大数据存储系统的演变
⑴ 大数据 存储技术必须跟上
大数据:存储技术必须跟上
“大数据” 通常指的是那些数量巨大、难于收集、处理、分析的数据集,亦指那些在传统基础设施中长期保存的数据。这里的“大”有几层含义,它可以形容组织的大小,而更重要的是,它界定了企业中IT基础设施的规模。业内对大数据应用寄予了无限的期望 商业信息积累的越多价值也越大 只不过我们需要一个方法把这些价值挖掘出来。
也许人们对大数据的印象主要从存储容量的廉价性而来,但实际上,企业每天都在创造大量的数据,而且越来越多,而人们正在努力的从浩如烟海的数据中寻觅有价值的商业情报。另一方面,用户还会保存那些已经分析过的数据,因为这些旧数据可以与未来收集的新数据进行对照,依然有潜在的利用可能。
为什么要大数据?为什么是现在?
与以往相比,我们除了有能力存储更多的数据量之外,还要面对更多的数据类型。这些数据的来源包括网上交易、网络社交活动、自动传感器、移动设备以及科学仪器等等。除了那些固定的数据生产源,各种交易行为还可能加快数据的积累速度。比如说,社交类多媒体数据的爆炸性增长就源于新的网上交易和记录行为。数据永远都在增长之中,但是,只有存储海量数据的能力是不够的,因为这并不能保证我们能够成功地从中搜寻出商业价值。
数据是重要的生产要素
信息时代,数据俨然已成为一种重要的生产要素,如同资本、劳动力和原材料等其他要素一样,而且作为一种普遍需求,它也不再局限于某些特殊行业的应用。各行各业的公司都在收集并利用大量的数据分析结果,尽可能的降低成本,提高产品质量、提高生产效率以及创造新的产品。例如,通过分析直接从产品测试现场收集的数据,能够帮助企业改进设计。此外,一家公司还可以通过深入分析客户行为,对比大量的市场数据,从而超越他的竞争对手。
存储技术必须跟上
随着大数据应用的爆发性增长,它已经衍生出了自己独特的架构,而且也直接推动了存储、网络以及计算技术的发展。毕竟处理大数据这种特殊的需求是一个新的挑战。硬件的发展最终还是由软件需求推动的,就这个例子来说,我们很明显的看到大数据分析应用需求正在影响着数据存储基础设施的发展。
从另一方面看,这一变化对存储厂商和其他IT基础设施厂商未尝不是一个机会。随着结构化数据和非结构化数据量的持续增长,以及分析数据来源的多样化,此前存储系统的设计已经无法满足大数据应用的需要。存储厂商已经意识到这一点,他们开始修改基于块和文件的存储系统的架构设计以适应这些新的要求。在这里,我们会讨论哪些与大数据存储基础设施相关的属性,看看它们如何迎接大数据的挑战。
容量问题
这里所说的“大容量”通常可达到PB级的数据规模,因此,海量数据存储系统也一定要有相应等级的扩展能力。与此同时,存储系统的扩展一定要简便,可以通过增加模块或磁盘柜来增加容量,甚至不需要停机。基于这样的需求,客户现在越来越青睐Scale-out架构的存储。Scale-out集群结构的特点是每个节点除了具有一定的存储容量之外,内部还具备数据处理能力以及互联设备,与传统存储系统的烟囱式架构完全不同,Scale-out架构可以实现无缝平滑的扩展,避免存储孤岛。
“大数据”应用除了数据规模巨大之外,还意味着拥有庞大的文件数量。因此如何管理文件系统层累积的元数据是一个难题,处理不当的话会影响到系统的扩展能力和性能,而传统的NAS系统就存在这一瓶颈。所幸的是,基于对象的存储架构就不存在这个问题,它可以在一个系统中管理十亿级别的文件数量,而且还不会像传统存储一样遭遇元数据管理的困扰。基于对象的存储系统还具有广域扩展能力,可以在多个不同的地点部署并组成一个跨区域的大型存储基础架构。[page] 延迟问题
“大数据”应用还存在实时性的问题。特别是涉及到与网上交易或者金融类相关的应用。举个例子来说,网络成衣销售行业的在线广告推广服务需要实时的对客户的浏览记录进行分析,并准确的进行广告投放。这就要求存储系统在必须能够支持上述特性同时保持较高的响应速度,因为响应延迟的结果是系统会推送“过期”的广告内容给客户。这种场景下,Scale-out架构的存储系统就可以发挥出优势,因为它的每一个节点都具有处理和互联组件,在增加容量的同时处理能力也可以同步增长。而基于对象的存储系统则能够支持并发的数据流,从而进一步提高数据吞吐量。
有很多“大数据”应用环境需要较高的IOPS性能,比如HPC高性能计算。此外,服务器虚拟化的普及也导致了对高IOPS的需求,正如它改变了传统IT环境一样。为了迎接这些挑战,各种模式的固态存储设备应运而生,小到简单的在服务器内部做高速缓存,大到全固态介质的可扩展存储系统等等都在蓬勃发展。
并发访问 一旦企业认识到大数据分析应用的潜在价值,他们就会将更多的数据集纳入系统进行比较,同时让更多的人分享并使用这些数据。为了创造更多的商业价值,企业往往会综合分析那些来自不同平台下的多种数据对象。包括全局文件系统在内的存储基础设施就能够帮助用户解决数据访问的问题,全局文件系统允许多个主机上的多个用户并发访问文件数据,而这些数据则可能存储在多个地点的多种不同类型的存储设备上。
安全问题
某些特殊行业的应用,比如金融数据、医疗信息以及政府情报等都有自己的安全标准和保密性需求。虽然对于IT管理者来说这些并没有什么不同,而且都是必须遵从的,但是,大数据分析往往需要多类数据相互参考,而在过去并不会有这种数据混合访问的情况,因此大数据应用也催生出一些新的、需要考虑的安全性问题。
成本问题
“大”,也可能意味着代价不菲。而对于那些正在使用大数据环境的企业来说,成本控制是关键的问题。想控制成本,就意味着我们要让每一台设备都实现更高的“效率”,同时还要减少那些昂贵的部件。目前,像重复数据删除等技术已经进入到主存储市场,而且现在还可以处理更多的数据类型,这都可以为大数据存储应用带来更多的价值,提升存储效率。在数据量不断增长的环境中,通过减少后端存储的消耗,哪怕只是降低几个百分点,都能够获得明显的投资回报。此外,自动精简配置、快照和克隆技术的使用也可以提升存储的效率。[page] 很多大数据存储系统都包括归档组件,尤其对那些需要分析历史数据或需要长期保存数据的机构来说,归档设备必不可少。从单位容量存储成本的角度看,磁带仍然是最经济的存储介质,事实上,在许多企业中,使用支持TB级大容量磁带的归档系统仍然是事实上的标准和惯例。
对成本控制影响最大的因素是那些商业化的硬件设备。因此,很多初次进入这一领域的用户以及那些应用规模最大的用户都会定制他们自己的“硬件平台”而不是用现成的商业产品,这一举措可以用来平衡他们在业务扩展过程中的成本控制战略。为了适应这一需求,现在越来越多的存储产品都提供纯软件的形式,可以直接安装在用户已有的、通用的或者现成的硬件设备上。此外,很多存储软件公司还在销售以软件产品为核心的软硬一体化装置,或者与硬件厂商结盟,推出合作型产品。
数据的积累
许多大数据应用都会涉及到法规遵从问题,这些法规通常要求数据要保存几年或者几十年。比如医疗信息通常是为了保证患者的生命安全,而财务信息通常要保存7年。而有些使用大数据存储的用户却希望数据能够保存更长的时间,因为任何数据都是历史记录的一部分,而且数据的分析大都是基于时间段进行的。要实现长期的数据保存,就要求存储厂商开发出能够持续进行数据一致性检测的功能以及其他保证长期高可用的特性。同时还要实现数据直接在原位更新的功能需求。
灵活性
大数据存储系统的基础设施规模通常都很大,因此必须经过仔细设计,才能保证存储系统的灵活性,使其能够随着应用分析软件一起扩容及扩展。在大数据存储环境中,已经没有必要再做数据迁移了,因为数据会同时保存在多个部署站点。一个大型的数据存储基础设施一旦开始投入使用,就很难再调整了,因此它必须能够适应各种不同的应用类型和数据场景。
应用感知
最早一批使用大数据的用户已经开发出了一些针对应用的定制的基础设施,比如针对政府项目开发的系统,还有大型互联网服务商创造的专用服务器等。在主流存储系统领域,应用感知技术的使用越来越普遍,它也是改善系统效率和性能的重要手段,所以,应用感知技术也应该用在大数据存储环境里。
小用户怎么办?
依赖大数据的不仅仅是那些特殊的大型用户群体,作为一种商业需求,小型企业未来也一定会应用到大数据。我们看到,有些存储厂商已经在开发一些小型的“大数据”存储系统,主要吸引那些对成本比较敏感的用户。
⑵ 大数据时代需要什么样的存储
众多专家认为,大数据时代的存储,应当是分布式的存储,并呈现出与计算融合的趋势。当然,不同专家对融合的理解也有所区别。
SNIA-China技术委员会主席雷涛表示,在当前的大数据时代,由于数据量TB、PB级的急剧膨胀,传统的数据搬移工作已经不现实,因而存储服务器出现新的融合趋势。在这样的架构中,数据不再移动,写入以后分散在STORAGE,它的计算节点融合在数据旁边的CPU,数据越来越贴近计算。
雷涛补充说,大数据只谈商业分析的数据支持,这是小数据思维,从金融、运营商、政府行业我们做的项目里面发现,大数据是嵌入到整个行业里面,替换以前的存储和计算的系统架构的过程。
华为存储产品线Marketing部长经宁认为,大数据带来的三大变化,包括从集中式走向分布式,从水平走向纵向,从计算为中心转向以数据为中心,总结一句话,即在大数据下架构方向走向分布式存储的架构。
2013年,华为存储产品线把理念进行升级,变成“存以致用,融以致远”。经宁表示,融合架构是我们面对大数据挑战一个很好的选择。华为更多的希望把数据智能用起来产生价值,通过融合架构实现计算存储融合,可以带来更高的管理效率更高效能,大大降低我们管理上的开销。
中桥国际调研咨询公司首席分析师王丛女士则从虚拟化、云计算数据保护和融合架构三个维度谈了中国数据中心的发展变化。她表示,具有高可移动性的虚拟机用于生产,掉了链子就很难判断是哪个物理环境,这就驱动了融合架构。融合架构避免了整合的时间和网络问题判断的时间,能够实现统一集中透明管理,可以根据工作负载去实时动态配置资源,也可以实时监控哪里出了问题,怎么解决问题。
王丛还指出,融合架构有不同的形态,其中一种是在原来硬件基础上用一个软件罩上,然后形成融合架构,实现目的是可以在线扩展,所有动态可以负载均衡,在最大限度提高部署效率前提下,又能够降低因为硬件问题而导致的应用性能降低和应用的不稳定。
老牌存储厂商NetApp同样对存储架构很有体会。NetApp公司北方区及电信事业部技术总监刘炜表示,在今天把数据存起来不是很难的问题,买一个移动硬盘就可以存储数据,但是在上面存储享受的服务级别不同的,不同于放在数据中心和网络云上面的服务级别的。
为了不让数据成为整个企业发展的负担,而是成为真正的价值点,从资料变成资产,基础架构需要快速、安全地支持一些新的技术手段。刘炜认为,应用级别和服务级别怎么定义需要有很好存储架构。NetApp集群存储系统,并不是简单地迎合新概念,而是面向实际的应用设计。NetApp做了很多IT架构的设计,满足应用分级、资源分层的需求,你可以用虚拟化,也可以不用。
Fusion-io大中国区技术总监Tonny Ai与英特尔公司通信和存储基础架构事业部存储部市场总监 Christine M Rice女士谈到了SSD在大数据时代数据中心的应用。Tonny Ai表示,让包括非结构化数据的大量数据快速变成信息,不仅仅是服务器要快,存储速度也要跟上CPU的速度,闪存正是针对当前网络存储速度落后的解决方案,能够有效提高存储的性能。
同时,Tonny Ai认为,在云计算、大数据时代,集中式存储需要的管理和维护非常困难,分布式存储模型是大势所趋。在这其中,Fusion-io提供了PCIe闪存卡、全闪存阵列以及SDK工具,支持提升各种应用的性能。
Christine M Rice女士指出,SSD不只是让数据变快。她认为,通过SSD在数据中心的使用,能够帮助节约成本,降低延迟,加快访问数据的速度,同时还能够提供非常高的可靠性和管理级别,结合了DRM的使用进行软件分层管理。
戴尔实现了一个新的技术突破,即快速SLC和eMLC大容量盘可以用到流动架构里面,再加上普通的大容量盘,两级固态盘优化和流动数据架构的配合,这种方案可以比普通纯闪存的方式实现75%以上的成本节约。
⑶ 大数据的发展趋势是怎样的
从近两年大数据方向研究生的就业情况来看,大数据领域的岗位还是比较多的,尤其是大数据开发岗位,目前正逐渐从大数据平台开发向大数据应用开发领域覆盖,这也是大数据开始全面落地应用的必然结果。
当前大数据技术正处在落地应用的初期,所以此时人才招聘会更倾向于研发型人才,而且拥有研究生学历也更容易获得大厂的就业机会,所以对于当前大数据相关专业的大学生来说,如果想获得更强的岗位竞争力和更多的就业渠道,应该考虑读一下研究生。
目前大数据培训相对其他培训项目要好就业,因为其他语言还是技能培训都是有一定的市场基础的,而大数据在最近两年才大力发展,并且在各领域蔓延,因此所产生的人才缺口巨大,而在企业中真正对大数据技能比较强力的技术人才,又特别的少;应用越来越广,技术人才却产生较慢,刚培训的人员,只能适应基本的软件操作和理论基础;还达不到企业要完成复杂业务的技术需求;所以培训入门快,拿薪资快,但只是一时,进入企业,不努力学习是跟不上发展与用人需求的。
⑷ 大数据的发展趋势
1.大数据和开源
Apache Hadoop、Spark和其他开源应用程序已经成为大数据技术空间的主流,而且这种趋势似乎可能会持续下去。一项调查发现,近60%的企业预计到今年年底将采用Hadoop集群投入生产。根据调研机构Forrester公司的报告,Hadoop的使用量每年增长32.9%。
专家表示,到2017年,许多企业将扩大对Hadoop和NoSQL技术的使用,并寻找加快大数据处理的途径。许多人寻求能够让他们实时访问和响应数据的技术。
Hadoop就是开源大数据项目的一个很好的例子。
2.内存技术
内存技术是企业正在研究加速大数据处理的技术之一。在传统数据库中,数据存储在配备有硬盘驱动器或固态驱动器(SSD)的存储系统中。而内存技术可以将数据存储在RAM中,并且存取速度要快很多倍。Forrester 公司的一份报告预测,内存数据结构市场规模每年将增长29.2%。
目前有几家不同的供应商提供内存数据库技术,特别是SAP、IBM、Pivotal公司。
3.机器学习
随着大数据分析能力的进步,一些企业已经开始投资机器学习(ML)。机器学习是人工智能的一个分支,其重点在于允许计算机在没有明确编程的情况下学习新事物。换句话说,它分析现有的大数据存储库来得出改变应用程序行为的结论。
根据Gartner公司的研究,机器学习是2017年十大战略技术趋势之一。报告指出,当今最先进的机器学习和人工智能系统正在超越传统的基于规则的算法,以创建理解、学习、预测,以及潜在地自主操作系统。
⑸ 大数据存储与应用特点及技术路线分析
大数据存储与应用特点及技术路线分析
大数据时代,数据呈爆炸式增长。从存储服务的发展趋势来看,一方面,对数据的存储量的需求越来越大;另一方面,对数据的有效管理提出了更高的要求。大数据对存储设备的容量、读写性能、可靠性、扩展性等都提出了更高的要求,需要充分考虑功能集成度、数据安全性、数据稳定性,系统可扩展性、性能及成本各方面因素。
大数据存储与应用的特点分析
“大数据”是由数量巨大、结构复杂、类型众多数据构成的数据集合,是基于云计算的数据处理与应用模式,通过数据的整合共享,交叉复用形成的智力资源和知识服务能力。其常见特点可以概括为3V:Volume、Velocity、Variety(规模大、速度快、多样性)。
大数据具有数据规模大(Volume)且增长速度快的特性,其数据规模已经从PB级别增长到EB级别,并且仍在不断地根据实际应用的需求和企业的再发展继续扩容,飞速向着ZB(ZETA-BYTE)的规模进军。以国内最大的电子商务企业淘宝为例,根据淘宝网的数据显示,至2011年底,淘宝网最高单日独立用户访问量超过1.2亿人,比2010年同期增长120%,注册用户数量超过4亿,在线商品数量达到8亿,页面浏览量达到20亿规模,淘宝网每天产生4亿条产品信息,每天活跃数据量已经超过50TB.所以大数据的存储或者处理系统不仅能够满足当前数据规模需求,更需要有很强的可扩展性以满足快速增长的需求。
(1)大数据的存储及处理不仅在于规模之大,更加要求其传输及处理的响应速度快(Velocity)。
相对于以往较小规模的数据处理,在数据中心处理大规模数据时,需要服务集群有很高的吞吐量才能够让巨量的数据在应用开发人员“可接受”的时间内完成任务。这不仅是对于各种应用层面的计算性能要求,更加是对大数据存储管理系统的读写吞吐量的要求。例如个人用户在网站选购自己感兴趣的货物,网站则根据用户的购买或者浏览网页行为实时进行相关广告的推荐,这需要应用的实时反馈;又例如电子商务网站的数据分析师根据购物者在当季搜索较为热门的关键词,为商家提供推荐的货物关键字,面对每日上亿的访问记录要求机器学习算法在几天内给出较为准确的推荐,否则就丢失了其失效性;更或者是出租车行驶在城市的道路上,通过GPS反馈的信息及监控设备实时路况信息,大数据处理系统需要不断地给出较为便捷路径的选择。这些都要求大数据的应用层可以最快的速度,最高的带宽从存储介质中获得相关海量的数据。另外一方面,海量数据存储管理系统与传统的数据库管理系统,或者基于磁带的备份系统之间也在发生数据交换,虽然这种交换实时性不高可以离线完成,但是由于数据规模的庞大,较低的数据传输带宽也会降低数据传输的效率,而造成数据迁移瓶颈。因此大数据的存储与处理的速度或是带宽是其性能上的重要指标。
(2)大数据由于其来源的不同,具有数据多样性的特点。
所谓多样性,一是指数据结构化程度,二是指存储格式,三是存储介质多样性。对于传统的数据库,其存储的数据都是结构化数据,格式规整,相反大数据来源于日志、历史数据、用户行为记录等等,有的是结构化数据,而更多的是半结构化或者非结构化数据,这也正是传统数据库存储技术无法适应大数据存储的重要原因之一。所谓存储格式,也正是由于其数据来源不同,应用算法繁多,数据结构化程度不同,其格式也多种多样。例如有的是以文本文件格式存储,有的则是网页文件,有的是一些被序列化后的比特流文件等等。所谓存储介质多样性是指硬件的兼容,大数据应用需要满足不同的响应速度需求,因此其数据管理提倡分层管理机制,例如较为实时或者流数据的响应可以直接从内存或者Flash(SSD)中存取,而离线的批处理可以建立在带有多块磁盘的存储服务器上,有的可以存放在传统的SAN或者NAS网络存储设备上,而备份数据甚至可以存放在磁带机上。因而大数据的存储或者处理系统必须对多种数据及软硬件平台有较好的兼容性来适应各种应用算法或者数据提取转换与加载(ETL)。
大数据存储技术路线最典型的共有三种:
第一种是采用MPP架构的新型数据库集群,重点面向行业大数据,采用Shared Nothing架构,通过列存储、粗粒度索引等多项大数据处理技术,再结合MPP架构高效的分布式计算模式,完成对分析类应用的支撑,运行环境多为低成本 PC Server,具有高性能和高扩展性的特点,在企业分析类应用领域获得极其广泛的应用。
这类MPP产品可以有效支撑PB级别的结构化数据分析,这是传统数据库技术无法胜任的。对于企业新一代的数据仓库和结构化数据分析,目前最佳选择是MPP数据库。
第二种是基于Hadoop的技术扩展和封装,围绕Hadoop衍生出相关的大数据技术,应对传统关系型数据库较难处理的数据和场景,例如针对非结构化数据的存储和计算等,充分利用Hadoop开源的优势,伴随相关技术的不断进步,其应用场景也将逐步扩大,目前最为典型的应用场景就是通过扩展和封装 Hadoop来实现对互联网大数据存储、分析的支撑。这里面有几十种NoSQL技术,也在进一步的细分。对于非结构、半结构化数据处理、复杂的ETL流程、复杂的数据挖掘和计算模型,Hadoop平台更擅长。
第三种是大数据一体机,这是一种专为大数据的分析处理而设计的软、硬件结合的产品,由一组集成的服务器、存储设备、操作系统、数据库管理系统以及为数据查询、处理、分析用途而特别预先安装及优化的软件组成,高性能大数据一体机具有良好的稳定性和纵向扩展性。
以上是小编为大家分享的关于大数据存储与应用特点及技术路线分析的相关内容,更多信息可以关注环球青藤分享更多干货
⑹ 大数据的发展趋势有哪些
——更多数据来源及分析请参考于前瞻产业研究院《中国大数据产业发展前景与投资战略规划分析报告》。
大数据与AI、5G、IoT等应用为公有云创造了巨大的需求,扮演着大数据基础设施服务提供者的角色,在大数据核心诉求的存储和计算能力上给予不可或缺的支撑。
大数据又赋能公有云行业的发展,将更好地参与到行业应用与数据变现的发展,催生大量的行业应用,为云服务未来扩充发展提供想象空间。积极的国家政策将持续推动各行业企业积极上云,拥抱数字化转型,公有云服务应用场景特别是数据应用不断拓宽。
近几年我国云计算行业的市场规模和渗透率均在持续增长,使得我国公有云市场进入了一个新的发展阶段。除此之外,在5G商用以及AI等技术发展的推动下,我国公有云市场规模始终保持高速增长趋势,根据中国信息通信研究院的数据统计,2018年,中国公有云市场规模达到437.4亿元,较2017年增长65.2%。
2012-2018年中国公有云市场规模统计及增长情况
数据来源:前瞻产业研究院整理
⑺ 大数据存储技术都有哪些
1. 数据采集:在大数据的生命周期中,数据采集是第一个环节。按照MapRece应用系统的分类,大数据采集主要来自四个来源:管理信息系统、web信息系统、物理信息系统和科学实验系统。
2. 数据访问:大数据的存储和删除采用不同的技术路线,大致可分为三类。第一类主要面向大规模结构化数据。第二类主要面向半结构化和非结构化数据。第三类是面对结构化和非结构化的混合大数据,
3。基础设施:云存储、分布式文件存储等。数据处理:对于收集到的不同数据集,可能会有不同的结构和模式,如文件、XML树、关系表等,表现出数据的异构性。对于多个异构数据集,需要进行进一步的集成或集成处理。在对不同数据集的数据进行收集、排序、清理和转换后,生成一个新的数据集,为后续的查询和分析处理提供统一的数据视图。
5. 统计分析:假设检验、显着性检验、差异分析、相关分析、t检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测、残差分析,岭回归、logistic回归、曲线估计、因子分析、聚类分析、主成分分析等方法介绍了聚类分析、因子分析、快速聚类与聚类、判别分析、对应分析等方法,多元对应分析(最优尺度分析)、bootstrap技术等。
6. 数据挖掘:目前需要改进现有的数据挖掘和机器学习技术;开发数据网络挖掘、特殊群挖掘、图挖掘等新的数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破面向领域的大数据挖掘技术如用户兴趣分析、网络行为分析、情感语义分析等挖掘技术。
7. 模型预测:预测模型、机器学习、建模与仿真。
8. 结果:云计算、标签云、关系图等。
关于大数据存储技术都有哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
⑻ 大数据年代 看监控存储如何变化求解
数据规模越大,处理的难度也越大,但对其进行挖掘可能得到的价值更大,这就是大数据热的原因。
首先,大数据反映舆情和民意。网民在网上产生的海量数据,记录着他们的思想、行为乃至情感,这是信息时代现实社会与网络空间深度融合的产物,蕴含着丰富的内涵和很多规律性信息。根据中国互联网络信息中心统计,2012年底我国网民数为5.64亿,手机网民为4.2亿,通过分析相关数据,可以了解大众需求、诉求和意见。其次,企业和政府的信息系统每天源源不断产生大量数据。根据赛门铁克公司的调研报告,全球企业的信息存储总量已达2.2ZB(1ZB等于1000EB),年增67%。医院、学校和银行等也都会收集和存储大量信息。政府可以部署传感器等感知单元,收集环境和社会管理所需的信息。2011年,英国《自然》杂志曾出版专刊指出,倘若能够更有效地组织和使用大数据,人类将得到更多的机会发挥科学技术对社会发展的巨大推动作用。
大的数据并不是一种特定类型的数据。每一种非结构化数据均可被视为大数据。这包括在社交网站上的数据、在线金融交易数据、公司记录、气象监测数据、卫星数据和其他监控、研究和开发数据。大数据的量是巨大的而且是非结构化的。
1、通过隔离管理大数据存储
如果您在您的企业中有多个存储箱,那么将数据库、线交易处理(OLTP)和微软Exchange应用到特定的存储系统绝对是一个好主意。而专其它存储系统则用于大数据应用,如门户网站,在线流媒体应用,等等。
如果您的企业负担不起分隔的存储系统,将特定的前端存储端口到数据库,OLTP,等等;致力于大数据应用到其他端口。背后的基本原理是使用专用端口,而大数据流量是以千字节或兆字节衡量,OLTP应用流量是以每秒的输入/输出操作(IOPS)衡量,因为数据块的大小是比大数据更大而比OLTP应用程序更小。OLTP应用程序是CPU密集型的,而大数据应用程序更多的使用前端端口。因此,更多的端口可以专注于大数据应用。
2、大数据分析
如今,很多公司提供兼容数据管理的存储系统。你应该在寻找你的大数据存储管理解决方案时评估这些公司。如EMCIsilon的集群存储系统对于大数据存储管理是一个更好的选择,因为在一个单一的文件系统中大数据能增长到多字节的数据。除了存储,大数据管理的另一项大的挑战是数据分析。一般的数据分析应用程序无法很好的处理大数据,毕竟涉及到大量的数据。
目前,诸如EMCGreenplum这样的公司就在采用专门针对大数据的管理和分析的工具。这些应用程序运行在集群存储系统上,缓解大数据的管理。建议选择应用程序可同时工作在群集存储系统,并迅速有效地分析数据。快速索引,确保元数据始终驻留在固态硬盘(SSD),如果存储箱为您提供了这样的选择的话。
管理大数据的另一个需要重点考虑的是未来的数据增长。你的大数据存储管理系统应该是可扩展的,足以满足未来的存储需求。
⑼ 简述大数据与存储器间的关系简述中国集成电路技术的发展历程。(答案要多点)
摘要 亲,您好!大数据和存储看似是两个不相关的名词。但是随着大数据时代的来临,大数据和存储技术和有了联系。大数据想要保留肯定离不开数据存储,就算存放在数据库,也离不开存储技术。大数据存储是将这些数据集持久化到计算机中。所以今天我们就来说说大数据存储技术。
⑽ 大数据时代下的存储形态
大数据时代下的存储形态
大数据时代,移动互联、社交网络、数据分析、云服务等应用的迅速普及,对数据中心提出革命性的需求,存储基础架构已经成为IT核心之一。政府、军队军工、科研院所、航空航天、大型商业连锁、医疗、金融、新媒体、广电等各个领域新兴应用层出不穷。数据的价值日益凸显,数据已经成为不可或缺的资产。作为数据载体和驱动力量,存储系统成为大数据基础架构中最为关键的核心。
传统的数据中心无论是在性能、效率,还是在投资收益、安全,已经远远不能满足新兴应用的需求,数据中心业务急需新型大数据处理中心来支撑。除了传统的高可靠、高冗余、绿色节能之外,新型的大数据中心还需具备虚拟化、模块化、弹性扩展、自动化等一系列特征,才能满足具备大数据特征的应用需求。这些史无前例的需求,让存储系统的架构和功能都发生了前所未有的变化。
基于大数据应用需求,“应用定义存储”概念被提出。存储系统作为数据中心最核心的数据基础,不再仅是传统分散的、单一的底层设备。除了要具备高性能、高安全、高可靠等特征之外,还要有虚拟化、并行分布、自动分层、弹性扩展、异构资源整合、全局缓存加速等多方面的特点,才能满足具备大数据特征的业务应用需求。
尤其在云安防概念被热炒的时代,随着高清技术的普及,720P、1080P随处可见,智能和高清的双向需求、动辄500W、800W甚至上千万更高分辨率的摄像机面市,大数据对存储设备的容量、读写性能、可靠性、扩展性等都提出了更高的要求,需要充分考虑功能集成度、数据安全性、数据稳定性,系统可扩展性、性能及成本各方面因素。
目前市场上的存储架构如下:
(1) 基于嵌入式架构的存储系统
节点NVR架构主要面向小型高清监控系统,高清前端数量一般在几十路以内。系统建设中没有大型的存储监控中心机房,存储容量相对较小,用户体验度、系统功能集成度要求较高。在市场应用层面,超市、店铺、小型企业、政法行业中基本管理单元等应用较为广泛。
(2)基于X86架构的存储系统
平台SAN架构主要面向中大型高清监控系统,前端路数成百上千甚至上万。一般多采用IP SAN或FC SAN搭建高清视频存储系统。作为监控平台的重要组成部分,前端监控数据通过录像存储管理模块存储到SAN中。
此种架构接入高清前端路数相对节点NVR有了较高提升,具备快捷便利的可扩展性,技术成熟。对于IP SAN而言,虽然在ISCSI环节数据并发读写传输速率有所消耗,但其凭借扩展性良好、 硬件平台通用、海量数据可充分共享等优点,仍然得到很多客户的青睐。FC SAN在行业用户、封闭存储系统中应用较多,比如县级或地级市高清监控项目,大数据量的并发读写对千兆网络交换提出了较大的挑战,但应用FC SAN构建相对独立的存储子系统,可以有效解决上述问题。
面对视频监控系统大文件、随机读写的特点,平台SAN架构系统不同存储单元之间的数据共享冗余方面还有待提高;从高性能服务器转发视频数据到存储空间的策略,从系统架构而言也增加了隐患故障点、ISCSI带宽瓶颈导致无法充分利用硬件数据并发性能、接入前端数据较少。上述问题催生了平台NVR架构解决方案。
该方案在系统架构上省去了存储服务器,消除了上文提到的性能瓶颈和单点故障隐患。大幅度提高存储系统的写入和检索速度;同时也彻底消除了传统文件系统由于供电和网络的不稳定带来的文件系统损坏等问题。
平台NVR中存储的数据可同时供多个客户端随时查询,点播,当用户需要查看多个已保存的视频监控数据时,可通过授权的视频监控客户端直接查询并点播相应位置的视频监控数据进行历史图像的查看。由于数据管理服务器具有监控系统所有监控点的录像文件的索引,因此通过平台CMS授权,视频监控客户端可以查询并点播整个监控系统上所有监控点的数据,这个过程对用户而言也是透明的。
(3)基于云技术的存储方案
当前,安防行业可谓“云”山“物”罩。随着视频监控的高清化和网络化,存储和管理的视频数据量已有海量之势,云存储技术是突破IP高清监控存储瓶颈的重要手段。云存储作为一种服务,在未来安防监控行业有着客观的应用前景。
与传统存储设备不同,云存储不仅是一个硬件,而是一个由网络设备、存储设备、服务器、软件、接入网络、用户访问接口以及客户端程序等多个部分构成的复杂系统。该系统以存储设备为核心,通过应用层软件对外提供数据存储和业务服务。
一般分为存储层、基础管理层、应用接口层以及访问层。存储层是云存储系统的基础,由存储设备(满足FC协议、iSCSI协议、NAS协议等)构成。基础管理层是云存储系统的核心,其担负着存储设备间协同工作,数据加密,分发以及容灾备份等工作。应用接口层是系统中根据用户需求来开发的部分,根据不同的业务类型,可以开发出不同的应用服务接口。访问层指授权用户通过应用接口来登录、享受云服务。其主要优势在于:硬件冗余、节能环保、系统升级不会影响存储服务、海量并行扩容、强大的负载均衡功能、统一管理、统一向外提供服务,管理效率高,云存储系统从系统架构、文件结构、高速缓存等方面入手,针对监控应用进行了优化设计。数据传输可采用流方式,底层采用突破传统文件系统限制的流媒体数据结构,大幅提高了系统性能。
高清监控存储是一种大码流多并发写为主的存储应用,对性能、并发性和稳定性等方面有很高的要求。该存储解决方案采用独特的大缓存顺序化算法,把多路随机并发访问变为顺序访问,解决了硬盘磁头因频繁寻道而导致的性能迅速下降和硬盘寿命缩短的问题。
针对系统中会产生PB级海量监控数据,存储设备的数量达数十台上百台,因此管理方式的科学高效显得十分重要。云存储可提供基于集群管理技术的多设备集中管理工具,具有设备集中监控、集群管理、系统软硬件运行状态的监控、主动报警,图像化系统检测等功能。在海量视频存储检索应用中,检索性能尤为重要。传统文件系统中,文件检索采用的是“目录->子目录->文件->定位”的检索步骤,在海量数据的高清视频监控,目录和文件数量十分可观,这种检索模式的效率就会大打折扣。采用序号文件定位可以有效解决该问题。
云存储可以提供非常高的的系统冗余和安全性。当在线存储系统出现故障后,热备机可以立即接替服务,当故障恢复时,服务和数据回迁;若故障机数据需要调用,可以将故障机的磁盘插入到冷备机中,实现所有数据的立即可用。
对于高清监控系统,随着监控前端的增加和存储时间的延长,扩展能力十分重要。市场中已有友商可提供单纯针对容量的扩展柜扩展模式和性能容量同步线性扩展的堆叠扩展模式。
云存储系统除上述优点之外,在平台对接整合、业务流程梳理、视频数据智能分析深度挖掘及成本方面都将面临挑战。承建大型系统、构建云存储的商业模式也亟待创新。受限于宽带网络、web2.0技术、应用存储技术、文件系统、P2P、数据压缩、CDN技术、虚拟化技术等的发展,未来云存储还有很长的路要走。
结语
高清视频监控对存储系统的性能、可靠性、扩展性、管理效能、节能环保和开放性都提出了很高的要求。新一代的云存储解决方案,可为用户提供智能存储、分析等服务,特别适合大规模的视频监控部署。针对不同的市场应用场合,如何选择切实可行且高效的存储解决方案,是摆在安防行业众多建设者面前的一道难题。相信随着时间的推移和技术的演变,高清视频数据存储会得到更加完美的解决。