当前位置:首页 » 存储配置 » 玻尔存储器

玻尔存储器

发布时间: 2022-07-28 03:44:59

① 6.20世纪的新四大发明是分别是什么

原子能
��������1911年,物理学家发现电子的中心是带正电的原子核.1913年,玻尔提出电子在不同轨道上绕原子核运动.1919年,英国物理学家卢瑟福用带正电的.粒子轰击氮和氢,发现了质.1932年,卢瑟福的学生和助手乍得威克发现中子,进而提出原子核由质子和中子组成.1938年,物理学家发现重原子核裂变.
��������核能的威力首先被用于战争.1942年6月,美国政#府启动了代号为"曼哈顿工程"的原#子武器制造计划.1945年7月16日,世界上第一颗原子#弹在美国新墨西哥州的荒漠上试爆成功.此后,前苏联于 1949年、英国于 1952年、法国于1960年、中国于1964年 10月分别研制出并成功地爆炸了原子#弹.
��������和平利用原子能,成为整个世界的呼声.1942年,世界上第一座裂变反应堆在美国建成;1954年,莫斯科附近的奥布宁斯克原子能发电站投入运行,标志着人类和平利用原子能时代的到来.1991年,中国的第一座核电站秦山核电站起用,继之大亚湾核电站投产.
半导体
��������1947年,美国电报电话公司(AT&T)贝尔实验室的三位科学家巴丁、布莱顿和肖克利在研究半导体材料锗和硅的物理性质时,意外地发现了锗晶体具有放大作,经过反复研究,他们用半导体材料制成了放大倍数达100量级的放大器,这便是世界上第一个固体放大器晶体三极管.
��������晶体管的出现,迅速替代电子管占领了世界电子领域.随后,晶体管电路不断向微型化方向发展.1957年,美国科学家达默提出"将电子设备制作在一个没有引线的固体半导体板块中"的大胆技术思想,这就是半导体集成电路的思想.1958年,美国德克萨斯州仪器公司的工程师基尔比在一块半导体硅晶片上电阻、电容等分立元件放入其中,制成第一批集成电路.1959年,美国仙童公司的诺伊斯用一种平面工艺制成半导体集成电路,"点石成金",集成电路很快成了比黄金还诱人的产品1971年 11月,英特尔(Intel)公司的霍夫将计算机的线路加以改进,把中央处理器的全部功能集成在一块芯片上,另外再加上存储器,制成世界上第一个微处理器.
��������随着硅片上元件集成度的增加,集成电路的发展经历了小规模集成电路、中规模集成电路、大规模集成电路和超大规模集成电路(VLSI)阶段.1978年,研制成的超大规模集成电路,集成度达10万以上,电子技术进入微电子时代.80年代末,芯片上集成的元件数突破1000万的大关.
计算机
��������1946年,世界上第一台电子数字积分计算机埃尼克(ENIAC)在美国宾夕法尼亚大学莫尔学院诞生(图1一2).ENIAC犹如一个庞然大物,重达30吨、占地170平方米、内装18000个电子管,但它运算速度却比当时最好的机电式计算机快1000倍.ENMC的问世,犹如石破天惊,开辟了信息新时代.
��������1949年,第一台存储程序计算机EDSAC在剑桥大学投入运行,ENIAC和EDSAC均属于第一代计算机.
��������1954年,美国贝尔实验室制成第一台晶体管计算机TRADIC,使计算机体积大大缩小.1958年,美国IBM公司制成全部使用晶体管的计算机,第二代计算机诞生了.第二代计算机的运算速度比第一代计算机提高了近百倍.
��������60年代中期,随着集成电路的问世,第三代计算机诞生,其标志产品是1964年由美国IBM公司生产的IBM360系列机.
��������第四代计算机以大规模集成电路作为逻辑元件和存储器,使计算机向着微型化和巨型化方向发展.计算机的微处理器从早期的8086,发展到80286. 80386. 80486.奔腾(Pentium)、奔腾二代(PentiumⅡ)和奔腾三代(PentiuⅢ).
��������当前,第五代计算机智能计算机的研究正渐入佳境.智能计算机的主要特征是具备人工智能,能像人一样思维,并且运算速度极快,它不仅具有一种能够支持高度并行和推理的硬件系统,还具有能够处理知识信息的软件系统. 世纪之交,计算机科技的前沿领域包括:神经网络计算机.超导计算机、生物计算机和光计算机等.
激光器
��������1958年,贝尔实验室的汤斯和肖洛发表了关于激光器的经典论文,奠定了激光发展的基础.1960年,美国人梅曼发明了世界上第一台红宝石激光器.1965年,第一台可产生大功率激光的器件二氧化碳激光器诞生.1967年,第一台X射线激光器研制成功.1997年,美国麻省理工学院的研究人员研制出第一台原子激光器.
��������激光器的出现,大大改变了人类的生产与生活:
��������在通信技术领域,光通信依赖的基础器件便是激光器,用于存储信息的CD-ROM光盘,可存储数百兆比特的信息;越洋光通信已进入1万亿比特/8的开发阶段;光计算机的研究也正日益深入.
��������在能源领域,激光可用于工业、军事上的能量源,大功率激光器被用于受控核聚变研究.
��������在医学领域,激光治疗已在外科、内科、妇科、牙科、五官科、肿瘤科得到应用,可治疗数百种疾病;激光针灸可以无痛,无菌地穿透皮肤,达到治疗的目的.
��������此外,激光在军事、生物工程等领域也崭露头角,应用范围日益拓宽.由此,激光被人们誉为20世纪的"世纪之光".

② 量子计算机工作原理

量子计算机的工作原理:

量子计算机是一种基于量子理论而工作的计算机。追根溯源,是对可逆机的不断探索促进了量子计算机的发展。量子计算机装置遵循量子计算的基本理论,处理和计算的是量子信息,运行的是量子算法。1981年,美国阿拉贡国家实验室的Paul Benioff最早提出了量子计算的基本理论。

1、量子比特

经典计算机信息的基本单元是比特,比特是一种有两个状态的物理系统,用0与1表示。在量子计算机中,基本信息单位是量子比特(qubit),用两个量子态│0>和│1>代替经典比特状态0和1。量子比特相较于比特来说,有着独一无二的存在特点,它以两个逻辑态的叠加态的形式存在,这表示的是两个状态是0和1的相应量子态叠加。

2、态叠加原理

现代量子计算机模型的核心技术便是态叠加原理,属于量子力学的一个基本原理。一个体系中,每一种可能的运动方式就被称作态。在微观体系中,量子的运动状态无法确定,呈现统计性,与宏观体系确定的运动状态相反。量子态就是微观体系的态。

3、量子纠缠

量子纠缠:当两个粒子互相纠缠时,一个粒子的行为会影响另一个粒子的状态,此现象与距离无关,理论上即使相隔足够远,量子纠缠现象依旧能被检测到。因此,当两粒子中的一个粒子状态发生变化,即此粒子被操作时,另一个粒子的状态也会相应的随之改变。

4、量子并行原理

量子并行计算是量子计算机能够超越经典计算机的最引人注目的先进技术。量子计算机以指数形式储存数字,通过将量子位增至300个量子位就能储存比宇宙中所有原子还多的数字,并能同时进行运算。函数计算不通过经典循环方法,可直接通过幺正变换得到,大大缩短工作损耗能量,真正实现可逆计算。

(2)玻尔存储器扩展阅读:

量子计算机的难点:

1、量子消相干

量子计算的相干性是量子并行运算的精髓,但在实际情况下,量子比特会受到外界环境的作用与影响,从而产生量子纠缠。量子相干性极易受到量子纠缠的干扰,导致量子相干性降低,也就是所谓的消相干现象。实际的应用中,无法避免量子比特与外界的接触,量子的相干性也就不易得到保持。所以,量子消相干问题是目前需要解决的重要问题之一,它的解决将在一定程度上影响着量子计算机未来的发展道路。

2、量子纠缠

量子作为最小的颗粒,遵守量子纠缠规律。即使在空间上,量子之间可能是分开的,但是量子间的相互影响是无法避免的。介于此,量子纠缠技术被联想到量子信息的传递领域。在一定意义上,利用量子之间飞快的交流速度从而实现信息的传递。

3、量子并行计算

量子计算机独特的并行计算是经典计算机无法比拟的重要的一点。同样是一个n位的存储器,经典计算机存储的结果只有一个。但是量子计算机存储的结果可达2n。其并行计算不仅在存储容量上远超越了后者,而且读取速度快,多个读取和计算可同时进行。正是量子并行计算的重要性,它的有效应用也成为了量子计算机发展的关键之一。

4、量子不可克隆

量子不可克隆性,是指任何未知的量子态不存在复制的过程,既然要保持量子态不变,则不存在量子的测量,也就无法实现复制。对于量子计算机来说,无法实现经典计算机的纠错应用以及复制功能。

③ 求高中物理科学家的贡献总结。

1、牛顿


艾萨克·牛顿是英格兰物理学家、数学家、天文学家、自然哲学家。主要贡献是他在1687年发表的论文《自然哲学的数学原理》里的万有引力和三大运动定律。





2、爱因斯坦


爱因斯坦是美籍德裔犹太人,举世闻名的物理学家,现代物理学的开创者和奠基人,相对论、“质能关系”、激光的提出者,“决定论量子力学诠释”的捍卫者。



3、麦克斯韦


麦克斯韦(James Clerk Maxwell,1831.06.13-1879.11.5)——19世纪伟大的英国物理学家、数学家。麦克斯韦主要从事电磁理论、分子物理学、统计物理学、光学、力学、弹性理论方面的研究,他预言了电磁波的存在,这种理论预见后来得到了充分的实验验证。




4、玻尔


尼尔斯·亨利克·戴维·玻尔是丹麦物理学家。玻尔是哥本哈根学派的创始人,哥本哈根大学科学硕士和博士,丹麦皇家科学院院士,曾获丹麦皇家科学文学院金质奖章,英国曼彻斯特大学和剑桥大学名誉博士学位,荣获1922年诺贝尔物理学奖。




5、温伯格


史蒂文·温伯格生于纽约,美国物理学家,1979年获诺贝尔物理学奖。他研究过粒子物理中的许多课题,包括量子场论的高能行为,他还发展了导出量子场论的方法,这些方法成为后来他的着作《场的量子理论》的第一章,并且着手写《引力与宇宙学》。这两本书,特别是后者,是在各自领域最有影响力的教材之一。

④ 20世纪世界四大发明是什么

原子能

�9�0�9�0�9�0�9�01911年,物理学家发现电子的中心是带正电的原子核。1913年,玻尔提出电子在不同轨道上绕原子核运动。1919年,英国物理学家卢瑟福用带正电的。粒子轰击氮和氢,发现了质。1932年,卢瑟福的学生和助手乍得威克发现中子,进而提出原子核由质子和中子组成。1938年,物理学家发现重原子核裂变。

�9�0�9�0�9�0�9�0核能的威力首先被用于战争。1942年6月,美国政#府启动了代号为"曼哈顿工程"的原#子武器制造计划。1945年7月16日,世界上第一颗原子#弹在美国新墨西哥州的荒漠上试爆成功。此后,前苏联于 1949年、英国于 1952年、法国于1960年、中国于1964年 10月分别研制出并成功地爆炸了原子#弹。

�9�0�9�0�9�0�9�0和平利用原子能,成为整个世界的呼声。1942年,世界上第一座裂变反应堆在美国建成;1954年,莫斯科附近的奥布宁斯克原子能发电站投入运行,标志着人类和平利用原子能时代的到来。1991年,中国的第一座核电站秦山核电站起用,继之大亚湾核电站投产。

半导体

�9�0�9�0�9�0�9�01947年,美国电报电话公司(AT&T)贝尔实验室的三位科学家巴丁、布莱顿和肖克利在研究半导体材料锗和硅的物理性质时,意外地发现了锗晶体具有放大作,经过反复研究,他们用半导体材料制成了放大倍数达100量级的放大器,这便是世界上第一个固体放大器晶体三极管。

�9�0�9�0�9�0�9�0晶体管的出现,迅速替代电子管占领了世界电子领域。随后,晶体管电路不断向微型化方向发展。1957年,美国科学家达默提出"将电子设备制作在一个没有引线的固体半导体板块中"的大胆技术思想,这就是半导体集成电路的思想。1958年,美国德克萨斯州仪器公司的工程师基尔比在一块半导体硅晶片上电阻、电容等分立元件放入其中,制成第一批集成电路。1959年,美国仙童公司的诺伊斯用一种平面工艺制成半导体集成电路,"点石成金",集成电路很快成了比黄金还诱人的产品1971年 11月,英特尔(Intel)公司的霍夫将计算机的线路加以改进,把中央处理器的全部功能集成在一块芯片上,另外再加上存储器,制成世界上第一个微处理器。

�9�0�9�0�9�0�9�0随着硅片上元件集成度的增加,集成电路的发展经历了小规模集成电路、中规模集成电路、大规模集成电路和超大规模集成电路(VLSI)阶段。1978年,研制成的超大规模集成电路,集成度达10万以上,电子技术进入微电子时代。80年代末,芯片上集成的元件数突破1000万的大关。

计算机

�9�0�9�0�9�0�9�01946年,世界上第一台电子数字积分计算机埃尼克(ENIAC)在美国宾夕法尼亚大学莫尔学院诞生(图1一2)。ENIAC犹如一个庞然大物,重达30吨、占地170平方米、内装18000个电子管,但它运算速度却比当时最好的机电式计算机快1000倍。ENMC的问世,犹如石破天惊,开辟了信息新时代。

�9�0�9�0�9�0�9�01949年,第一台存储程序计算机EDSAC在剑桥大学投入运行,ENIAC和EDSAC均属于第一代计算机。

�9�0�9�0�9�0�9�01954年,美国贝尔实验室制成第一台晶体管计算机TRADIC,使计算机体积大大缩小。1958年,美国IBM公司制成全部使用晶体管的计算机,第二代计算机诞生了。第二代计算机的运算速度比第一代计算机提高了近百倍。

�9�0�9�0�9�0�9�060年代中期,随着集成电路的问世,第三代计算机诞生,其标志产品是1964年由美国IBM公司生产的IBM360系列机。

�9�0�9�0�9�0�9�0第四代计算机以大规模集成电路作为逻辑元件和存储器,使计算机向着微型化和巨型化方向发展。计算机的微处理器从早期的8086,发展到80286. 80386. 80486.奔腾(Pentium)、奔腾二代(PentiumⅡ)和奔腾三代(PentiuⅢ)。

�9�0�9�0�9�0�9�0当前,第五代计算机智能计算机的研究正渐入佳境。智能计算机的主要特征是具备人工智能,能像人一样思维,并且运算速度极快,它不仅具有一种能够支持高度并行和推理的硬件系统,还具有能够处理知识信息的软件系统。 世纪之交,计算机科技的前沿领域包括:神经网络计算机。超导计算机、生物计算机和光计算机等。

激光器

�9�0�9�0�9�0�9�01958年,贝尔实验室的汤斯和肖洛发表了关于激光器的经典论文,奠定了激光发展的基础。1960年,美国人梅曼发明了世界上第一台红宝石激光器。1965年,第一台可产生大功率激光的器件二氧化碳激光器诞生。1967年,第一台X射线激光器研制成功。1997年,美国麻省理工学院的研究人员研制出第一台原子激光器。

�9�0�9�0�9�0�9�0激光器的出现,大大改变了人类的生产与生活:

�9�0�9�0�9�0�9�0在通信技术领域,光通信依赖的基础器件便是激光器,用于存储信息的CD-ROM光盘,可存储数百兆比特的信息;越洋光通信已进入1万亿比特/8的开发阶段;光计算机的研究也正日益深入。

�9�0�9�0�9�0�9�0在能源领域,激光可用于工业、军事上的能量源,大功率激光器被用于受控核聚变研究。

�9�0�9�0�9�0�9�0在医学领域,激光治疗已在外科、内科、妇科、牙科、五官科、肿瘤科得到应用,可治疗数百种疾病;激光针灸可以无痛,无菌地穿透皮肤,达到治疗的目的。

�9�0�9�0�9�0�9�0此外,激光在军事、生物工程等领域也崭露头角,应用范围日益拓宽。由此,激光被人们誉为20世纪的"世纪之光"。

⑤ 当一个杰出的老科学家说什么是可能的时候

破除迷信,勇于创新,是一个永恒的话题。在科学研究中,我们应该尊重权威并虚心向权威学习,但是决不能迷信权威,而要有挑战权威的决心和信心。

科学研究中权威也会犯错误

20世纪最伟大的科学家爱因斯坦曾竭力反对玻尔等人提出的量子力学统计解释,他也断言过“几乎没有任何迹象表明能从原子中获得能量”。核物理学奠基人之一的艾?卢瑟福也曾说过,“谁企图研究从原子转换中获得能量,那他是在干一件荒唐的事”。19世纪末担任英国皇家学会会长的洛德?开尔文是一位极富革新精神的物理学家,但晚年却宣称“X射线将会被证明是一种欺骗”,“无线电没有前途”。大发明家爱迪生曾强烈反对交流电,要求完全禁止使用。海王星的发现者西蒙?纽科姆曾断言“空中飞行是属于人类永远无法解决的问题”。

1956年6月,李政道、杨振宁在《物理评论》杂志上提出“弱相互作用下宇称不守恒”。当时遭到了不少权威的反对:1954年获诺贝尔奖的泡利愿押任何数目的钱来赌“宇称一定是守恒的”,他认为吴健雄做此实验是浪费时间,不会有结果。1952年获诺贝尔奖的布洛克则说,“宇称在弱相互作用下不守恒能得到实验证明,我愿意吃掉我的帽子”。

1970年,人们认为基本粒子都可归纳为三种夸克。丁肇中对此表示怀疑,想进行有关的实验,却遭到几乎所有国家大型实验室的反对。1972年至1974年,丁肇中等最终发现了一种全新的夸克。

着名企业家兼技术专家犯错误的例子也不少。发明磁芯存储器并开创文字处理机时代的王安,晚年跟不上开放式潮流而破产。敢于挑战IBM,于20世纪60年代建立小型计算机王国的DEC创始人奥尔森,晚年却认为“PC是不该出现的怪胎”。“巨型计算机之父”克雷晚年跟不上大规模并行计算机的潮流而破产。以太网的发明人梅特卡夫曾打赌“互联网在2000年前会出现瘫痪”。

有一句名言也许是有道理的:“当一位杰出的老科学家说什么是可能的时候,他差不多总是对的;但当他说什么是不可能的时候,他差不多总是错的。”

外国的名牌产品也并非无懈可击

20世纪80年代我在从事激光照排系统研制时遇到的最大苦恼是,国内不少人只相信国外的名牌产品,这些产品有发明第四代激光照排机的英国Monotype出版系统,发明第三代CRT照排机的德国Hell公司的Digiset出版系统和对中文出版颇有研究的日本写研出版系统。20世纪80年代初改革开放刚开始,面对洋货的冲击,国内很多人对国产系统缺乏信心。其实很多外国名牌产品具有根本的缺陷。Monotype系统对字形的描述方法十分落后,直到80年代末还用黑白段方式。1985年夏我去德国Hell公司参观时,他们正在转向激光照排,正在调试的控制器(称为LS210)与我们已完成设计并已申请专利的控制器相比,体积和元器件数量均大得多,无法与我们竞争,而当时还有人想把Hell的LS210激光照排系统引入中国大报社。80年代中期日本写研系统占领了日本80%的出版市场,海外的华文报业也大多用日本的系统。后来写研、森泽等日本公司没有跟上开放式潮流而市场份额逐渐萎缩,在中文出版市场上也很快被取代。

寻找和发现国外名牌产品不只是一种乐趣,也是创新的源泉之一。每个领域内出现新技术和新潮流的苗头时,就是实现跨越式发展和超越外国产品的大好时机。我们要坚信,在很多领域内中国人能够比外国人做得更好,通过坚持不懈的努力,我们有机会进入国外市场。

鼓励年轻人在科学研究中敢于向权威挑战

一些着名科学家发扬民主、扶持年轻人的事迹应该成为我们的榜样。1922年6月格丁根大学邀请哥本哈根学派的领袖N?玻尔去讲学。年仅20岁的格丁根大学研究生海森伯格在听讲和讨论中居然对玻尔的某些论点提出异议,并激烈地辩论。当时已获诺贝尔奖的玻尔对这位年轻人的挑战十分欢迎,诚恳地邀他在讨论结束的当天下午一起散步,继续讨论。这次长时间散步时的谈话对海森伯格的一生影响很大,后来他成了格丁根学派的代表人物。

有人问过玻尔:“你有什么办法,把那么多有才华的青年人团结在周围?”玻尔回答说:“因为我不怕在年轻人面前承认自己的不足,不怕承认自己是傻瓜。”

钱学森的导师冯·卡门倡导学术民主。在一次美国航空年会上,钱学森刚讲完自己的论文,就有一位长者提出批评,而钱学森就和那位大教授激烈争辩起来。事后,冯?卡门对钱学森说:“你知道你是在和谁争论吗?那是大权威冯?米赛斯。但是你的意见是对的,我支持你。”有一次在学术讨论中,钱学森和冯?卡门争起来,而钱学森仍坚持己见,结果冯?卡门十分生气,说了一些尖刻的话。事后冯?卡门经过思考,认定钱学森是有道理的。第二天一上班,年过花甲的冯?卡门爬了三层楼梯,到钱学森简陋的办公室内,向他的学生道歉,承认自己的错误。

邓小平同志在1978年召开的全国科学大会上说过:“世界上有的科学家,把发现和培养新的人才,看作是自己毕生科学工作中的最大成就。这种看法是很有道理的。我们国家现在一些杰出的数学家,也是在他们年轻的时候被老一辈数学家发现和帮助他们成长起来的。尽管有些新人在科学成就上超过了老师,他们老师的功绩还是不可磨灭的。

⑥ 波尔的量子论怎么回事

量子论是现代物理学的两大基石之一。量子论给我们提供了新的关于自然界的表述方法和思考方法。量子论揭示了微观物质世界的基本规律,为原子物理学、固体物理学、核物理学和粒子物理学奠定了理论基础。它能很好地解释原子结构、原子光谱的规律性、化学元素的性质、光的吸收与辐射等。

1928年狄拉克将相对论运用于量子力学,又经海森伯、泡利等人的发展,形成了量子电动力学,量子电动力学研究的是电磁场与带电粒子的相互作用。

1947年,实验发现了兰姆移位。

1948-1949年,里乍得·费因曼(Richard Phillips Feynman)、施温格(J.S.Schwinger)和朝永振一郎用重正化概念发展了量子电动力学,从而获得1965年诺贝尔物理学奖。

2、为量子论的创立及发展作出贡献的科学家

维恩(Wilhelm Wien)

瑞利(Lord Rayleigh)

普朗克(Max Karl Ernst Ludwig Planck)

狄拉克(Paul Adrien Maurice Dirac)

尼尔斯·玻尔(Niels Bohr)

路易·德布罗意(Prince Louis-victor de Broglie)

薛定谔(Erwin Schrödinger)

海森伯(Werner Karl Heisenberg)

玻恩(Max Born)

里乍得·费恩曼(Richard Phillips Feynman)

H.赫兹(Heinrich Rudolf Hertz)

密立根(Robert Andrews Millikan)

3、量子论的发展历程

量子理论的创建过程是一部壮丽的史诗:

量子论的初期:

1900年普朗克为了克服经典理论解释黑体辐射规律的困难,引入了能量子概念,为量子理论奠下了基石。

随后,爱因斯坦针对光电效应实验与经典理论的矛盾,提出了光量子假说,并在固体比热问题上成功地运用了能量子概念,为量子理论的发展打开了局面。

1913年,玻尔在卢瑟福有核模型的基础上运用量子化概念,提出玻尔的原子理论,对氢光谱作出了满意的解释,使量子论取得了初步胜利。随后,玻尔、索末菲和其他物理学家为发展量子理论花了很大力气,却遇到了严重困难。旧量子论陷入困境。

量子论的建立:

1923年,德布罗意提出了物质波假说,将波粒二象性运用于电子之类的粒子束,把量子论发展到一个新的高度。

1925年-1926年薛定谔率先沿着物质波概念成功地确立了电子的波动方程,为量子理论找到了一个基本公式,并由此创建了波动力学。

几乎与薛定谔同时,海森伯写出了以“关于运动学和力学关系的量子论的重新解释”为题的论文,创立了解决量子波动理论的矩阵方法。

1925年9月,玻恩与另一位物理学家约丹合作,将海森伯的思想发展成为系统的矩阵力学理论。不久,狄拉克改进了矩阵力学的数学形式,使其成为一个概念完整、逻辑自洽的理论体系。

1926年薛定谔发现波动力学和矩阵力学从数学上是完全等价的,由此统称为量子力学,而薛定谔的波动方程由于比海森伯的矩阵更易理解,成为量子力学的基本方程。

4、量子力学发展中的争论

量子力学虽然建立了,但关于它的物理解释却总是很抽象,大家的说法也不一致。波动方程中的所谓波究竟是什么?

玻恩认为,量子力学中的波实际上是一种几率,波函数表示的是电子在某时某地出现的几率。1927年,海森伯提出了微观领域里的不确定关系,他认为任何一个粒子的位置和动量不可能同时准确测量,要准确测量其中的一个,另一个就将是不确定的。这就是所谓的“不确定原理”。它和玻恩的波函数几率解释一起,奠定了量子力学诠释的物理基础。玻尔敏锐地意识到不确定原理正表征了经典概念的局限性,因此在此基础上提出了“互补原理”。玻尔的互补原理被人们看成是正统的哥本哈根解释,但爱因斯坦不同意不确定原理,认为自然界各种事物都应有其确定的因果关系,而量子力学是统计性的,因此是不完备的,而互补原理更是一种权宜之计。于是在爱因斯坦与玻尔之间进行了长达三四十年的争论,直到他们去世也没有作出定论。

世纪发现之微观世界中的轮盘赌----量子论

如果说光在空间的传播是相对论的关键,那么光的发射和吸收则带来了量子论的革命。我们知道物体加热时会放出辐射,科学家们想知道这是为什么。为了研究的方便,他们假设了一种本身不发光、能吸收所有照射 其上的光线的完美辐射体,称为“黑体”。研究过程中,科学家发现按麦克斯韦电磁波理论计算出的黑体光谱紫外部分的能量是无限的,显然发生了谬误,这为“紫外线灾难。”提供了依据。1900年,德国物理学家普朗克提出了物质中振动原子的新模型。他从物质的分子结构理论中借用不连续性的概念, 提出了辐射的量子论。关于量子论中的不连续性,我们可以这样理解:如温度的增加或降低,我们认为是连续的,从一度升到二度中间必须经过0.1.度0.1度之前必定有0.01度。但是量子论认为在某两个数值之间例如1度和3度之间可以没有2度,就像我们花钱买东西一样,一分钱是最小的量了,你不可能拿出0.1分钱,虽然你可以以厘为单位计算钱数。这个一分钱就是钱币的最小的量。而这个最小的量就是量子。他认为各种频率的电磁波,包括光只能以各自确定 分量的能量从振子射出,这种能量微粒称为量子,光的量子称为光量子,简称光子。根据这个模型计算出的黑体光谱与实际观测到的相一致。这揭开了物理学上崭新的一页。量子论不仅很自然地解释了灼热体辐射能量按波长分布的规律,而且以全新的方式提出了光与物质相互作用的整个问 题。量子论不仅给光学,也给整个物理学提供了新的概念,故通常把它的诞生视为近代物理学的起点。

量子论:原子核世界中的开路先锋

量子假说与物理学界几百年来信奉的“自然界无跳跃”直接矛盾,因此量子理论出现后,许多物理学家不予接受。普朗克本人也十分动摇,后悔当初的大胆举动,甚至放弃了量子论继续用能量的连续变化来解决辐射 的问题。但是,历史已经将量子论推上了物理学新纪元的开路先锋的位置,量子论的发展已是锐不可当。

第一个意识到量子概念的普遍意义并将其运用到其它问题上的是爱因斯坦。他建立了光量子理论解释光电效应中出现的新现象。光量子论的提出使光的性质的历史争论进入了一个新的阶段。自牛顿以来,光的微粒说 和波动说此起彼伏,爱因斯坦的理论重新肯定了微粒说和波动说对于描述光的行为的意义,它们均反映了光的本质的一个侧面:光有时表现出波动 性,有时表现出粒子性,但它既非经典的粒子也非经典的波,这就是光的 波粒二重性。主要由于爱因斯坦的工作,使量子论在提出之后的最初十年 里得以进一步发展。

在1911年,卢瑟福提出了原子的行星模型,即电子围绕一个位于原子中心的微小但质量很大的核,即原子核的周围运动。在此后的20年中,物理学的大量研究集中在原子的外围电子结构上。这项工作创立了微观世界 的新理论,量子物理,并为量子理论应用于宏观物体奠定了基础。但是原 子中心微小的原子核仍然是个谜。

原子核是微观世界中的重要层次,量子力学是研究微观粒子运动规律的理论,是现代物理学的理论基础之一,是探索原子核奥秘所不可缺少的工具。在原子量子理论被提出后不久,物理学家开始探讨原子中微小的质 量核--原子核。在原子中,正电原子核在静态条件下吸引负电子。但是什么使原子核本身能聚合在一起呢?原子核包含带正电质子和不带电的中 子,两者之间存在巨大的排斥力,而且质子彼此排斥(不带电的中子没有 这种排斥力)。使原子核聚合在一起,并且克服质子间排斥力的是一种新 的强大的力,它只在原子核内部起作用。原子弹的巨大能量就来自这种强 大的核力。原子核和核力性质的研究对20世纪产生了巨大的影响,放射现 象、同位素、核反应、裂变、聚变、原子能、核武器和核药物都是核物理 学的副产品。

丹麦物理学家玻尔首次将量子假设应用到原子中,并对原子光谱的不连续性作出了解释。他认为,电子只在一些特定的圆轨道上绕核运行。在 这些轨道上运行时并不发射能量,只当它从一个较高能量的轨道向一个较 低轨道跃迁时才发射辐射,反之吸收辐射。这个理论不仅在卢瑟福模型的 基础上解决了原子的稳定性问题,而且用于氢原子时与光谱分析所得的实验结果完全符合,因此引起了物理学界的震动。玻尔指导了19世纪20到年 代的物理学家理解量子理论听起来自相矛盾的基本结构,他实际上既是这 种理论的“助产师”又是护士。

玻尔的量子化原子结构明显违背古典理论,同样招致了许多科学家的不满。但它在解释光谱分布的经验规律方面意外地成功,使它获得了很高的声誉。不过玻尔的理论只能用于解决氢原子这样比较简单的情形,对于多电子的原子光谱便无法解释。旧量子论面临着危机,但不久就被突破。在这方面首先取得突破的是法国物理学家德布罗意。他在大学时专业学的 是历史,但他的哥哥是研究X射线的着名物理学家。受他的影响,德布罗意大学毕业后改学物理,与兄长一起研究X射线的波动性和粒子性的问 题。经过长期思考,德布罗意突然意识到爱因斯坦的光量子理论应该推广到一切物质粒子,特别是光子。1923年9月到10月,他连续发表了三篇论文,提出了电子也是一种波的理论,并引入了“驻波”的概念描述电子在 原子中呈非辐射的静止状态。驻波与在湖面上或线上移动的行波相对,吉 它琴弦上的振动就是一种驻波。这样就可以用波函数的形式描绘出电子的 位置。不过它给出的不是我们熟悉的确定的量,而是统计上的“分布概 率”,它很好地反映了电子在空间的分布和运行状况。德布罗意还预言电 子束在穿过小孔时也会发生衍射现象。1924年,他写出博士论文“关于量 子理论的研究”,更系统地阐述了物质波理论,爱因斯坦对此十分赞赏。 不出几年,实验物理学家真的观测到了电子的衍射现象,证实了德布罗意 的物质波的存在。

沿着物质波概念继续前进并创立了波动力学的是奥地利物理学家薛定谔。他从爱因斯坦的一篇论文中得知了德布罗意的物质波概念后立刻接受了这个观点。他提出,粒子不过是波动辐射上的泡沫。1925年,他推出了一个相对论的波动方程,但与实验结果不完全吻合。1926年,他改而处理非相对论的电子问题,得出的波动方程在实验中得到了证实。

1925年,德国青年物理学家海森伯格写出了一篇名为《关于运动学和 力学关系的量子论重新解释》的论文,创立了解决量子波动理论的矩阵方法。玻尔理论中的电子轨道、运行周期这样古典的然而是不可测量的概念 被辐射频率和强度所代替。经过海森伯格和英国一位年轻的科学家狄喇克 的共同努力,矩阵力学逐渐成为一个概念完整、逻辑自洽的理论体系。

波动力学与矩阵力学各自的支持者们一度争论不休,指责对方的理论有缺陷。到了1926年,薛定谔发现这两种理论在数学上是等价的,双方才消除了敌意。从此这两大理论合称量子力学,而薛定谔的波动方程由于更易于掌握而成为量子力学的基本方程。

充满不确定性的量子论

海森伯格不确定原则是量子论中最重要的原则之一。它指出,不可能 同时精确地测量出粒子的动量和位置,因为在测量过程中仪器会对测量过 程产生干扰,测量其动量就会改变其位置,反之亦然。量子理论跨越了牛 顿力学中的死角。在解释事物的宏观行为时,只有量子理论能处理原子和 分子现象中的细节。但是,这一新理论所产生的似是而非的矛盾说法比光 的波粒二重性还要多。牛顿力学以确定性和决定性来回答问题,量子理论 则用可能性和统计数据来回答。传统物理学精确地告诉我们火星在哪里, 而量子理论让我们就原子中电子的位置进行一场赌博。海森伯格不确定性 使人类对微观世界的认识受到了绝对的限制,并告诉我们要想丝毫不影响 结果,我们就无法进行测量。 量子力学的奠基人之一薛定谔在1935年就意识到了量子力学中不确定 性的问题,并假设了一个着名的猫思维实验:“一只猫关在一钢盒内,盒 中有下述极残忍的装置(必须保证此装置不受猫的直接干扰):在盖革计 数器中有一小块辐射物质,它非常小,或许在1小时中只有一个原子衰 变。在相同的几率下或许没有一个原子衰变。如果发生衰变,计数管便放 电并通过继电器释放一个锤,击碎一个小小的氰化物瓶。如果人们使这整 个系统自在1个小时,那么人们会说,如果在此期间没有原子衰变,这猫 就是活的。第一次原子衰变必定会毒杀了这只猫。”

常识告诉我们那只猫是非死即活的,两者必居其一。可是按照量子力 学的规则,盒内整个系统处于两种态的叠加之中,一态中有活猫,另一态 中有死猫。但是有谁在现实生活中见过一个又活又死的猫呢?猫应该知道 自己是活还是死,然而量子理论告诉我们,这个不幸的动物处于一种悬而 未决的死活状态中,直到某人窥视盒内看个究竟为止。此时,它要么变得 生气勃勃,要么立刻死亡。如果把猫换成一个人,那么详谬变得更尖锐 了,因为这样一来,监禁在盒内的那位朋友会自始至终地意识到他是健康 与否。如果实验员打开盒子,发现他仍然是活的,那时他可以问他的朋 友,在此观察前他感觉如何,显然这位朋友会回答在所有的时间中他绝对 活着。可这跟量子力学是相矛盾的,因为量子理论认为在盒内的东西被观 察之前那位朋友仍处在活-死迭加状态中。

玻尔敏锐地意识到它正表征了经典概念的局限性,因此以此为基础提 出“互补原则”,认为在量子领域总是存在互相排斥的两种经典特征,正 是它们的互补构成了量子力学的基本特征。玻尔的互补原则被称为正统的 哥本哈根解释,但爱因斯坦一直不同意。他始终认为统计性的量子力学是 不完备的,而互补原理是一种绥靖哲学,因而一再提出假说和实验责难量 子论,但玻尔总能给出自洽的回答,为量子论辩护。爱因斯坦与玻尔的论 战持续了半个世纪,直到他们两人去世也没有完结。

爱因斯坦对量子论的质疑

薛定谔猫实验告诉我们,在原子领域中实在的佯谬性质与日常生活和 经验是不相关的,量子幽灵以某种方式局限于原子的阴影似的微观世界之中。如果遵循量子理论的逻辑到达其最终结论,则大部分的物理宇宙似乎 要消失于阴影似的幻想之中。爱因斯坦决不愿意接受这种逻辑结论。他反问:没有人注视时月亮是否实在?科学是一项不带个人色彩的客观的事 业,将观察者作为物理实在的一个关键要素的思想看来与整个科学精神相 矛盾。如果没有一个“外在的”具体世界供我们实验与测量,全部科学不 就退化为追逐想象的一个游戏了吗?

量子理论革命性的特点,一开始就引起了关于它的正确性及其解释内容的激烈争论,在20世纪中这个争论一直进行着。自然法则从根本上将是 否具有随机性?在我们的观察中是否存在实体?我们又是否受到了观察的 现象的影响?爱因斯坦率先从几个方面对量子理论提出质疑。他不承认自然法则是随机的。他不相信“上帝在和世界玩骰子”。在和玻尔的一系列 着名的论战中,爱因斯坦又一次提出了批判,试图结实量子理论潜在的漏 洞、错误和缺点。玻尔则巧妙地挫败了爱因斯坦的所有攻击。在1935年的一篇论文中,爱因斯坦提出了一个新证据:断言量子理论无法对自然界进 行完全的描述。根据爱因斯坦的说法,一些无法被量子理论预见的物理现 象应该能被观测到。这一挑战最终导致阿斯派特做了一系列着名的试验, 准备用这些试验解决这一争论。阿斯派特的实验详尽地证明了量子理论的 正确性。阿斯派特认为,量子理论能够预见但无法解释一些奇妙的现象, 爱因斯坦断言这一点是不可能的。由此似乎信息传播地比光速还快--很明 显地违背了相对论和因果律。阿斯派特的实验结论仍有争议,但它们已促 成了关于量子论的更多的奇谈怪论。

由玻尔和海森伯格发展起来的理论和哥本哈根派的观点,尽管仍有争 论,却逐渐在大多数物理学家中得到认可。按照该学派的观点,自然规律 既非客观的,也非确定的。观察者无法描述独立于他们之外的现实。就象 不确定律和测不准定律告诉我们的一样,观察者只能受到观察结果的影 响。按自然规律得出的实验性预见总是统计性的而非确定性的。没有定规 可寻,它仅仅是一种可能性的分布。

电子在不同的两个实验中表现出的波动性和粒子性这一表面上的矛盾 是互补性原理的有关例子。量子理论能够正确地、连续地预测电子的波动 性或粒子性,却不能同时对两者进行预测。按照玻尔的观点,这一矛盾是 我们在对电子性质的不断探索中,在我们的大脑中产生的,它不是量子理论的一部分。而且,从自然界中只能得到量子理论提供的有限的、统计性 的信息。量子理论是完备的:该理论未能告诉我们的东西或许是有趣的猜 想或隐喻。但这些东西既不可观测,也不可测量,因而与科学无关。 哥本哈根解释未能满足爱因斯坦关于一个完全客观的和决定性的物理 定律应该是什么样的要求。几年后,他通过一系列思维推理实验向玻尔发 起挑战。这些实验计划用来证明在量子理论中的预测中存在着不一致和错 误。爱因斯坦用两难论或量子理论中的矛盾向玻尔发难。玻尔把问题稍微思考几天,然后就能提出解决办法。爱因斯坦男买内过分地看重了一些东 西或者忽略了某些效应。有一次,具有讽刺意味的是爱因斯坦忘记了考虑 他自己提出的广义相对论。最终,爱因斯坦承认了量子理论的主观一致 性,但他仍固执地坚持一个致命的批判:EPR思维实验。

1935年,爱因斯坦和两个同事普多斯基和罗森合作写了一篇驳斥量子理论完备性的论文,在物理学家和科学思想家中间广为流传。该论文以三个人姓氏的第一个字母合称EPR论文。他们假设有两个电子:电子1和电子 2发生碰撞。由于它们带有相同的电荷,这种碰撞是弹性的,符合能量守 衡定律,碰撞后两电子的动量和运动方向是相关的。因而,如果测出了电 子1的位置,就能推知电子2的位置。假设在碰撞发生后精确测量电子1的 位置,然后测量其动量。由于每次只测量了一个量,测量的结果应该是准 确的。由于电子1、2之间的相关性,虽然我们没有测量电子2,即没有干 扰过它,但仍然可以精确推测电子2的位置和动量。换句话说,我们经过 一次测量得知了电子的位置和动量,而量子理论说这是不可能的,关于这 一点量子理论没有预见到。爱因斯坦及其同事由此证明:量子理论是不完 备的。

玻尔经过一段时间的思考,反驳说EPR实验非但没有证否量子理论, 而且还证明了量子理论的互补性原理。他指出,测量仪器、电子1和电子2 共同组成了一个系统,这是一个不可分割的整体。在测量电子1的位置的 过程中会影响电子2的动量。因此对电子1的测量不能说明电子2的位置和动量,一次测量不能代替两次测量。这两个结果是互补的和不兼容的,我 们既不能说系统中一个部分受到另一个部分的影响,也不能试图把两个不 同实验结果互相联系起来。EPR实验假定了客观性和因果关系的存在而得 出结论认为量子理论是不完备的,事实上这种客观性和因果性只是一种推 想和臆测。

现实世界中的量子论

尽管人们对量子理论的含义还不太清楚,但它在实践中获得的成就却 是令人吃惊的。尤其在凝聚态物质--固态和液态的科学研究中更为明显。 用量子理论来解释原子如何键合成分子,以此来理解物质的这些状态是再 基本不过的。键合不仅是形成石墨和氮气等一般化合物的主要原因,而且 也是形成许多金属和宝石的对称性晶体结构的主要原因。用量子理论来研 究这些晶体,可以解释很多现象,例如为什么银是电和热的良导体却不透 光,金刚石不是电和热的良导体却透光?而实际中更为重要的是量子理论 很好地解释了处于导体和绝缘体之间的半导体的原理,为晶体管的出现奠 定了基础。1948年,美国科学家约翰·巴丁、威廉·肖克利和瓦尔特·布 拉顿根据量子理论发明了晶体管。它用很小的电流和功率就能有效地工 作,而且可以将尺寸做得很小,从而迅速取代了笨重、昂贵的真空管,开 创了全新的信息时代,这三位科学家也因此获得了1956年的诺贝尔物理学 奖。另外,量子理论在宏观上还应用于激光器的发明以及对超导电性的解 释。

而且量子论在工业领域的应用前景也十分美好。科学家认为,量子力 学理论将对电子工业产生重大影响,是物理学一个尚未开发而又具有广阔 前景的新领域。目前半导体的微型化已接近极限,如果再小下去,微电子 技术的理论就会显得无能为力,必须依靠量子结构理论。科学家们预言, 利用量子力学理论,到2010年左右,人们能够使蚀刻在半导体上的线条的 宽度小到十分之一微米(一微米等于千分之一毫米)以下。在这样窄小的 电路中穿行的电信号将只是少数几个电子,增加一个或减少一个电子都会 造成很大的差异。

美国威斯康星大学材料科学家马克斯·拉加利等人根据量子力学理论 已制造了一些可容纳单个电子的被称为“量子点”的微小结构。这种量子 点非常微小,一个针尖上可容纳几十亿个。研究人员用量子点制造可由单 个电子的运动来控制开和关状态的晶体管。他们还通过对量子点进行巧妙 的排列,使这种排列有可能用作微小而功率强大的计算机的心脏。此外, 美国得克萨斯仪器公司、国际商用机器公司、惠普公司和摩托罗拉公司等 都对这种由一个个分子组成的微小结构感兴趣,支持对这一领域的研究, 并认为这一领域所取得的进展“必定会获得极大的回报”。

科学家对量子结构的研究的主要目标是要控制非常小的电子群的运动 即通过“量子约束”以使其不与量子效应冲突。量子点就有可能实现这个 目标。量子点由直径小于20纳米的一团团物质构成,或者约相当于60个硅 原子排成一串的长度。利用这种量子约束的方法,人们有可能制造用于很 多光盘播放机中的小而高效的激光器。这种量子阱激光器由两层其他材料 夹着一层超薄的半导体材料制成。处在中间的电子被圈在一个量子平原 上,电子只能在两维空间中移动。这样向电子注入能量就变得容易些,结 果就是用较少的能量就能使电子产生较多的激光。

美国电话电报公司贝尔实验室的研究人员正在对量子进行更深入的研 究。他们设法把量子平原减少一维,制造以量子线为基础的激光器,这种 激光器可以大大减少通信线路上所需要的中继器。

美国南卡罗来纳大学詹姆斯·图尔斯的化学实验室用单个有机分子已 制成量子结构。采用他们的方法可使人们将数以十亿计分子大小的装置挤 在一平方毫米的面积上。一平方毫米可容纳的晶体管数可能是目前的个人 计算机晶体管数的1万倍。纽约州立大学的物理学家康斯坦丁·利哈廖夫 已用量子存储点制成了一个存储芯片模型。从理论上讲,他的设计可把1 万亿比特的数据存储在大约与现今使用的芯片大小相当的芯片上,而容量 是目前芯片储量的1·5万倍。有很多研究小组已制出了利哈廖夫模型装置 所必需的单电子晶体管,有的还制成了在室温条件下工作的单电子晶体 管。科学家们认为,电子工业在应用量子力学理论方面还有很多问题有待 解决。因此大多数科学家正在努力研究全新的方法,而不是仿照目前的计 算机设计量子装置。

量子论与相对论能统一吗?

量子理论提供了精确一致地解决关于原子、激光、X射线、超导性以 及其他无数事情的能力,几乎完全使古老的经典物理理论失去了光彩。但我们仍旧在日常的地面运动甚至空间运动中运用牛顿力学。在这个古老而 熟悉的观点和这个新的革命性的观点之间一直存在着冲突。

宏观世界的定律保持着顽固的可验证性,而微观世界的定律具有随机性。我们对抛射物和彗星的动态描述具有明显的视觉特征,而对原子的描述不具有这种特征,桌子、凳子、房屋这样的世界似乎一直处于我们的观 察中,而电子和原子的实际的或物理性状态没有缓解这一矛盾。如果说这些解释起了些作用的话,那就是他们加大了这两个世界之间的差距。

对大多数物理学家来说,这一矛盾解决与否并无大碍,他们仅仅关心他们自己的工作,过分忽视了哲学上的争议和存在的冲突。毕竟,物理工作是精确地预测自然现象并使我们控制这些现象,哲学是不相关的东西。

广义相对论在大尺度空间、量子理论在微观世界中各自取得了辉煌的成功。基本粒子遵循量子论的法则,而宇宙学遵循广义相对论的法则,很难想象它们之间会出现大的分歧。很多科学家希望能将这两者结合起来, 开创一门将从宏观到微观的所有物理学法则统一在一起的新理论。但迄今 为止所有谋求统一的努力都遭到失败,原因是这两门20世纪物理学的重大学科完全矛盾。是否能找到一种比现有的这两种理论都好的新理论,使这两种理论都变得过时,正如它们流行之前的种种理论遇到的情况那样呢?

⑦ 量子到底是甚么

量子
量子力学的诞生

量子力学和相对论是近代物理的两大支柱,两者都改变了人们对物质世界的根本认识,并对20世纪的科学技术、生产实践起了决定性的推动作用。相对论以相对时空观取代源于常识的绝对时空观,量子力学则以概率世界取代确定性世界。比起相对论来,量子力学对于变革传统观念也许具有更为深层次的意义。前者还保留了许多传统概念如力、轨道等概念,但后者却把这一切都抛弃了。
1900~1926年是量子力学的酝酿时期,此时的量子力学是半经典半量子的学说,称为旧量子论,开始于德国物理学家普朗克对黑体辐射的研究。黑体辐射是1900年经典物理(牛顿力学、麦克斯韦电动力学、热力学与统计物理)所无法解决的几个难题之一。旧理论导出的黑体辐射谱会产生发散困难,与实验不符。普朗克于是提出“能量子”概念,认为黑体由大量振子组成,每个振子的能量是振子频率的整数倍,这样导出的黑体辐射谱与实验完全符合。“能量子”是新的概念,它表明微观系统的能量有可能是间隔的、跳跃式的,这与经典物理完全不同,普朗克因此就这样吹响了新的物理征程的号角,这成为近代物理的开端之一。1905年,爱因斯坦把普朗克的“能量子”概念又向前推进了一步,认为辐射能量本来就是一份一份的,非独振子所致,每一份都有一个物质承担者——光量子,从而成功地解释了光电效应。爱因斯坦本人在几年后又比较成功地把量子论用到固体比热问题中去。1912年,丹麦青年玻尔根据普朗克的量子论、爱因斯坦的光子学说以及卢瑟福的原子行星式结构模型,成功地导出了氢原子光谱线位置所满足的公式,从这以后掀起了研究量子论的热潮。1924年,法国贵族青年德布洛意根据光的波粒二象性理论、相对论及玻尔理论,推断认为一般实物粒子也应具有波动性,提出了物质波的概念,经爱因斯坦褒扬及实验验证,直接导致了1926年奥地利学者薛定谔发明了量子力学的波动方程。与此同时,受玻尔对应原理和并协原理影响的德国青年海森堡提出了与薛定谔波动力学等价但形式不同的矩阵力学,也能成功地解释原子光谱问题。矩阵力学和波动力学统称量子力学,量子力学就这样正式诞生。量子力学与经典力学对物质的描述有根本区别。量子力学认为“粒子轨道”概念是没有意义的,因为我们不可能同时确定一个粒子的动量和位置,我们能知道的就是粒子在空间出现的几率。量子力学用波函数和算符化的力学量取代过去的轨道和速度等概念,将不可对易代数引进了物理。量子力学还第一次把复数引入了进来。

过去物理中引入复数只是一个为了方便的技巧,并无实质意义,但在量子力学中,虚数具有基本的物理意义,正如英国物理学家狄拉克在70年代所说的:“……这个复相位是极其重要的,因为它是所有涉现象的根源,而它的物理意义是隐含难解的……正是由于它隐藏得如此巧妙,人们才没有能更早地建立量子力学。”可见复数第一次在量子力学中产生了不可被替代的物理意义。这个狄拉克在20年代后半期把当时薛定谔的非相对论性波动方程推广到相对论情形,第一次实现了量子力学和相对论的联姻。狄拉克所建立的方程是描述电子等一大类自旋为半整数的粒子的相对论性波动方程。由于组成现实世界的物质是自旋都为 1/2 的电子、质子和中子,所以狄拉克方程显然特别重要。狄拉克方程能自然地预言电子的自旋为1/2 ,解释氢原子的精细结构,又预言存在正电子。不久,安德森就找到了正电子。狄拉克方程成为量子力学最有名的方程之一。这个狄拉克还将电磁场量子化,从理论上证实了1905年爱因斯坦的光子学说的最重要观点——光是由光子组成的。作为一个体系,量子力学的建立大致在20世纪20年代末完成,此后量子力学就被应用到实际问题中去了。

量子力学的基础和应用

对于许多人来说,也许量子力学比相对论更为有用。后者一般用于研究基本粒子的产生和相互转化以及大尺度的时空结构,但对于20世纪人类的生产生活,原子层次的世界显得更为重要。30年代,量子力学用于固体物理,建立了凝聚态物理学,又用于分子物理,建立了量子化学。在此之上,材料科学、激光技术、超导物理等学科蓬勃发展,为深刻影响20世纪人们生活方式的计算机技术、信息技术、能源技术的发展打下了基础。在20世纪上半期,量子力学深入到微观世界,发展了原子核结构与动力学理论,提出了关于原子核结构的壳层模型和集体模型,研究了原子核的主要反应如α、β、γ嬗变过程。在天体物理中,必须要用到量子力学。对于那些密度很大的天体,如白矮星、中子星,当核燃料耗尽时,恒星的引力将使它坍缩,高密度天体的的费米温度很高,比恒星实际温度高得多,白矮星的电子气兼并压和中子星的中子兼并压抗衡了引力,此时量子力学效应对于星体的形成起了决定性的作用。对于黑洞,其附近的狄拉克真空正负能级会发生交错,因此有些负能粒子将可能通过隧道效应穿透禁区成为正能粒子,飞向远方。黑洞的量子力学效应很有意义,值得研究。
尽管量子力学取得了巨大成功,但是由于相对于牛顿力学而言,量子力学与常识的决裂更为彻底,因此对于量子力学的基础仍旧存在着许多争论,正如玻尔所说:“谁不为量子力学震惊,谁就不懂量子力学。”爱因斯坦和玻尔在20世纪上半期关于量子力学是否自恰与完备展开了大讨论,引发了一系列关于量子力学基础的工作,如隐变量理论、贝尔定理、薛定谔猫态实验等,这些工作使得我们看到理解量子力学的艰难。
量子力学的应用,一方面让我们感觉到现实世界丰富多彩的离奇特性,另一方面反过来也促进我们对量子力学基础的理解。20世纪下半期,量子力学在基础和应用研究上又焕发出了青春。对超导本质、真空的卡西米尔效应、分数与整数量子霍尔效应、A-B效应和几何相因子、玻色-爱因斯坦凝聚和原子激光等的研究,极大地丰富了人们对物理世界的认识,而对这些效应和技术的研究,必将对21世纪的科学进步产生深远意义的影响。量子力学向纵深发展量子力学是单粒子的运动理论,在高能情形下,粒子会产生、湮灭,涉及到多粒子,因而需把量子力学发展成为量子场论,第一个用于研究相互作用的量子场论是量子电动力学。量子电动力学研究电子与光子的量子碰撞,它是在三四十年代从研究氢原子的超精细结构-兰姆移动及电子反常磁矩的基础上建立起来的。由费曼等人发展起来的路径积分量子化方法是研究相互作用场量子化的得力工具,运用它,散射矩阵和反应截面的计算成为可能。量子场论是个空框架,必须引入相互作用,才能描述相互作用粒子的产生和转化、研究其本质,这就是规范场论的任务。量子场论和规范场论是量子力学向纵深发展的结果。量子电动力学具有U(1)群(一种可交换的内部对称群)的定域规范对称性。把带电粒子波函数的定域相位变化一下,同时电磁势作相应的变换,发现为了保持理论具有这种变换的不变性,必须引入带电粒子与电磁场(一种规范场)的耦合项。当时在微观世界,除了电磁力外,还有控制核子聚在一起的强力和控制原子核衰变的弱力,这些相互作用满足怎样的动力学方程,需要有一个第一性原理来解决。
1954年,杨振宁和米尔斯把定域规范不变的理论推广到内部对称的不可交换群,引入非阿贝尔规范场。杨-米尔斯的理论决定了相互作用的基本形式,成为理论物理中继相对论罗伦兹变换之后的最重要的变换形式。洛伦兹变换是时空变换,规范变换是内部空间变换,它们分别从外部和内部决定物质运动和相互作用的形式。六七十年代的工作,包括1964年发现真空对称性自发破缺使规范场得到质量的黑格斯机制,1967年法捷耶夫和波波夫用路径积分量子化方法首次得到正确的规范场量子化方案,1971年特·胡夫特等人证明了规范场理论的可重整性,并提出了一种切实可计算的维数正规化方案,以上工作使得量子规范理论成为成熟的理论。
在规范场论和粒子物理实验、基本粒子结构(三代轻子和三代夸克)研究的基础上,六七十年代还提出了特殊的规范场论——弱电统一理论和量子色动力学。由于在1979年找到了传递色(强)力作用的胶子存在的证据,在1984年发现了存在传递弱相互作用的中间玻色子W±和Z0 ,所以我们深信:描述弱相互作用和电磁相互作用的统一理论是SU(2)×U(1) 规范场模型, 描述强相互作用的理论是SU(3) 规范场模型。这两个模型统称标准模型。物理学家已在1995年找到了它们所预言的最重的夸克(顶夸克)的存在证据,所预言的最后一个基本粒子(τ 子型中微子)也已在2000年找到。特·胡夫特等的工作也被授予1999年诺贝尔物理学奖。标准模型取得的一再成功使得它成为目前公认最好的关于物质结构、物质运动和相互作用的理论。
量子力学和量子场论使得人类对真空的性质也有了更为本质的看法。过去真空被认为是空无一物的,自从狄拉克提出真空是“负能粒子的海洋”之后,真空就被看作是粒子之源了。真空具有许多效应,如反映真空具有零点能量的卡西米尔效应、真空极化导致氢光谱兰姆移动(氢原子的超精细结构)、激态原子与零点真空作用导致原子自发辐射等。真空作为量子场的基态,具有普适的对称性。60年代,南部和歌德斯通发现量子场论真空会发生自发对称破缺,70年代玻利亚可夫等发现真空的拓扑结构。目前已能对真空可以进行局域性的操作,真空上升到研究相互作用主体的地位。
量子应用:
量子态是指原子、中子、质子等粒子的状态,它可表征粒子的能量、旋转、运动、磁场以及其他的物理特性。“量子态隐形传输”通俗地来说,就是将粒子从一个地方瞬间转移到了另一个距离遥远的地方,好像穿越了“时空隧道”。由中国科学技术大学教授潘建伟及同事杨涛、张强等完成的这项研究成果,被《自然》杂志称赞为“在大尺度量子通信研究中取得的长足进展”。不久的将来,这项成果还会在保密通信、量子计算机等方面有大量的应用,改变我们的生活。

【量子通信可使手机无法泄密】

潘建伟教授表示,他们目前进行的实验是为了实现自由空间中“全球化量子通信”,即通过卫星转发量子信号,传至上万公里甚至更远的接收点,最终在全球范围内进行完全保密通话。量子态不能被精确克隆,量子通信方式不可窃听、无法破解,因为依据量子力学的测量原理,任何窃听者在信息传输过程中截取或测量,都会改变它们的状态,从而被实时发现。如果通信过程中输出码和最终码的误码率为零,就能证明该次通信是完全保密的。

手机泄密问题已经困扰着世界各国,通过量子传输的手段实现完全保密的通信,是现代科技人员努力实现的目标和梦想。鉴于这一研究的科学意义,《自然》网站为论文的发表发布了消息,并在《自然》杂志《研究亮点》栏目对该研究进行报道。

【超高速量子计算机可放入口袋】

量子态隐形传输技术,还将有助于量子计算机的研制。量子计算机是遵循量子力学规律进行高速运算、存储及处理量子信息的装置。相对于传统计算机,它不仅运算速度快,存储量大、功耗低,而且体积大大缩小。一个超高速的量子计算机可以放在口袋里。装备量子计算机的人造卫星,直径可以从数米减小到数十厘米。目前,量子计算机正在开发研制阶段,日本富士通公司开发一种量子元件超高密度存储器,在1平方厘米面积的芯片上,可存储10万亿比特的信息,相当于可存储6000亿个汉字。科学家们认为,随着毫微技术的进步和量子隐形传输技术的发展,量子计算机的心脏——微处理器将在5年内研制成功,世界上第一台量子计算机有望在10年内诞生。

总 结
具有整整一百年历史的量子力学对于20世纪的科学技术具有革命性的影响。正是因为其影响深远,所以在这世纪之交,其带给我们的悬而未决的谜也就更多更难。李政道认为20世纪末期存在如下的物理之谜:夸克幽禁、暗物质、对称破缺、真空性质等。此外,解决诸如质量起源、电荷本质、量子引力、基本粒子世代重复之谜等也必将引发新的物理学进展。为了探索物质世界的深刻本质,大统一理论、超对称、超引力、超弦理论等也在发展之中。它们或许就是新的革命的前奏。尽管不知道能否再发生象量子力学诞生那样的革命,但是未来的100年绝对是让物理学家忙碌的100年,而这些新概念、新理论、新技术对未来人类的观念和生活的巨大影响,恐还不能处于目前我们的掌控之中。

⑧ 二十一世纪新四大发明是哪些

21世纪中国新四大发明(具备完全知识产权):
1,三聚氰胺冒充奶粉技术
2,地沟油提炼技术
3,馒头染色技术
4,健美猪养殖技术

21世纪最“无奈”的四大发明

第一大发明是打卡机
据说打卡机是IBM发明的,自从有了打卡机这玩意,需要天天上班的白领就没过上一天好日子。有两个行为艺术家,曾做过一个着名的实验,让一位白领,一年之内什么也不要干,就是每一小时打一次卡。结果是这位白领被折磨得进了精神病院。
第二大发明是方便面
民以食为天,但自有了方便面,白领的生活质量便直线下降,十个白领九个菜色。品牌的最高境界是既有知名度,又有美誉度。但方便面品牌是难得有美誉度的。每逢看到一家老少三代在合家团圆的春节时每人手捧一碗方便面为大家贺岁的广告时,总觉得老板的脑袋真是进水了。对于白领来说,被老板勒令加班,独自吃方便面的时候,杀了老板的心都有。
第三大发明是床垫
主要指可折叠的单人床垫。据说二十世纪七十年代,在美国硅谷的高科技公司里,可折叠的单人床垫曾大行其道。床是伴随人类时间最久的伴侣:人们生于斯,爱于斯,死于斯。但自席梦思开始,床垫有了独立的法人地位。不用上床,也可以睡觉。这就给了老板要求员工通宵达旦加班以借口。当白领看到同事从座位底下扯出床垫的时候,尤其是听说有同事因过劳而“床垫裹尸还”的时候,那心中的悲愤可想而知。
第四大发明是手机
白领痛恨手机的主要原因是失去了私人时间,没有了上下班之分,尤其是老板要求24小时不许关机的工作。虽然白领痛恨手机但又离不开手机,可谓爱恨交织,唯一的解决之道就是尽量不用公司提供的手机,白领晋级金领的一个标志就是拥有两部手机,并不是歌里所唱的“等我发了财,买俩大哥大;左手诺基亚,右手摩托罗拉”,而是一部对公手机,一部因私手机。当然,最高的境界是不用手机,谁有李嘉诚打手机的照片可以发给我,高价征求。

中国20世纪的新四大发明:
1 杂交水稻 :袁隆平 1973年发明
2 汉字激光照排:王选 1979年发明
3 人工合成牛胰岛素:钮经义为首的一大批科技人员与1964年发明
4 复方蒿甲醚:数百名科学家共同的结果 六十年代后期发明
美国20世纪的新四大发明:
1 原子能:奥本海默.等一大批美国科学家 1942年在美国建成世界上第一座核裂变反应堆
2 半导体:巴丁、布莱顿和肖特莱 1947年在美国贝尔实验室发明
3 计算机:美国宾夕法尼亚大学的毛琪利与爱克特在1946年发明
4 激光器:美国贝尔实验室的查尔斯.汤斯与西奥多.梅曼在1960年发明

20世纪的“新四大发明”——原子能、半导体、计算机、激光器,又彻底改写了世界科技发展的历史。
原子能
1911年,物理学家发现电子的中心是带正电的原子核。1913年,玻尔提出电子在不同轨道上绕原子核运动。1919年,英国物理学家卢瑟福用带正电的。粒子轰击氮和氢,发现了质。1932年,卢瑟福的学生和助手——乍得威克发现中子,进而提出原子核由质子和中子组成
1938年,物理学家发现重原子核裂变。核能的威力首先被用于战争。1942年6月,美国政府启动了代号为“曼哈顿工程”的原子武器制造计划。1945年7月16日,世界上第一颗原子弹在美国新墨西哥州的荒漠上试爆成功。此后,前苏联于
1949年、英国1952年、法国于1960年、中国于1964年
10月分别研制出并成功地爆炸了原子弹。和平利用原子能,成为整个世界的呼声。1942年,世界上第一座裂变反应堆在美国建成;1954年,莫斯科附近的奥布宁斯克原子能发电站投入运行,标志着人类和平利用原子能时代的到来。
1991年,中国的第一座核电站——秦山核电站起用,继之大亚湾核电站投产。
半导体
1947年,美国电报电话公司(AT&T)贝尔实验室的三位科学家巴丁、布莱顿和肖克利在研究半导体材料——锗和硅的物理性质时,意外地发现了锗晶体具有放大作,经过反复研究,他们用半导体材料制成了放大倍数达100量级的放大器,这便是世界上第一个固体放大器——晶体三极管。
晶体管的出现,迅速替代电子管占领了世界电子领域。随后,晶体管电路不断向微型化方向发展。1957年,美国科学家达默提出“将电子设备制作在一个没有引线的固体半导体板块中”的大胆技术思想,这就是半导体集成电路的思想。1958年,美国德克萨斯州仪器公司的工程师基尔比在一块半导体硅晶片上电阻、电容等分立元件放入其中,制成第一批集成电路。1959年,美国仙童公司的诺伊斯用一种平面工艺制成半导体集成电路,“点石成金”,集成电路很快成了比黄金还诱人的产品1971年11月,英特尔(Intel)公司的霍夫将计算机的线路加以改进,把中央处理器的全部功能集成在一块芯片上,另外再加上存储器,制成世界上第一个微处理器。随着硅片上元件集成度的增加,集成电路的发展经历了小规模集成电路、中规模集成电路、大规模集成电路和超大规模集成电路(VLSI)阶段。1978年,研制成的超大规模集成电路,集成度达10万以上,电子技术进入微电子时代。80年代末,芯片上集成的元件数突破1000万的大关。
计算机
1946年,世界上第一台电子数字积分计算机——埃尼克(ENIAC)在美国宾夕法尼亚大学莫尔学院诞生。ENIAC犹如一个庞然大物,重达30吨、占地170平方米、内装18000个电子管,但它运算速度却比当时最好的机电式计算机快1000倍。ENMC的问世,犹如石破天惊,开辟了信息新时代。
1949年,第一台存储程序计算机——EDSAC在剑桥大学投入运行,ENIAC和EDSAC均属于第一代计算机。
1954年,美国贝尔实验室制成第一台晶体管计算机——TRADIC,使计算机体积大大缩小。1958年,美国IBM公司制成全部使用晶体管的计算机,第二代计算机诞生了。第二代计算机的运算速度比第一代计算机提高了近百倍。
60年代中期,随着集成电路的问世,第三代计算机诞生,其标志产品是1964年由美国IBM公司生产的IBM360系列机。
第四代计算机以大规模集成电路作为逻辑元件和存储器,使计算机向着微型化和巨型化方向发展。计算机的微处理器从早期的8086,发展到80286.80386.80486.奔腾(Pentium)、奔腾二代(PentiumⅡ)和奔腾三代(PentiumⅢ)。
当前,第五代计算机——智能计算机的研究正渐入佳境。智能计算机的主要特征是具备人工智能,能像人一样思维,并且运算速度极快,它不仅具有一种能够支持高度并行和推理的硬件系统,还具有能够处理知识信息的软件系统。
世纪之交,计算机科技的前沿领域包括:神经网络计算机。超导计算机、生物计算机和光计算机等。
激光器
1958年,贝尔实验室的汤斯和肖洛发表了关于激光器的经典论文,奠定了激光发展的基础。1960年,美国人梅曼发明了世界上第一台红宝石激光器。1965年,第一台可产生大功率激光的器件——二氧化碳激光器诞生。1967年,第一台X射线激光器研制成功。1997年,美国麻省理工学院的研究人员研制出第一台原子激光器。
激光器的出现,大大改变了人类的生产与生活:
在通信技术领域,光通信依赖的基础器件便是激光器,用于存储信息的CD-ROM光盘,可存储数百兆比特的信息;越洋光通信已进入1万亿比特/8的开发阶段;光计算机的研究也正日益深入。
在能源领域,激光可用于工业、军事上的能量源,大功率激光器被用于受控核聚变研究。
在医学领域,激光治疗已在外科、内科、妇科、牙科、五官科、肿瘤科得到应用,可治疗数百种疾病;激光针灸可以无痛,无菌地穿透皮肤,达到治疗的目的。
此外,激光在军事、生物工程等领域也崭露头角,应用范围日益拓宽。由此,激光被人们誉为20世纪的“世纪之光”。

⑨ 读到《楞严经》卷三,我也很疑惑,请教善知识。

首先告诉大家:所谓“声波”,那是不存在的。只有当耳根去测量时,声尘才变成声音,耳朵才听到。更准确地说,只有第七识心识去观测时,才有色声香味触法。这就是说,假如你耳朵没去听,但是安装了声音检测系统,也会测到声音,身体去安装仪器,也是心识在观测,眼耳鼻舌身意都归心识管嘛。假如不听也不测,是没有声音的!这可不是掩耳盗铃哦,这是量子物理。也不要说“我信传统物理学的,不信量子物理”——不管你信不信,它就摆在那里,这是宇宙的客观规律,早就被科学所证实了。
简单一点,比方说某甲在村中间说话,我们在村东,这时只有村东有某甲的声音,其他方向是没有的!奇怪的是当大家跑到村西时,会在村西听到某甲的声音,而其他方位是没有的!你也不要说:“噢,那大家都在村东别动,村西安装一个声探器,看看是否没人听就没声音”。你安装工具,这也是心识在测听啊,因为你安装仪器,村西才有声音!
那么究竟怎样才能证明“不去测量那里就没有声音存在”呢?这是十分深奥复杂的问题,单单用到的公式就数以万计。讲真的,当世没有几个科学家能看懂,估计达芬奇活着的话可以看懂;如果有国学高手在旁边指点一下,薛定谔、玻尔也能弄明白;霍金肯定是看不懂的,也教不会,毕竟现在的科技还十分落后嘛。
但我简单说两句,大家就能有个大略理解,知道我所言不虚了。
首先大家有没有发现:人多的地方即使大家不吵闹,听到的声音也会变小。是因为别人挡住声波了吗?不是的,是因为一个人说话的能量是有限的。就像大家同连一个wifi ,大家都会卡。科学家通过测量声波里的能量,把“声源能量”和“大家接收到声音的总能量”一对比,就知道没人测量的地方是没有声波的,声音绝不是以波的形式传播!
第二就是说一下5G网络里面的集波技术,大家都知道目前网上流传的“WiFi信号增强器”是假的,可是大家不知道古人早就研究出真正的wifi 增强器了,可以下载“快乐阎浮app ”,里面就有真正的千米蹭网器,还有各种黑科技。比如你离光猫很远,可是只要运用集波系统,就可以把信号定向,大部分都集中发射到你的设备,这样避免了资源浪费,你的网速也会溜得飞起,其他地方是几乎没有wifi信号的。但是别担心,当你朋友在其他地方也连接同一个无线网时,系统会把一部分信号资源分给他,大家都能上网!声音也是如此,并不存在所谓的声波,只有你去测量,那个地方才有声音存在。不测量时是没有声音的,所以声音不是以声波的形式传播。
复习一遍:假如某甲说话,即使没有任何人听到,那也是因为我心识在动,在测量,才有“某甲说话”这些事。尽虚空,遍法界,万物众生都是我们心识化现的,这就是唯识。
再从因缘法来说,世间万物不离因缘嘛。从因缘来说,也没有所谓的声波,你根本不会在 别处 听到声音——你都不在 别处 !但是当你跑到别处测量时,包括在别处安装测量仪器,那里又有声音了(或没有声音,那里可能很安静)!因缘,通俗来讲就是必要条件,条件具足也就是因缘和合。测量行为和测量结果,二者是完全同步的,所以因缘和唯识并不冲突。
佛在这里破除“因缘”以及“自然性”,这是要干嘛呢——这是要讲更本源一点的唯识。唯识很深奥,打个比方,你手机当下显示什么,完全是由当下运行的程序决定的,二者完全同步!心识就是程序员,世间万物就是运行结果,这是六祖说的“不是旗动,不是风动,仁者心动”,法由心生。
附九识略讲:
眼耳鼻舌身识,略。
意识:思考,逻辑推理,执行命令等。
心识:程序员,发布命令等。
含藏识:收藏家,存储器。收藏一切善恶业种。心识可以从彼读取,也可以储存于彼。
阿赖耶识:终极收藏家,包含一切。离言离相,不可说,不可说。阿赖耶识是假名,自性,如来藏,涅槃,常寂光等假名也是说它。
阿赖耶识真空,注意我没说“是真空”,真空!可是能生万法,怎么生呢——唯心所现!第七识心识怎样,世界就怎样,完全同步!注意不是主观意识想怎样就怎样。比如你杀生,那就是心识里有“众生被杀”,有那种“很绝望、很痛苦”的信号。虽然主观意识不痛苦,反正杀的是动物又不是我;不仅不痛苦,还很高兴——今晚有肉吃了。可是因为你的第七识有这种负面的信号,所以将来你就会被杀,就会很痛苦,很绝望。这就是因果的来历,明白这些宇宙原理,就知道敬畏因果了。
那么自性又凭什么能生万法呢?因为真空妙有,自性本来就包含一切!比如白光,白光其实是红橙黄绿青蓝紫七大色系组成的,细分下去有无数种。无数颜色的光,加起来反而无色了,怪吧?
这个自性更怪,一切色声香味触法叠加,反而空了,什么概念都没有了!所谓“大音希声,大象无形”。所以这个真空并不空,而是一种万法叠加态,一切叠加起来就是这么空的,什么形相也没有!但是去观测时就生万法,不同于顽空。什么叫观测呢——眼耳鼻舌身意去攀缘,乃至起心动念,这些都是观测行为,并不是说只有去看去听才叫观测。有观测行为,同步就出结果,这是唯识。至于因缘法,那是相似相续,因为心念很细微,很快变化,所以我们无法察觉。电影虽然很快切换胶片,每秒几十帧,我们根本看不清某一帧;但是因为相邻的胶片很相似,所以我们能看到这电影都有什么画面。同理的,因为我们的习气老不改,所以测量结果老是类似的,这就是因果命运的方便说,也是修行能改命的根本所在——修正不好的言行,名为修行。因为修正了言行,所以改变了命运,毕竟命运只在当下一念,过去现在未来,十方三世都在当下一念。

⑩ 量子计算机原理的量子计算机

●量子特性在提高运算速度、确保信息安全、增大信息容量和提高检测精度等方面可能突破现有经典信息系统的极限
●一个250量子比特(由250个原子构成)的存储器,可能存储的数达2的250次方,比现有已知的宇宙中全部原子数目还要多
●用量子搜寻算法攻击现有密码体系,经典计算需要1000年的运算量,量子计算机只需小于4分钟的时间
●量子密钥体系采用量子态作为信息载体,其安全性由量子力学原理所保证
●基于量子隐形传态过程,可以实现多端分布运算,构成量子因特网
●薛定谔“猫”和EPR佯谬
量子力学的诞生深刻地改变了人类社会:在20世纪推动了社会发展的核能、激光、半导体等高科技,都是源于量子力学。然后,自然界是否确实按照量子理论的规律运行?以爱因斯坦为代表的一方始终认定量子力学不是完备的理论,“上帝是不会玩骰子的”,而以哥本哈根学派领袖玻尔为代表的另一方则坚信量子理论的正确性。
量子客体的波粒两象性迫使人们不得不引入波函数(量子态)来描述量子客体的状态,着名物理学家费曼曾指出:量子力学的精妙之处在于引入几率幅(即量子态)的概念。事实上,量子世界的千奇百怪的特性正是起源于这个量子态,而关于量子理论的长期激烈争论的焦点也在这个量子态。

热点内容
谷能压缩机 发布:2025-01-13 15:44:30 浏览:412
电脑电脑直连通讯ftp 发布:2025-01-13 15:38:03 浏览:717
nvm存储 发布:2025-01-13 15:36:19 浏览:552
京东架构师缓存经验 发布:2025-01-13 15:33:00 浏览:726
android图片颜色 发布:2025-01-13 15:26:09 浏览:268
国家税务总局电脑服务器 发布:2025-01-13 15:10:24 浏览:596
金立老款机的开机密码是多少 发布:2025-01-13 15:04:45 浏览:456
湖南网上办税初始密码多少 发布:2025-01-13 15:02:49 浏览:417
怎么使用笔记本连接服务器 发布:2025-01-13 15:02:48 浏览:705
长城cs75plus选哪个配置 发布:2025-01-13 14:54:05 浏览:22