存储器的概述
㈠ 微型计算机中的主存储器一般是由什么组成
主存储器概述
(1)主存储器的两个重要技术指标
◎读写速度:常常用存储周期来度量,存储周期是连续启动两次独立的存储器操作(如读操作)所必需的时间间隔。
◎存储容量:通常用构成存储器的字节数或字数来计量。
(2)主存储器与CPU及外围设备的连接
是通过地址总线、数据总线、控制总线进行连接,
◎地址总线用于选择主存储器的一个存储单元,若地址总线的位数k,则最大可寻址空间为2k。如k=20,可访问1MB的存储单元。
◎数据总线用于在计算机各功能部件之间传送数据。
◎控制总线用于指明总线的工作周期和本次输入/输出完成的时刻。
(3)主存储器分类
◎按信息保存的长短分:ROM与RAM
ROM在计算机中一般板卡的BIOS都是ROM的如主板的BIOS。
RAM在计算机中像内存,CACHE都是RAM
◎按生产工艺分:静态存储器与动态存储器
静态存储器(SRAM):读写速度快,生产成本高,多用于容量较小的高速缓冲存储器。
动态存储器(DRAM):读写速度较慢,集成度高,生产成本低,多用于容量较大的主存储器。
静态存储器与动态存储器主要性能比较如下表:
静态和动态存储器芯片特性比较
SRAM DRAM
存储信息 触发器 电容
破坏性读出 非 是
需要刷新 不要 需要
送行列地址 同时送 分两次送
运行速度 快 慢
集成度 低 高
发热量 大 小
存储成本 高 低
动态存储器的定期刷新:在不进行读写操作时,DRAM 存储器的各单元处于断电状态,由于漏电的存在,保存在电容CS 上的电荷会慢慢地漏掉,为此必须定时予以补充,称为刷新操作。
㈡ 在微型计算机中,存取速度最快的存储器是什么
在微型计算机中,存取速度最快的存储器是内存储器。
1、软盘:软盘上有写保护口,当写保护口处于保护状态(即写保护口打开)时,只能读取盘中信息,而不能写入,用于防止擦除或重写数据,也能防止病毒侵入。
2、硬盘:是微机上最重要的外存储器,它由多个质地较硬的涂有磁性材料的金属盘片组成,每个盘片的每一面都有一个读、写磁头,用于磁盘信息的读写。硬盘是目前存取速度最快的外存。
3、闪存(Flash Memory)作为存储介质的半导体集成电路制成的电子盘已成为主流的可移动外存。电子盘又称“优盘”,可反复存取数据。
4、光存储器:是利用激光技术存储信息的装置。目前用于计算机系统的光盘可分:为只读光盘(CD-ROM、DVD)、追记型光盘(CD-R、WORM)和可改写型光盘(CD-RW、MO)等。光盘存储介质具有价格低、保存时间长、存储量大等特点,已成为微机的标准配置。
(2)存储器的概述扩展阅读
内存储器分类:
1、随机存储器(Random Access Memory)
随机存储器是一种可以随机读∕写数据的存储器,也称为读∕写存储器。RAM有以下两个特点:
一是可以读出,也可以写入。读出时并不损坏原来存储的内容,只有写入时才修改原来所存储的内容。
二是RAM只能用于暂时存放信息,一旦断电,存储内容立即消失,即具有易失性。
2、只读存储器(Read Only Memory)
ROM是只读存储器,顾名思义,它的特点是只能读出原有的内容,不能由用户再写入新内容。原来存储的内容是采用掩膜技术由厂家一次性写入的,并永久保存下来。
它一般
用来存放专用的固定的程序和数据。只读存储器是一种非易失性存储器,一旦写入信息后,无需外加电源来保存信息,不会因断电而丢失。
3、CMOS存储器(Complementary Metal Oxide Semiconctor Memory,互补金属氧化物半导体内存)。CMOS内存是一种只需要极少电量就能存放数据的芯片。
由于耗能极低,CMOS内存可以由集成到主板上的一个小电池供电,这种电池在计算机通电时还能自动充电。因为CMOS芯片可以持续获得电量,所以即使在关机后,他也能保存有关计算机系统配置的重要数据。
㈢ 什么是内存
英文名称:Memory
拼音:nèi cún
【内存简介】
在计算机的组成结构中,有一个很重要的部分,就是存储器。存储器是用来存储程序和数据的部件,对于计算机来说,有了存储器,才有记忆功能,才能保证正常工作。存储器的种类很多,按其用途可分为主存储器和辅助存储器,主存储器又称内存储器(简称内存)。
内存是电脑中的主要部件,它是相对于外存而言的。我们平常使用的程序,如Windows98系统、打字软件、游戏软件等,一般都是安装在硬盘等外存上的,但仅此是不能使用其功能的,必须把它们调入内存中运行,才能真正使用其功能,我们平时输入一段文字,或玩一个游戏,其实都是在内存中进行的。通常我们把要永久保存的、大量的数据存储在外存上,而把一些临时的或少量的数据和程序放在内存上。
【内存概述】
内存就是存储程序以及数据的地方,比如当我们在使用WPS处理文稿时,当你在键盘上敲入字符时,它就被存入内存中,当你选择存盘时,内存中的数据才会被存入硬(磁)盘。在进一步理解它之前,还应认识一下它的物理概念。
内存一般采用半导体存储单元,包括随机存储器(RAM),只读存储器(ROM),以及高速缓存(CACHE)。只不过因为RAM是其中最重要的存储器。S(SYSNECRONOUS)DRAM 同步动态随机存取存储器:SDRAM为168脚,这是目前PENTIUM及以上机型使用的内存。SDRAM将CPU与RAM通过一个相同的时钟锁在一起,使CPU和RAM能够共享一个时钟周期,以相同的速度同步工作,每一个时钟脉冲的上升沿便开始传递数据,速度比EDO内存提高50%。DDR(DOUBLE DATA RAGE)RAM :SDRAM的更新换代产品,他允许在时钟脉冲的上升沿和下降沿传输数据,这样不需要提高时钟的频率就能加倍提高SDRAM的速度。
●只读存储器(ROM)
ROM表示只读存储器(Read Only Memory),在制造ROM的时候,信息(数据或程序)就被存入并永久保存。这些信息只能读出,一般不能写入,即使机器掉电,这些数据也不会丢失。ROM一般用于存放计算机的基本程序和数据,如BIOS ROM。其物理外形一般是双列直插式(DIP)的集成块。
●随机存储器(RAM)
随机存储器(Random Access Memory)表示既可以从中读取数据,也可以写入数据。当机器电源关闭时,存于其中的数据就会丢失。我们通常购买或升级的内存条就是用作电脑的内存,内存条(SIMM)就是将RAM集成块集中在一起的一小块电路板,它插在计算机中的内存插槽上,以减少RAM集成块占用的空间。目前市场上常见的内存条有256M/条、512M/条、1G/条等。
●高速缓冲存储器(Cache)
Cache也是我们经常遇到的概念,它位于CPU与内存之间,是一个读写速度比内存更快的存储器。当CPU向内存中写入或读出数据时,这个数据也被存储进高速缓冲存储器中。当CPU再次需要这些数据时,CPU就从高速缓冲存储器读取数据,而不是访问较慢的内存,当然,如需要的数据在Cache中没有,CPU会再去读取内存中的数据。
●物理存储器和地址空间
物理存储器和存储地址空间是两个不同的概念。但是由于这两者有十分密切的关系,而且两者都用B、KB、MB、GB来度量其容量大小,因此容易产生认识上的混淆。初学者弄清这两个不同的概念,有助于进一步认识内存储器和用好内存储器。
物理存储器是指实际存在的具体存储器芯片。如主板上装插的内存条和装载有系统的BIOS的ROM芯片,显示卡上的显示RAM芯片和装载显示BIOS的ROM芯片,以及各种适配卡上的RAM芯片和ROM芯片都是物理存储器。
存储地址空间是指对存储器编码(编码地址)的范围。所谓编码就是对每一个物理存储单元(一个字节)分配一个号码,通常叫作“编址”。分配一个号码给一个存储单元的目的是为了便于找到它,完成数据的读写,这就是所谓的“寻址”(所以,有人也把地址空间称为寻址空间)。
地址空间的大小和物理存储器的大小并不一定相等。举个例子来说明这个问题:某层楼共有17个房间,其编号为801~817。这17个房间是物理的,而其地址空间采用了三位编码,其范围是800~899共100个地址,可见地址空间是大于实际房间数量的。
对于386以上档次的微机,其地址总线为32位,因此地址空间可达2的23次方,即4GB。但实际上我们所配置的物理存储器通常只有1MB、2MB、4MB、8MB、16MB、32MB等,远小于地址空间所允许的范围。
好了,现在可以解释为什么会产生诸如:常规内存、保留内存、上位内存、高端内存、扩充内存和扩展内存等不同内存类型。
【内存概念】
各种内存概念
这里需要明确的是,我们讨论的不同内存的概念是建立在寻址空间上的。
IBM推出的第一台PC机采用的CPU是8088芯片,它只有20根地址线,也就是说,它的地址空间是1MB。
PC机的设计师将1MB中的低端640KB用作RAM,供DOS及应用程序使用,高端的384KB则保留给ROM、视频适配卡等系统使用。从此,这个界限便被确定了下来并且沿用至今。低端的640KB就被称为常规内存即PC机的基本RAM区。保留内存中的低128KB是显示缓冲区,高64KB是系统BIOS(基本输入/输出系统)空间,其余192KB空间留用。从对应的物理存储器来看,基本内存区只使用了512KB芯片,占用0000至80000这512KB地址。显示内存区虽有128KB空间,但对单色显示器(MDA卡)只需4KB就足够了,因此只安装4KB的物理存储器芯片,占用了B0000至B10000这4KB的空间,如果使用彩色显示器(CGA卡)需要安装16KB的物理存储器,占用B8000至BC000这16KB的空间,可见实际使用的地址范围都小于允许使用的地址空间。
在当时(1980年末至1981年初)这么“大”容量的内存对PC机使用者来说似乎已经足够了,但是随着程序的不断增大,图象和声音的不断丰富,以及能访问更大内存空间的新型CPU相继出现,最初的PC机和MS-DOS设计的局限性变得越来越明显。
●1.什么是扩充内存?
到1984年,即286被普遍接受不久,人们越来越认识到640KB的限制已成为大型程序的障碍,这时,Intel和Lotus,这两家硬、软件的杰出代表,联手制定了一个由硬件和软件相结合的方案,此方法使所有PC机存取640KB以上RAM成为可能。而Microsoft刚推出Windows不久,对内存空间的要求也很高,因此它也及时加入了该行列。
在1985年初,Lotus、Intel和Microsoft三家共同定义了LIM-EMS,即扩充内存规范,通常称EMS为扩充内存。当时,EMS需要一个安装在I/O槽口的内存扩充卡和一个称为EMS的扩充内存管理程序方可使用。但是I/O插槽的地址线只有24位(ISA总线),这对于386以上档次的32位机是不能适应的。所以,现在已很少使用内存扩充卡。现在微机中的扩充内存通常是用软件如DOS中的EMM386把扩展内存模拟或扩充内存来使用。所以,扩充内存和扩展内存的区别并不在于其物理存储器的位置,而在于使用什么方法来读写它。下面将作进一步介绍。
前面已经说过扩充存储器也可以由扩展存储器模拟转换而成。EMS的原理和XMS不同,它采用了页帧方式。页帧是在1MB空间中指定一块64KB空间(通常在保留内存区内,但其物理存储器来自扩展存储器),分为4页,每页16KB。EMS存储器也按16KB分页,每次可交换4页内容,以此方式可访问全部EMS存储器。符合EMS的驱动程序很多,常用的有EMM386.EXE、QEMM、TurboEMS、386MAX等。DOS和Windows中都提供了EMM386.EXE。
●2.什么是扩展内存?
我们知道,286有24位地址线,它可寻址16MB的地址空间,而386有32位地址线,它可寻址高达4GB的地址空间,为了区别起见,我们把1MB以上的地址空间称为扩展内存XMS(eXtend memory)。
在386以上档次的微机中,有两种存储器工作方式,一种称为实地址方式或实方式,另一种称为保护方式。在实方式下,物理地址仍使用20位,所以最大寻址空间为1MB,以便与8086兼容。保护方式采用32位物理地址,寻址范围可达4GB。DOS系统在实方式下工作,它管理的内存空间仍为1MB,因此它不能直接使用扩展存储器。为此,Lotus、Intel、AST及Microsoft公司建立了MS-DOS下扩展内存的使用标准,即扩展内存规范XMS。我们常在Config.sys文件中看到的Himem.sys就是管理扩展内存的驱动程序。
扩展内存管理规范的出现迟于扩充内存管理规范。
●3.什么是高端内存区?
在实方式下,内存单元的地址可记为:
段地址:段内偏移
通常用十六进制写为XXXX:XXXX。实际的物理地址由段地址左移4位再和段内偏移相加而成。若地址各位均为1时,即为FFFF:FFFF。其实际物理地址为:FFF0+FFFF=10FFEF,约为1088KB(少16字节),这已超过1MB范围进入扩展内存了。这个进入扩展内存的区域约为64KB,是1MB以上空间的第一个64KB。我们把它称为高端内存区HMA(High Memory Area)。HMA的物理存储器是由扩展存储器取得的。因此要使用HMA,必须要有物理的扩展存储器存在。此外HMA的建立和使用还需要XMS驱动程序HIMEM.SYS的支持,因此只有装入了HIMEM.SYS之后才能使用HMA。
●4.什么是上位内存?
为了解释上位内存的概念,我们还得回过头看看保留内存区。保留内存区是指640KB~1024KB(共384KB)区域。这部分区域在PC诞生之初就明确是保留给系统使用的,用户程序无法插足。但这部分空间并没有充分使用,因此大家都想对剩余的部分打主意,分一块地址空间(注意:是地址空间,而不是物理存储器)来使用。于是就得到了又一块内存区域UMB。
UMB(Upper Memory Blocks)称为上位内存或上位内存块。它是由挤占保留内存中剩余未用的空间而产生的,它的物理存储器仍然取自物理的扩展存储器,它的管理驱动程序是EMS驱动程序。
●5.什么是SHADOW(影子)内存?
对于细心的读者,可能还会发现一个问题:即是对于装有1MB或1MB以上物理存储器的机器,其640KB~1024KB这部分物理存储器如何使用的问题。由于这部分地址空间已分配为系统使用,所以不能再重复使用。为了利用这部分物理存储器,在某些386系统中,提供了一个重定位功能,即把这部分物理存储器的地址重定位为1024KB~1408KB。这样,这部分物理存储器就变成了扩展存储器,当然可以使用了。但这种重定位功能在当今高档机器中不再使用,而把这部分物理存储器保留作为Shadow存储器。Shadow存储器可以占据的地址空间与对应的ROM是相同的。Shadow由RAM组成,其速度大大高于ROM。当把ROM中的内容(各种BIOS程序)装入相同地址的Shadow RAM中,就可以从RAM中访问BIOS,而不必再访问ROM。这样将大大提高系统性能。因此在设置CMOS参数时,应将相应的Shadow区设为允许使用(Enabled)。
●6、什么是奇/偶校验?
奇/偶校验(ECC)是数据传送时采用的一种校正数据错误的一种方式,分为奇校验和偶校验两种。
如果是采用奇校验,在传送每一个字节的时候另外附加一位作为校验位,当实际数据中“1”的个数为偶数的时候,这个校验位就是“1”,否则这个校验位就是“0”,这样就可以保证传送数据满足奇校验的要求。在接收方收到数据时,将按照奇校验的要求检测数据中“1”的个数,如果是奇数,表示传送正确,否则表示传送错误。
同理偶校验的过程和奇校验的过程一样,只是检测数据中“1”的个数为偶数。
●1.什么是CL延迟?
CL反应时间是衡定内存的另一个标志。CL是CAS Latency的缩写,指的是内存存取数据所需的延迟时间,简单的说,就是内存接到CPU的指令后的反应速度。一般的参数值是2和3两种。数字越小,代表反应所需的时间越短。在早期的PC133内存标准中,这个数值规定为3,而在Intel重新制订的新规范中,强制要求CL的反应时间必须为2,这样在一定程度上,对于内存厂商的芯片及PCB的组装工艺要求相对较高,同时也保证了更优秀的品质。因此在选购品牌内存时,这是一个不可不察的因素。
还有另的诠释:内存延迟基本上可以解释成是系统进入数据进行存取操作就绪状态前等待内存响应的时间。
打个形象的比喻,就像你在餐馆里用餐的过程一样。你首先要点菜,然后就等待服务员给你上菜。同样的道理,内存延迟时间设置的越短,电脑从内存中读取数据的速度也就越快,进而电脑其他的性能也就越高。这条规则双双适用于基于英特尔以及AMD处理器的系统中。由于没有比2-2-2-5更低的延迟,因此国际内存标准组织认为以现在的动态内存技术还无法实现0或者1的延迟。
通常情况下,我们用4个连着的阿拉伯数字来表示一个内存延迟,例如2-2-2-5。其中,第一个数字最为重要,它表示的是CAS Latency,也就是内存存取数据所需的延迟时间。第二个数字表示的是RAS-CAS延迟,接下来的两个数字分别表示的是RAS预充电时间和Act-to-Precharge延迟。而第四个数字一般而言是它们中间最大的一个。
总结
经过上面分析,内存储器的划分可归纳如下:
●基本内存 占据0~640KB地址空间。
●保留内存 占据640KB~1024KB地址空间。分配给显示缓冲存储器、各适配卡上的ROM和系统ROM BIOS,剩余空间可作上位内存UMB。UMB的物理存储器取自物理扩展存储器。此范围的物理RAM可作为Shadow RAM使用。
●上位内存(UMB) 利用保留内存中未分配使用的地址空间建立,其物理存储器由物理扩展存储器取得。UMB由EMS管理,其大小可由EMS驱动程序设定。
●高端内存(HMA) 扩展内存中的第一个64KB区域(1024KB~1088KB)。由HIMEM.SYS建立和管理。
●XMS内存 符合XMS规范管理的扩展内存区。其驱动程序为HIMEM.SYS。
●EMS内存 符合EMS规范管理的扩充内存区。其驱动程序为EMM386.EXE等。
内存:随机存储器(RAM),主要存储正在运行的程序和要处理的数据。
㈣ 后备存储器的概念
存储器单元实际上是时序逻辑电路的一种。按存储器的使用类型可分为只读存储器(ROM)和随机存取存储器(RAM),两者的功能有较大的区别,因此在描述上也有所不同[1]。
存储器是许多存储单元的集合,按单元号顺序排列。每个单元由若干三进制位构成,以表示存储单元中存放的数值,这种结构和数组的结构非常相似,故在VHDL语言中,通常由数组描述存储器[1]。
中文名
存储器
外文名
Memory
属于
计算机系统中的记忆设备
功能
用来存放程序和数据
定义
用来存储数据和指令等的记忆部件
快速
导航
概述
分类
结构
存储系统的层次结构
储存器的扩展
存储器组织
存储管理的目的
存储器阵列
未来趋势
简介
存储器是用来存储程序和各种数据信息的记忆部件。存储器可分为主存储器(简称主存或内存)和辅助存储器(简称辅存或外存)两大类。和CPU直接交换信息的是主存。[2]
主存的工作方式是按存储单元的地址存放或读取各类信息,统称访问存储器。主存中汇集存储单元的载体称为存储体,存储体中每个单元能够存放一串二进制码表示的信息,该信息的总位数称为一个存储单元的字长。存储单元的地址与存储在其中的信息是一一对应的,单元地址只有一个,固定不变,而存储在其中的信息是可以更换的。[2]
指示每个单元的二进制编码称为地址码。寻找某个单元时,先要给出它的地址码。暂存这个地址码的寄存器叫存储器地址寄存器(MAR)。为可存放从主存的存储单元内取出的信息或准备存入某存储单元的信息,还要设置一个存储器数据寄存器
㈤ 内存和外存在计算机系统中的作用
作用:
内存读取和存贮很快,能和CPU的频率相匹配,存储一些总是用到的和需要处理的数据。外存用来存放一些暂时不用而有需要长期存储的数据。
内存(Memory)是计算机的重要部件之一,也称内存储器和主存储器,它用于暂时存放CPU中的运算数据,与硬盘等外部存储器交换的数据。它是外存与CPU进行沟通的桥梁,计算机中所有程序的运行都在内存中进行,内存性能的强弱影响计算机整体发挥的水平。
外储存器是指除计算机内存及CPU缓存以外的储存器,此类储存器一般断电后仍然能保存数据。常见的外存储器有硬盘、软盘、光盘、U盘等。
概述
在计算机的组成结构中有一个很重要的部分是存储器。它是用来存储程序和数据的部件。
对于计算机来说,有了存储器,才有记忆功能,才能保证正常工作。
存储器的种类很多。按其用途可分为主存储器和辅助存储器,主存储器又称内存储器(简称内存,港台称之为记忆体)。
内存又称主存。它是CPU能直接寻址的存储空间,由半导体器件制成。特点是存取速率快。
内存是电脑中的主要部件,它是相对于外存而言的。
㈥ 计算机组成原理这门课程第三章内部存储器的知识点有哪些
计算机组成原理这门课第三章内部存储器的知识点包含章节导引,第一节存储器概述,第二节SRAM存储器,第三节DRAM存储器,第四节只读存储器和闪速存储器,第五节并行存储器,第六节Cache存储器,。
㈦ 在微型计算机中,存取速度最快的存储器是什么
在微型计算机中,存取速度最快的存储器是内存储器。
微型计算机中移动存储器是相对固定在机器上的存储器而言的,其最大优点在于安装和拆除都很方便。它主要包括机械结构的移动硬盘和没有机械结构的闪存两大类。闪存是利用>/-8A+ 30F76T 技术实现数据存储的,因其样子有如一张卡片,又称之为闪存卡。
内存储器其作用是用于暂时存放CPU中的运算数据,以及与硬盘等外部存储器交换的数据。只要计算机在运行中,CPU就会把需要运算的数据调到内存中进行运算,当运算完成后CPU再将结果传送出来,内存的运行也决定了计算机的稳定运行。 内存是由内存芯片、电路板、金手指等部分组成的。
(7)存储器的概述扩展阅读
半导体存储器从使用功能上分,有随机存储器 (Random Access Memory,简称 RAM),又称读写存储器;只读存储器(Read Only Memory,简称为ROM)。
1、随机存储器(Random Access Memory)
随机存储器是一种可以随机读∕写数据的存储器,也称为读∕写存储器。
DRAM的特点是集成度高,主要用于大容量内存储器;SRAM的特点是存取速度快,主要用于高速缓冲存储器。
2、只读存储器(Read Only Memory)
ROM是只读存储器,顾名思义,它的特点是只能读出原有的内容,不能由用户再写入新内容。原来存储的内容是采用掩膜技术由厂家一次性写入的,并永久保存下来。
它一般
用来存放专用的固定的程序和数据。只读存储器是一种非易失性存储器,一旦写入信息后,无需外加电源来保存信息,不会因断电而丢失。
3、CMOS存储器(Complementary Metal Oxide Semiconctor Memory,互补金属氧化物半导体内存)
CMOS内存是一种只需要极少电量就能存放数据的芯片。由于耗能极低,CMOS内存可以由集成到主板上的一个小电池供电,这种电池在计算机通电时还能自动充电。因为CMOS芯片可以持续获得电量,所以即使在关机后,他也能保存有关计算机系统配置的重要数据。
㈧ 电脑内存的作用是什么具体形象的跟我解释一下喽
【内存简介】
[编辑本段]
在计算机的组成结构中,有一个很重要的部分,就是存储器。存储器是用来存储程序和数据的部件,对于计算机来说,有了存储器,才有记忆功能,才能保证正常工作。存储器的种类很多,按其用途可分为主存储器和辅助存储器,主存储器又称内存储器(简称内存)。
内存是电脑中的主要部件,它是相对于外存而言的。我们平常使用的程序,如Windows操作系统、打字软件、游戏软件等,一般都是安装在硬盘等外存上的,但仅此是不能使用其功能的,必须把它们调入内存中运行,才能真正使用其功能,我们平时输入一段文字,或玩一个游戏,其实都是在内存中进行的。通常我们把要永久保存的、大量的数据存储在外存上,而把一些临时的或少量的数据和程序放在内存上。
【内存概述】
[编辑本段]
内存就是存储程序以及数据的地方,比如当我们在使用WPS处理文稿时,当你在键盘上敲入字符时,它就被存入内存中,当你选择存盘时,内存中的数据才会被存入硬(磁)盘。在进一步理解它之前,还应认识一下它的物理概念。
内存一般采用半导体存储单元,包括随机存储器(RAM),只读存储器(ROM),以及高速缓存(CACHE)。只不过因为RAM是其中最重要的存储器。S(synchronous)DRAM 同步动态随机存取存储器:SDRAM为168脚,这是目前PENTIUM及以上机型使用的内存。SDRAM将CPU与RAM通过一个相同的时钟锁在一起,使CPU和RAM能够共享一个时钟周期,以相同的速度同步工作,每一个时钟脉冲的上升沿便开始传递数据,速度比EDO内存提高50%。DDR(DOUBLE DATA RAGE)RAM :SDRAM的更新换代产品,他允许在时钟脉冲的上升沿和下降沿传输数据,这样不需要提高时钟的频率就能加倍提高SDRAM的速度。
㈨ 快闪存储器的概述
闪存具有较快的读取速度,其读取时间小于100ns,这个速度可以和主存储器相比。但是由于它的写入操作比较复杂,花费时间较长。而 与硬盘相比,闪存的动态抗震能力更强,因此它非常适合用于移动设备上,例如笔记本电脑、相机和手机等。闪存的一个典型应用USB盘已经成为计算机系统之间传输数据的流行手段。
㈩ 简述SRAM,DRAM型存储器的工作原理
个人电脑的主要结构:
显示器
主机板
CPU
(微处理器)
主要储存器
(记忆体)
扩充卡
电源供应器
光盘机
次要储存器
(硬盘)
键盘
鼠标
尽管计算机技术自20世纪40年代第一台电子通用计算机诞生以来以来有了令人目眩的飞速发展,但是今天计算机仍然基本上采用的是存储程序结构,即冯·诺伊曼结构。这个结构实现了实用化的通用计算机。
存储程序结构间将一台计算机描述成四个主要部分:算术逻辑单元(ALU),控制电路,存储器,以及输入输出设备(I/O)。这些部件通过一组一组的排线连接(特别地,当一组线被用于多种不同意图的数据传输时又被称为总线),并且由一个时钟来驱动(当然某些其他事件也可能驱动控制电路)。
概念上讲,一部计算机的存储器可以被视为一组“细胞”单元。每一个“细胞”都有一个编号,称为地址;又都可以存储一个较小的定长信息。这个信息既可以是指令(告诉计算机去做什么),也可以是数据(指令的处理对象)。原则上,每一个“细胞”都是可以存储二者之任一的。
算术逻辑单元(ALU)可以被称作计算机的大脑。它可以做两类运算:第一类是算术运算,比如对两个数字进行加减法。算术运算部件的功能在ALU中是十分有限的,事实上,一些ALU根本不支持电路级的乘法和除法运算(由是使用者只能通过编程进行乘除法运算)。第二类是比较运算,即给定两个数,ALU对其进行比较以确定哪个更大一些。
输入输出系统是计算机从外部世界接收信息和向外部世界反馈运算结果的手段。对于一台标准的个人电脑,输入设备主要有键盘和鼠标,输出设备则是显示器,打印机以及其他许多后文将要讨论的可连接到计算机上的I/O设备。
控制系统将以上计算机各部分联系起来。它的功能是从存储器和输入输出设备中读取指令和数据,对指令进行解码,并向ALU交付符合指令要求的正确输入,告知ALU对这些数据做那些运算并将结果数据返回到何处。控制系统中一个重要组件就是一个用来保持跟踪当前指令所在地址的计数器。通常这个计数器随着指令的执行而累加,但有时如果指令指示进行跳转则不依此规则。
20世纪80年代以来ALU和控制单元(二者合成中央处理器,CPU)逐渐被整合到一块集成电路上,称作微处理器。这类计算机的工作模式十分直观:在一个时钟周期内,计算机先从存储器中获取指令和数据,然后执行指令,存储数据,再获取下一条指令。这个过程被反复执行,直至得到一个终止指令。
由控制器解释,运算器执行的指令集是一个精心定义的数目十分有限的简单指令集合。一般可以分为四类:1)、数据移动(如:将一个数值从存储单元A拷贝到存储单元B)2)、数逻运算(如:计算存储单元A与存储单元B之和,结果返回存储单元C)3)、条件验证(如:如果存储单元A内数值为100,则下一条指令地址为存储单元F)4)、指令序列改易(如:下一条指令地址为存储单元F)
指令如同数据一样在计算机内部是以二进制来表示的。比如说,10110000就是一条Intel
x86系列微处理器的拷贝指令代码。某一个计算机所支持的指令集就是该计算机的机器语言。因此,使用流行的机器语言将会使既成软件在一台新计算机上运行得更加容易。所以对于那些机型商业化软件开发的人来说,它们通常只会关注一种或几种不同的机器语言。
更加强大的小型计算机,大型计算机和服务器可能会与上述计算机有所不同。它们通常将任务分担给不同的CPU来执行。今天,微处理器和多核个人电脑也在朝这个方向发展。
超级计算机通常有着与基本的存储程序计算机显着区别的体系结构。它们通常由者数以千计的CPU,不过这些设计似乎只对特定任务有用。在各种计算机中,还有一些微控制器采用令程序和数据分离的哈佛架构(Harvard
architecture)。