常用铁电存储器
‘壹’ 铁电存储器的读写操作
FRAM保存数据不是通过电容上的电荷,而是由存储单元电容中铁电晶体的中心原子位置进行记录。直接对中心原子的位置进行检测是不能实现的,实际的读操作过程是:在存储单元电容上施加一已知电场(即对电容充电),如果原来晶体的中心原子的位置与所施加的电场方向使中心原子要达到的位置相同,则中心原子不会移动;若相反,则中心原子将越过晶体中间层的高能阶到达另一位置,则在充电波形上就会出现一个尖峰,即产生原子移动的比没有产生移动的多了一个尖峰,把这个充电波形同参考位(确定且已知)的充电波形进行比较,便可以判断检测的存储单元中的内容是“1”或“0”。
无论是2T2C还是1T1C的FRAM,对存储单元进行读操作时,数据位状态可能改变而参考位则不会改变(这是因为读操作施加的电场方向与原参考位中原子的位置相同)。由于读操作可能导致存储单元状态的改变,需要电路自动恢复其内容,所以每个读操作后面还伴随一个"预充"(precharge)过程来对数据位恢复,而参考位则不用恢复。晶体原子状态的切换时间小于1ns,读操作的时间小于70ns,加上"预充"时间60ns,一个完整的读操作时间约为130ns。
写操作和读操作十分类似,只要施加所要方向的电场改变铁电晶体的状态就可以了,而无需进行恢复。但是写操作仍要保留一个"预充"时间,所以总的时间与读操作相同。FRAM的写操作与其它非易失性存储器的写操作相比,速度要快得多,而且功耗小。
‘贰’ 铁电存储器有什么型号,有什么容量的,有没有现成的驱动,什么封装
铁电芯片的型号多数以FM24xxxx,FM25xxxx,FM3xxxx为主,容量:串口最小的4K,最大的512K,并口最小的8K,最大的2M。只是单纯的存储,无驱动部分,串口多为SOP-8封装,并口多为贴片,管脚数不一。有任何问题可发邮件到我的Q邮箱 [email protected]。
‘叁’ 几种新型非易失性存储器
关键词: 非易失性存储器;FeRAM;MRAM;OUM引言更高密度、更大带宽、更低功耗、更短延迟时问、更低成本和更高可靠性是存储器设计和制造者追求的永恒目标。根据这一目标,人们研究各种存储技术,以满足应用的需求。本文对目前几种比较有竞争力和发展潜力的新型非易失性存储器做了一个简单的介绍。
图1 MTJ元件结构示意图铁电存储器(FeRAM)
铁电存储器是一种在断电时不会丢失内容的非易失存储器,具有高速、高密度、低功耗和抗辐射等优点。
当前应用于存储器的铁电材料主要有钙钛矿结构系列,包括PbZr1-xTixO3,SrBi2Ti2O9和Bi4-xLaxTi3O12等。铁电存储器的存储原理是基于铁电材料的高介电常数和铁电极化特性,按工作模式可以分为破坏性读出(DRO)和非破坏性读出(NDRO)。DRO模式是利用铁电薄膜的电容效应,以铁电薄膜电容取代常规的存储电荷的电容,利用铁电薄膜的极化反转来实现数据的写入与读取。铁电随机存取存储器(FeRAM)就是基于DRO工作模式。这种破坏性的读出后需重新写入数据,所以FeRAM在信息读取过程中伴随着大量的擦除/重写的操作。随着不断地极化反转,此类FeRAM会发生疲劳失效等可靠性问题。目前,市场上的铁电存储器全部都是采用这种工作模式。
‘肆’ 什么是铁电存储器
存储器分为易失性和非易失性,如DRAM,SRAM,ROM,FLASH,E2PROM,等
铁电是属于非易失性的,可上百万次读写的存储,存储的原理类似于DRAM,由一个NMOS管,和一个CAP组成,可以参考一本COMS数字集成电路(第二版),那上面讲的很详细,
在芯片里面就是有行译码,列译码,读出写入缓冲器,位读出放大器组成。它的的读出写入时序很简单,只要按照加电压的顺序来就可以,要预充电之类的。
应用于简单存储,类似于EEPROM,应该了解这个吧
‘伍’ 常见的非易失性存储器有哪几种
常见的非易失性存储器有以下几种:
一、可编程只读内存:PROM(Programmable read-only memory)
其内部有行列式的镕丝,可依用户(厂商)的需要,利用电流将其烧断,以写入所需的数据及程序,镕丝一经烧断便无法再恢复,亦即数据无法再更改。
二、电可擦可编程只读内存:EEPROM(Electrically erasable programmable read only memory)
电子抹除式可复写只读存储器(Electrically Erasable Programmable Read Only Memory,EEPROM)之运作原理类似EPROM,但是抹除的方式是使用高电场来完成,因此不需要透明窗。
三、可擦可编程只读内存:EPROM(Erasable programmable read only memory)
可利用高电压将数据编程写入,但抹除时需将线路曝光于紫外线下一段时间,数据始可被清空,再供重复使用。因此,在封装外壳上会预留一个石英玻璃所制的透明窗以便进行紫外线曝光。
四、电可改写只读内存:EAROM(Electrically alterable read only memory)
内部所用的芯片与写入原理同EPROM,但是为了节省成本,封装上不设置透明窗,因此编程写入之后就不能再抹除改写。
五、闪存:Flash memory
是一种电子式可清除程序化只读存储器的形式,允许在操作中被多次擦或写的存储器。这种科技主要用于一般性数据存储,以及在电脑与其他数字产品间交换传输数据,如储存卡与U盘。闪存是一种特殊的、以宏块抹写的EEPROM。早期的闪存进行一次抹除,就会清除掉整颗芯片上的数据。
‘陆’ 铁电存储器的原理
FRAM利用铁电晶体的铁电效应实现数据存储,铁电晶体的结构如图1所示。铁电效应是指在铁电晶体上施加一定的电场时,晶体中心原子在电场的作用下运动,并达到一种稳定状态;当电场从晶体移走后,中心原子会保持在原来的位置。这是由于晶体的中间层是一个高能阶,中心原子在没有获得外部能量时不能越过高能阶到达另一稳定位置,因此FRAM保持数据不需要电压,也不需要像DRAM一样周期性刷新。由于铁电效应是铁电晶体所固有的一种偏振极化特性,与电磁作用无关,所以FRAM存储器的内容不会受到外界条件诸如磁场因素的影响,能够同普通ROM存储器一样使用,具有非易失性的存储特性。
FRAM的特点是速度快,能够像RAM一样操作,读写功耗极低,不存在如E2PROM的最大写入次数的问题。但受铁电晶体特性制约,FRAM仍有最大访问(读)次数的限制。
‘柒’ 铁电存储器FRAM的FRAM优势
FRAM有三种不同的特性使其优于浮栅技术器件:
1. 快速写入
2. 高耐久性
3. 低功耗
以下列举了FRAM在一些行业应用领域中与其他存储器相比较的主要优势:
频繁掉电环境
任何非易失性存储器可以保留配置。可是,配置更改或电源失效情况随时可能发生,因此,更高写入耐性的FRAM允许无任何限制的变更记录。任何时间系统状态改变,都将写入新的状态。这样可以在电源关闭可用的时间很短或立即失效时状态被写入存储器。
高噪声环境
在嘈杂的环境下向EEPROM写数据是很困难的。在剧烈的噪音或功率波动情况下,EEPROM的写入时间过长会出现漏洞(以毫秒衡量),在此期间写入可能被中断。错误的概率跟窗口的大小成正比。FRAM的写入执行窗口少于200ns。
RFID系统
在非接触式存储器领域里,FRAM提供一个理想的解决方案。低功耗访问在RFID系统中至关重要,因为,能源消耗是以距离成指数下降的。想要以最小的能耗读写标签数据就必须保持标签有足够近的距离。通过对射频发射机和接收机改进写入距离,降低运动的灵敏性(区域内的时间)以及降低射频(RF)功率需求,使需要写入的应用(i.e.借记卡,在生产工序中使用的标签)获得优势。
诊断和维护系统
在一个复杂的系统里,记录系统失效时的操作历史和系统状态是非常宝贵的。如果没有这些数据,能够准确的解决或执行需求指令是很困难的。由于FRAM具备高耐久性的特点,可以生成一个理想的系统日志。从计算机工作站到工业过程控制不同的系统,都能从FRAM中获益。
‘捌’ 运行内存6g和8g的区别
1、性能不同。
8G的运行内存能够存储的内容和用于交换的内存更加的充足,运行的速度比6G的内存要快,所以说8G的运行内存比6G的运行内存性能更优越。
2、数据的传输速度。
8G的运行内存比6G的内存多出了2G的内存,用于物理页置换的内存更多,有了富余的存储空间,调入内存的数据访问的速度比在物理存储上的快,所以数据的传输速度更快。
3、内存的利用率。
当运行的程序越来越多时,6G内存的利用率会增加,导致运行的速度变慢,8G的运行内存相较于6G运行内存大额利用率增大。
(8)常用铁电存储器扩展阅读:
通常采用随机存储器(RAM)来作为运行内存,是电脑内部最重要的的存储器,用来加载各式各样的程序与资料以供CPU(中央处理器)直接运行与运用。
由于DRAM的性价比很高,且扩展性也不错,是现今一般电脑运行内存的最主要部分。
运行内存是外存与CPU进行沟通的桥梁,计算机中所有程序的运行都在内存中进行。
运行内存主要有两种随机存储器和只读存储器构成,其中的只读存储器放计算机的基本程序和数据,如BIOSROM。其物理外形一般是双列直插式(DIP)的集成块。随机存储器(RAM)才是真正的用户运行时交换的内存。
参考资料来源:网络-内存
‘玖’ 铁电存储器的存储结构
FRAM的存储单元主要由电容和场效应管构成,但这个电容不是一般的电容,在它的两个电极板中间沉淀了一层晶态的铁电晶体薄膜。前期的FRAM每个存储单元使用两个场效应管和两个电容,称为“双管双容”(2T2C),每个存储单元包括数据位和各自的参考位,简化的2T2C存储单元结构如图2(a)所示。2001年Ramtron设计开发了更先进的"单管单容"(1T1C)存储单元。1T1C的FRAM所有数据位使用同一个参考位,而不是对于每一数据位使用各自独立的参考位。1T1C的FRAM产品成本更低,而且容量更大。简化的1T1C存储单元结构(未画出公共参考位)如图2(b)所示。