造、供应链、网络管理、金融服务和医疗保健。AI网络技术公司Mist Systems的联合创始人、首席技术官Bob fridy预测:“深度学习和预测性AI分析技术将会改变我们社会的所有部分,就像十年来互联网和蜂窝技术所带来的转变一样。”。
这里有七个建议,旨在帮助您的组织充分利用其预测分析计划。
1.能够访问高质量、易于理解的数据
预测分析应用程序需要大量数据,并依赖于通过反馈循环提供的信息来不断改进。全球IT解决方案和服务提供商Infotech的首席数据和分析官Soumendra Mohanty评论道:“数据和预测分析之间是相互促进的关系。”
了解流入预测分析模型的数据类型非常重要。“一个人身上会有什么样的数据?” Eric Feigl - Ding问道,他是流行病学家、营养学家和健康经济学家,目前是哈佛陈氏公共卫生学院的访问科学家。“是每天都在Facebook和谷歌上收集的实时数据,还是难以访问的医疗记录所需的医疗数据?”为了做出准确的预测,模型需要被设计成能够处理它所吸收的特定类型的数据。
简单地将大量数据扔向计算资源的预测建模工作注定会失败。“由于存在大量数据,而其中大部分数据可能与特定问题无关,只是在给定样本中可能存在相关关系,”FactSet投资组合管理和交易解决方案副总裁兼研究主管Henri Waelbroeck解释道,FactSet是一家金融数据和软件公司。“如果不了解产生数据的过程,一个在有偏见的数据上训练的模型可能是完全错误的。”
2.找到合适的模式
SAP高级分析产品经理Richard Mooney指出,每个人都痴迷于算法,但是算法必须和输入到算法中的数据一样好。“如果找不到适合的模式,那么他们就毫无用处,”他写道。“大多数数据集都有其隐藏的模式。”
模式通常以两种方式隐藏:
模式位于两列之间的关系中。例如,可以通过即将进行的交易的截止日期信息与相关的电子邮件开盘价数据进行比较来发现一种模式。Mooney说:“如果交易即将结束,电子邮件的公开率应该会大幅提高,因为买方会有很多人需要阅读并审查合同。”
模式显示了变量随时间变化的关系。“以上面的例子为例,了解客户打开了200次电子邮件并不像知道他们在上周打开了175次那样有用,”Mooney说。
3 .专注于可管理的任务,这些任务可能会带来积极的投资回报
纽约理工学院的分析和商业智能主任Michael Urmeneta称:“如今,人们很想把机器学习算法应用到海量数据上,以期获得更深刻的见解。”他说,这种方法的问题在于,它就像试图一次治愈所有形式的癌症一样。Urmeneta解释说:“这会导致问题太大,数据太乱——没有足够的资金和足够的支持。这样是不可能获得成功的。”
而当任务相对集中时,成功的可能性就会大得多。Urmeneta指出:“如果有问题的话,我们很可能会接触到那些能够理解复杂关系的专家” 。“这样,我们就很可能会有更清晰或更好理解的数据来进行处理。”
4.使用正确的方法来完成工作
好消息是,几乎有无数的方法可以用来生成精确的预测分析。然而,这也是个坏消息。芝加哥大学NORC (前国家意见研究中心)的行为、经济分析和决策实践主任Angela Fontes说:“每天都有新的、热门的分析方法出现,使用新方法很容易让人兴奋”。“然而,根据我的经验,最成功的项目是那些真正深入思考分析结果并让其指导他们选择方法的项目——即使最合适的方法并不是最性感、最新的方法。”
罗切斯特理工学院计算机工程系主任、副教授shanchie Jay Yang建议说:“用户必须谨慎选择适合他们需求的方法”。“必须拥有一种高效且可解释的技术,一种可以利用序列数据、时间数据的统计特性,然后将其外推到最有可能的未来,”Yang说。
5.用精确定义的目标构建模型
这似乎是显而易见的,但许多预测分析项目开始时的目标是构建一个宏伟的模型,却没有一个明确的最终使用计划。“有很多很棒的模型从来没有被人使用过,因为没有人知道如何使用这些模型来实现或提供价值,”汽车、保险和碰撞修复行业的SaaS提供商CCC信息服务公司的产品管理高级副总裁Jason Verlen评论道。
对此,Fontes也表示同意。“使用正确的工具肯定会确保我们从分析中得到想要的结果……”因为这迫使我们必须对自己的目标非常清楚,”她解释道。“如果我们不清楚分析的目标,就永远也不可能真正得到我们想要的东西。”
6.在IT和相关业务部门之间建立密切的合作关系
在业务和技术组织之间建立牢固的合作伙伴关系是至关重要的。客户体验技术提供商Genesys的人工智能产品管理副总裁Paul lasserr说:“你应该能够理解新技术如何应对业务挑战或改善现有的业务环境。”然后,一旦设置了目标,就可以在一个限定范围的应用程序中测试模型,以确定解决方案是否真正提供了所需的价值。
7.不要被设计不良的模型误导
模型是由人设计的,所以它们经常包含着潜在的缺陷。错误的模型或使用不正确或不当的数据构建的模型很容易产生误导,在极端情况下,甚至会产生完全错误的预测。
没有实现适当随机化的选择偏差会混淆预测。例如,在一项假设的减肥研究中,可能有50%的参与者选择退出后续的体重测量。然而,那些中途退出的人与留下来的人有着不同的体重轨迹。这使得分析变得复杂,因为在这样的研究中,那些坚持参加这个项目的人通常是那些真正减肥的人。另一方面,戒烟者通常是那些很少或根本没有减肥经历的人。因此,虽然减肥在整个世界都是具有因果性和可预测性的,但在一个有50%退出率的有限数据库中,实际的减肥结果可能会被隐藏起来。
六、大数据展现与应用技术
大数据技术能够将隐藏于海量数据中的信息和知识挖掘出来,为人类的社会经济活动提供依据,从而提高各个领域的运行效率,大大提高整个社会经济的集约化程度。
在我国,大数据将重点应用于以下三大领域:商业智能 、政府决策、公共服务。例如:商业智能技术,政府决策技术,电信数据信息处理与挖掘技术,电网数据信息处理与挖掘技术,气象信息分析技术,环境监测技术,警务云应用系统(道路监控、视频监控、网络监控、智能交通、反电信诈骗、指挥调度等公安信息系统),大规模基因序列分析比对技术,Web信息挖掘技术,多媒体数据并行化处理技术,影视制作渲染技术,其他各种行业的云计算和海量数据处理应用技术等。
‘肆’ 大数据的数据的存储方式是什么
大数据有效存储和管理大数据的三种方式:
1.
不断加密
任何类型的数据对于任何一个企业来说都是至关重要的,而且通常被认为是私有的,并且在他们自己掌控的范围内是安全的。然而,黑客攻击经常被覆盖在业务故障中,最新的网络攻击活动在新闻报道不断充斥。因此,许多公司感到很难感到安全,尤其是当一些行业巨头经常成为攻击目标时。
随着企业为保护资产全面开展工作,加密技术成为打击网络威胁的可行途径。将所有内容转换为代码,使用加密信息,只有收件人可以解码。如果没有其他的要求,则加密保护数据传输,增强在数字传输中有效地到达正确人群的机会。
2.
仓库存储
大数据似乎难以管理,就像一个永无休止统计数据的复杂的漩涡。因此,将信息精简到单一的公司位置似乎是明智的,这是一个仓库,其中所有的数据和服务器都可以被充分地规划指定。然而,有些报告指出了反对这种方法的论据,指出即使是最大的存储中心,大数据的指数增长也不再能维持。
然而,在某些情况下,企业可能会租用一个仓库来存储大量数据,在大数据超出的情况下,这是一个临时的解决方案,而LCP属性提供了一些很好的机会。毕竟,企业不会立即被大量的数据所淹没,因此,为物理机器租用仓库至少在短期内是可行的。这是一个简单有效的解决方案,但并不是永久的成本承诺。
3.
备份服务
-
云端
当然,不可否认的是,大数据管理和存储正在迅速脱离物理机器的范畴,并迅速进入数字领域。除了所有技术的发展,大数据增长得更快,以这样的速度,世界上所有的机器和仓库都无法完全容纳它。
因此,由于云存储服务推动了数字化转型,云计算的应用越来越繁荣。数据在一个位置不再受到风险控制,并随时随地可以访问,大型云计算公司(如谷歌云)将会更多地访问基本统计信息。数据可以在这些服务上进行备份,这意味着一次网络攻击不会消除多年的业务增长和发展。最终,如果出现网络攻击,云端将以A迁移到B的方式提供独一无二的服务。
‘伍’ 大数据存储技术都有哪些
1. 数据采集:在大数据的生命周期中,数据采集是第一个环节。按照MapRece应用系统的分类,大数据采集主要来自四个来源:管理信息系统、web信息系统、物理信息系统和科学实验系统。
2. 数据访问:大数据的存储和删除采用不同的技术路线,大致可分为三类。第一类主要面向大规模结构化数据。第二类主要面向半结构化和非结构化数据。第三类是面对结构化和非结构化的混合大数据,
3。基础设施:云存储、分布式文件存储等。数据处理:对于收集到的不同数据集,可能会有不同的结构和模式,如文件、XML树、关系表等,表现出数据的异构性。对于多个异构数据集,需要进行进一步的集成或集成处理。在对不同数据集的数据进行收集、排序、清理和转换后,生成一个新的数据集,为后续的查询和分析处理提供统一的数据视图。
5. 统计分析:假设检验、显着性检验、差异分析、相关分析、t检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测、残差分析,岭回归、logistic回归、曲线估计、因子分析、聚类分析、主成分分析等方法介绍了聚类分析、因子分析、快速聚类与聚类、判别分析、对应分析等方法,多元对应分析(最优尺度分析)、bootstrap技术等。
6. 数据挖掘:目前需要改进现有的数据挖掘和机器学习技术;开发数据网络挖掘、特殊群挖掘、图挖掘等新的数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破面向领域的大数据挖掘技术如用户兴趣分析、网络行为分析、情感语义分析等挖掘技术。
7. 模型预测:预测模型、机器学习、建模与仿真。
8. 结果:云计算、标签云、关系图等。
关于大数据存储技术都有哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
‘陆’ 微博如何使用大数据存储技术
Mongodb和Redis,Mongodb可以满足大量数据的存储,Redis是内存数据库,适合Key-Value形式的快速读写,适合做缓存,占用内存资源多,不适合存储大量数据。
微博是近几年发展得极为火热的信息发布和分享平台,可以发布微博、分享信息、评论和参与话题的讨论。为了让用户及时了解到最热门的话题、最热门的信息。
需要对微博系统中的数据进行实时处理和分析。而Storm是一个免费开源、分布式的、具有很好容错性的实时计算系统,通过Storm可以实时处理微博系统中的数据,并根据处理结果向用户进行实时热门推送。
微博大数据:
微博其实和淘宝是很类似的。一般来说,第一代架构,基本上能支撑到用户到 百万 级别,到第二代架构基本能支撑到 千万 级别都没什么问题,当业务规模到 亿级别时,需要第三代的架构。
从LAMP的架构到面向服务的架构,有几个地方是非常难的,首先不可能在第一代基础上通过简单的修修补补满足用户量快速增长的,同时线上业务又不能停,这是我们常说的在飞机上换引擎的问题。
建议在做服务化的时候,首先更多是偏向业务的梳理,同时要找准一个很好的切入点,既有架构和服务化上的提升,业务方也要有收益,比如提升性能或者降低维护成本同时升级过程要平滑,建议开始从原子化服务切入,比如基础的用户服务, 基础的短消息服务,基础的推送服务。
第二,就是可 以做无状态服 务,后面会详细讲,还有数据量大了后需要做数据Sharding,后面会将。第三代 架构 要解决的 问题,就是用户量和业务趋于稳步增加(相对爆发期的指数级增长),更多考虑技术框架的稳定性, 提升系统整体的性能,降低成本,还有对整个系统监控的完善和升级。
‘柒’ 大数据存储与应用特点及技术路线分析
大数据存储与应用特点及技术路线分析
大数据时代,数据呈爆炸式增长。从存储服务的发展趋势来看,一方面,对数据的存储量的需求越来越大;另一方面,对数据的有效管理提出了更高的要求。大数据对存储设备的容量、读写性能、可靠性、扩展性等都提出了更高的要求,需要充分考虑功能集成度、数据安全性、数据稳定性,系统可扩展性、性能及成本各方面因素。
大数据存储与应用的特点分析
“大数据”是由数量巨大、结构复杂、类型众多数据构成的数据集合,是基于云计算的数据处理与应用模式,通过数据的整合共享,交叉复用形成的智力资源和知识服务能力。其常见特点可以概括为3V:Volume、Velocity、Variety(规模大、速度快、多样性)。
大数据具有数据规模大(Volume)且增长速度快的特性,其数据规模已经从PB级别增长到EB级别,并且仍在不断地根据实际应用的需求和企业的再发展继续扩容,飞速向着ZB(ZETA-BYTE)的规模进军。以国内最大的电子商务企业淘宝为例,根据淘宝网的数据显示,至2011年底,淘宝网最高单日独立用户访问量超过1.2亿人,比2010年同期增长120%,注册用户数量超过4亿,在线商品数量达到8亿,页面浏览量达到20亿规模,淘宝网每天产生4亿条产品信息,每天活跃数据量已经超过50TB.所以大数据的存储或者处理系统不仅能够满足当前数据规模需求,更需要有很强的可扩展性以满足快速增长的需求。
(1)大数据的存储及处理不仅在于规模之大,更加要求其传输及处理的响应速度快(Velocity)。
相对于以往较小规模的数据处理,在数据中心处理大规模数据时,需要服务集群有很高的吞吐量才能够让巨量的数据在应用开发人员“可接受”的时间内完成任务。这不仅是对于各种应用层面的计算性能要求,更加是对大数据存储管理系统的读写吞吐量的要求。例如个人用户在网站选购自己感兴趣的货物,网站则根据用户的购买或者浏览网页行为实时进行相关广告的推荐,这需要应用的实时反馈;又例如电子商务网站的数据分析师根据购物者在当季搜索较为热门的关键词,为商家提供推荐的货物关键字,面对每日上亿的访问记录要求机器学习算法在几天内给出较为准确的推荐,否则就丢失了其失效性;更或者是出租车行驶在城市的道路上,通过GPS反馈的信息及监控设备实时路况信息,大数据处理系统需要不断地给出较为便捷路径的选择。这些都要求大数据的应用层可以最快的速度,最高的带宽从存储介质中获得相关海量的数据。另外一方面,海量数据存储管理系统与传统的数据库管理系统,或者基于磁带的备份系统之间也在发生数据交换,虽然这种交换实时性不高可以离线完成,但是由于数据规模的庞大,较低的数据传输带宽也会降低数据传输的效率,而造成数据迁移瓶颈。因此大数据的存储与处理的速度或是带宽是其性能上的重要指标。
(2)大数据由于其来源的不同,具有数据多样性的特点。
所谓多样性,一是指数据结构化程度,二是指存储格式,三是存储介质多样性。对于传统的数据库,其存储的数据都是结构化数据,格式规整,相反大数据来源于日志、历史数据、用户行为记录等等,有的是结构化数据,而更多的是半结构化或者非结构化数据,这也正是传统数据库存储技术无法适应大数据存储的重要原因之一。所谓存储格式,也正是由于其数据来源不同,应用算法繁多,数据结构化程度不同,其格式也多种多样。例如有的是以文本文件格式存储,有的则是网页文件,有的是一些被序列化后的比特流文件等等。所谓存储介质多样性是指硬件的兼容,大数据应用需要满足不同的响应速度需求,因此其数据管理提倡分层管理机制,例如较为实时或者流数据的响应可以直接从内存或者Flash(SSD)中存取,而离线的批处理可以建立在带有多块磁盘的存储服务器上,有的可以存放在传统的SAN或者NAS网络存储设备上,而备份数据甚至可以存放在磁带机上。因而大数据的存储或者处理系统必须对多种数据及软硬件平台有较好的兼容性来适应各种应用算法或者数据提取转换与加载(ETL)。
大数据存储技术路线最典型的共有三种:
第一种是采用MPP架构的新型数据库集群,重点面向行业大数据,采用Shared Nothing架构,通过列存储、粗粒度索引等多项大数据处理技术,再结合MPP架构高效的分布式计算模式,完成对分析类应用的支撑,运行环境多为低成本 PC Server,具有高性能和高扩展性的特点,在企业分析类应用领域获得极其广泛的应用。
这类MPP产品可以有效支撑PB级别的结构化数据分析,这是传统数据库技术无法胜任的。对于企业新一代的数据仓库和结构化数据分析,目前最佳选择是MPP数据库。
第二种是基于Hadoop的技术扩展和封装,围绕Hadoop衍生出相关的大数据技术,应对传统关系型数据库较难处理的数据和场景,例如针对非结构化数据的存储和计算等,充分利用Hadoop开源的优势,伴随相关技术的不断进步,其应用场景也将逐步扩大,目前最为典型的应用场景就是通过扩展和封装 Hadoop来实现对互联网大数据存储、分析的支撑。这里面有几十种NoSQL技术,也在进一步的细分。对于非结构、半结构化数据处理、复杂的ETL流程、复杂的数据挖掘和计算模型,Hadoop平台更擅长。
第三种是大数据一体机,这是一种专为大数据的分析处理而设计的软、硬件结合的产品,由一组集成的服务器、存储设备、操作系统、数据库管理系统以及为数据查询、处理、分析用途而特别预先安装及优化的软件组成,高性能大数据一体机具有良好的稳定性和纵向扩展性。
以上是小编为大家分享的关于大数据存储与应用特点及技术路线分析的相关内容,更多信息可以关注环球青藤分享更多干货
‘捌’ 大数据技术包括哪些
大数据技术,就是从各种类型的数据中快速获得有价值信息的技术。大数据领域已经涌现出了大量新的技术,它们成为大数据采集、存储、处理和呈现的有力武器。
大数据处理关键技术一般包括:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。
一、大数据采集技术
数据是指通过RFID射频数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得的各种类型的结构化、半结构化(或称之为弱结构化)及非结构化的海量数据,是大数据知识服务模型的根本。重点要突破分布式高速高可靠数据爬取或采集、高速数据全映像等大数据收集技术;突破高速数据解析、转换与装载等大数据整合技术;设计质量评估模型,开发数据质量技术。
互联网是个神奇的大网,大数据开发和软件定制也是一种模式,这里提供最详细的报价,如果你真的想做,可以来这里,这个手机的开始数字是一八七中间的是三儿
零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。
大数据采集一般分为大数据智能感知层:主要包括数据传感体系、网络通信体系、传感适配体系、智能识别体系及软硬件资源接入系统,实现对结构化、半结构化、非结构化的海量数据的智能化识别、定位、跟踪、接入、传输、信号转换、监控、初步处理和管理等。必须着重攻克针对大数据源的智能识别、感知、适配、传输、接入等技术。基础支撑层:提供大数据服务平台所需的虚拟服务器,结构化、半结构化及非结构化数据的数据库及物联网络资源等基础支撑环境。重点攻克分布式虚拟存储技术,大数据获取、存储、组织、分析和决策操作的可视化接口技术,大数据的网络传输与压缩技术,大数据隐私保护技术等。
二、大数据预处理技术
主要完成对已接收数据的辨析、抽取、清洗等操作。1)抽取:因获取的数据可能具有多种结构和类型,数据抽取过程可以帮助我们将这些复杂的数据转化为单一的或者便于处理的构型,以达到快速分析处理的目的。2)清洗:对于大数据,并不全是有价值的,有些数据并不是我们所关心的内容,而另一些数据则是完全错误的干扰项,因此要对数据通过过滤“去噪”从而提取出有效数据。
三、大数据存储及管理技术
大数据存储与管理要用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。重点解决复杂结构化、半结构化和非结构化大数据管理与处理技术。主要解决大数据的可存储、可表示、可处理、可靠性及有效传输等几个关键问题。开发可靠的分布式文件系统(DFS)、能效优化的存储、计算融入存储、大数据的去冗余及高效低成本的大数据存储技术;突破分布式非关系型大数据管理与处理技术,异构数据的数据融合技术,数据组织技术,研究大数据建模技术;突破大数据索引技术;突破大数据移动、备份、复制等技术;开发大数据可视化技术。
开发新型数据库技术,数据库分为关系型数据库、非关系型数据库以及数据库缓存系统。其中,非关系型数据库主要指的是NoSQL数据库,分为:键值数据库、列存数据库、图存数据库以及文档数据库等类型。关系型数据库包含了传统关系数据库系统以及NewSQL数据库。
开发大数据安全技术。改进数据销毁、透明加解密、分布式访问控制、数据审计等技术;突破隐私保护和推理控制、数据真伪识别和取证、数据持有完整性验证等技术。
‘玖’ 大数据 存储技术必须跟上
大数据:存储技术必须跟上
“大数据” 通常指的是那些数量巨大、难于收集、处理、分析的数据集,亦指那些在传统基础设施中长期保存的数据。这里的“大”有几层含义,它可以形容组织的大小,而更重要的是,它界定了企业中IT基础设施的规模。业内对大数据应用寄予了无限的期望 商业信息积累的越多价值也越大 只不过我们需要一个方法把这些价值挖掘出来。
也许人们对大数据的印象主要从存储容量的廉价性而来,但实际上,企业每天都在创造大量的数据,而且越来越多,而人们正在努力的从浩如烟海的数据中寻觅有价值的商业情报。另一方面,用户还会保存那些已经分析过的数据,因为这些旧数据可以与未来收集的新数据进行对照,依然有潜在的利用可能。
为什么要大数据?为什么是现在?
与以往相比,我们除了有能力存储更多的数据量之外,还要面对更多的数据类型。这些数据的来源包括网上交易、网络社交活动、自动传感器、移动设备以及科学仪器等等。除了那些固定的数据生产源,各种交易行为还可能加快数据的积累速度。比如说,社交类多媒体数据的爆炸性增长就源于新的网上交易和记录行为。数据永远都在增长之中,但是,只有存储海量数据的能力是不够的,因为这并不能保证我们能够成功地从中搜寻出商业价值。
数据是重要的生产要素
信息时代,数据俨然已成为一种重要的生产要素,如同资本、劳动力和原材料等其他要素一样,而且作为一种普遍需求,它也不再局限于某些特殊行业的应用。各行各业的公司都在收集并利用大量的数据分析结果,尽可能的降低成本,提高产品质量、提高生产效率以及创造新的产品。例如,通过分析直接从产品测试现场收集的数据,能够帮助企业改进设计。此外,一家公司还可以通过深入分析客户行为,对比大量的市场数据,从而超越他的竞争对手。
存储技术必须跟上
随着大数据应用的爆发性增长,它已经衍生出了自己独特的架构,而且也直接推动了存储、网络以及计算技术的发展。毕竟处理大数据这种特殊的需求是一个新的挑战。硬件的发展最终还是由软件需求推动的,就这个例子来说,我们很明显的看到大数据分析应用需求正在影响着数据存储基础设施的发展。
从另一方面看,这一变化对存储厂商和其他IT基础设施厂商未尝不是一个机会。随着结构化数据和非结构化数据量的持续增长,以及分析数据来源的多样化,此前存储系统的设计已经无法满足大数据应用的需要。存储厂商已经意识到这一点,他们开始修改基于块和文件的存储系统的架构设计以适应这些新的要求。在这里,我们会讨论哪些与大数据存储基础设施相关的属性,看看它们如何迎接大数据的挑战。
容量问题
这里所说的“大容量”通常可达到PB级的数据规模,因此,海量数据存储系统也一定要有相应等级的扩展能力。与此同时,存储系统的扩展一定要简便,可以通过增加模块或磁盘柜来增加容量,甚至不需要停机。基于这样的需求,客户现在越来越青睐Scale-out架构的存储。Scale-out集群结构的特点是每个节点除了具有一定的存储容量之外,内部还具备数据处理能力以及互联设备,与传统存储系统的烟囱式架构完全不同,Scale-out架构可以实现无缝平滑的扩展,避免存储孤岛。
“大数据”应用除了数据规模巨大之外,还意味着拥有庞大的文件数量。因此如何管理文件系统层累积的元数据是一个难题,处理不当的话会影响到系统的扩展能力和性能,而传统的NAS系统就存在这一瓶颈。所幸的是,基于对象的存储架构就不存在这个问题,它可以在一个系统中管理十亿级别的文件数量,而且还不会像传统存储一样遭遇元数据管理的困扰。基于对象的存储系统还具有广域扩展能力,可以在多个不同的地点部署并组成一个跨区域的大型存储基础架构。[page] 延迟问题
“大数据”应用还存在实时性的问题。特别是涉及到与网上交易或者金融类相关的应用。举个例子来说,网络成衣销售行业的在线广告推广服务需要实时的对客户的浏览记录进行分析,并准确的进行广告投放。这就要求存储系统在必须能够支持上述特性同时保持较高的响应速度,因为响应延迟的结果是系统会推送“过期”的广告内容给客户。这种场景下,Scale-out架构的存储系统就可以发挥出优势,因为它的每一个节点都具有处理和互联组件,在增加容量的同时处理能力也可以同步增长。而基于对象的存储系统则能够支持并发的数据流,从而进一步提高数据吞吐量。
有很多“大数据”应用环境需要较高的IOPS性能,比如HPC高性能计算。此外,服务器虚拟化的普及也导致了对高IOPS的需求,正如它改变了传统IT环境一样。为了迎接这些挑战,各种模式的固态存储设备应运而生,小到简单的在服务器内部做高速缓存,大到全固态介质的可扩展存储系统等等都在蓬勃发展。
并发访问 一旦企业认识到大数据分析应用的潜在价值,他们就会将更多的数据集纳入系统进行比较,同时让更多的人分享并使用这些数据。为了创造更多的商业价值,企业往往会综合分析那些来自不同平台下的多种数据对象。包括全局文件系统在内的存储基础设施就能够帮助用户解决数据访问的问题,全局文件系统允许多个主机上的多个用户并发访问文件数据,而这些数据则可能存储在多个地点的多种不同类型的存储设备上。
安全问题
某些特殊行业的应用,比如金融数据、医疗信息以及政府情报等都有自己的安全标准和保密性需求。虽然对于IT管理者来说这些并没有什么不同,而且都是必须遵从的,但是,大数据分析往往需要多类数据相互参考,而在过去并不会有这种数据混合访问的情况,因此大数据应用也催生出一些新的、需要考虑的安全性问题。
成本问题
“大”,也可能意味着代价不菲。而对于那些正在使用大数据环境的企业来说,成本控制是关键的问题。想控制成本,就意味着我们要让每一台设备都实现更高的“效率”,同时还要减少那些昂贵的部件。目前,像重复数据删除等技术已经进入到主存储市场,而且现在还可以处理更多的数据类型,这都可以为大数据存储应用带来更多的价值,提升存储效率。在数据量不断增长的环境中,通过减少后端存储的消耗,哪怕只是降低几个百分点,都能够获得明显的投资回报。此外,自动精简配置、快照和克隆技术的使用也可以提升存储的效率。[page] 很多大数据存储系统都包括归档组件,尤其对那些需要分析历史数据或需要长期保存数据的机构来说,归档设备必不可少。从单位容量存储成本的角度看,磁带仍然是最经济的存储介质,事实上,在许多企业中,使用支持TB级大容量磁带的归档系统仍然是事实上的标准和惯例。
对成本控制影响最大的因素是那些商业化的硬件设备。因此,很多初次进入这一领域的用户以及那些应用规模最大的用户都会定制他们自己的“硬件平台”而不是用现成的商业产品,这一举措可以用来平衡他们在业务扩展过程中的成本控制战略。为了适应这一需求,现在越来越多的存储产品都提供纯软件的形式,可以直接安装在用户已有的、通用的或者现成的硬件设备上。此外,很多存储软件公司还在销售以软件产品为核心的软硬一体化装置,或者与硬件厂商结盟,推出合作型产品。
数据的积累
许多大数据应用都会涉及到法规遵从问题,这些法规通常要求数据要保存几年或者几十年。比如医疗信息通常是为了保证患者的生命安全,而财务信息通常要保存7年。而有些使用大数据存储的用户却希望数据能够保存更长的时间,因为任何数据都是历史记录的一部分,而且数据的分析大都是基于时间段进行的。要实现长期的数据保存,就要求存储厂商开发出能够持续进行数据一致性检测的功能以及其他保证长期高可用的特性。同时还要实现数据直接在原位更新的功能需求。
灵活性
大数据存储系统的基础设施规模通常都很大,因此必须经过仔细设计,才能保证存储系统的灵活性,使其能够随着应用分析软件一起扩容及扩展。在大数据存储环境中,已经没有必要再做数据迁移了,因为数据会同时保存在多个部署站点。一个大型的数据存储基础设施一旦开始投入使用,就很难再调整了,因此它必须能够适应各种不同的应用类型和数据场景。
应用感知
最早一批使用大数据的用户已经开发出了一些针对应用的定制的基础设施,比如针对政府项目开发的系统,还有大型互联网服务商创造的专用服务器等。在主流存储系统领域,应用感知技术的使用越来越普遍,它也是改善系统效率和性能的重要手段,所以,应用感知技术也应该用在大数据存储环境里。
小用户怎么办?
依赖大数据的不仅仅是那些特殊的大型用户群体,作为一种商业需求,小型企业未来也一定会应用到大数据。我们看到,有些存储厂商已经在开发一些小型的“大数据”存储系统,主要吸引那些对成本比较敏感的用户。