hdfs元数据存储
❶ HDFS的元数据持久化的目的和执行流程
摘要 ResourceManager(RM)
❷ hdfs为什么不适合处理大量的小文件
在HDFS中,namenode将文件系统中的元数据存储在内存中,因此,HDFS所能存储的文件数量会受到namenode内存的限制。一般来说,每个文件、目录、数据块的存储信息大约占150个字节,根据当前namenode的内存空间的配置,就可以计算出大约能容纳多少个文件了。
有一种误解就是,之所以HDFS不适合大量小文件,是因为即使很小的文件也会占用一个块的存储空间。这是错误的,HDFS与其它文件系统不同,小于一个块大小的文件,不会占用一个块的空间。
❸ 什么是HDFS硬盘分布式存储
Namenode 是一个中心服务器,单一节点(简化系统的设计和实现),负责管理文件系统的名字空间(namespace)以及客户端对文件的访问。
文件操作,NameNode 负责文件元数据的操作,DataNode负责处理文件内容的读写请求,跟文件内容相关的数据流不经过NameNode,只会询问它跟哪个DataNode联系,否则NameNode会成为系统的瓶颈。
副本存放在哪些DataNode上由 NameNode来控制,根据全局情况做出块放置决定,读取文件时NameNode尽量让用户先读取最近的副本,降低带块消耗和读取时延
Namenode 全权管理数据块的复制,它周期性地从集群中的每个Datanode接收心跳信号和块状态报告(Blockreport)。接收到心跳信号意味着该Datanode节点工作正常。块状态报告包含了一个该Datanode上所有数据块的列表。
NameNode支持对HDFS中的目录、文件和块做类似文件系统的创建、修改、删除、列表文件和目录等基本操作。 块存储管理,在整个HDFS集群中有且只有唯一一个处于active状态NameNode节点,该节点负责对这个命名空间(HDFS)进行管理。
1、Name启动的时候首先将fsimage(镜像)载入内存,并执行(replay)编辑日志editlog的的各项操作;
2、一旦在内存中建立文件系统元数据映射,则创建一个新的fsimage文件(这个过程不需SecondaryNameNode) 和一个空的editlog;
3、在安全模式下,各个datanode会向namenode发送块列表的最新情况;
4、此刻namenode运行在安全模式。即NameNode的文件系统对于客服端来说是只读的。(显示目录,显示文件内容等。写、删除、重命名都会失败);
5、NameNode开始监听RPC和HTTP请求
解释RPC:RPC(Remote Procere Call Protocol)——远程过程通过协议,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议;
6、系统中数据块的位置并不是由namenode维护的,而是以块列表形式存储在datanode中;
7、在系统的正常操作期间,namenode会在内存中保留所有块信息的映射信息。
存储文件,文件被分成block存储在磁盘上,为保证数据安全,文件会有多个副本 namenode和client的指令进行存储或者检索block,并且周期性的向namenode节点报告它存了哪些文件的blo
文件切分成块(默认大小128M),以块为单位,每个块有多个副本存储在不同的机器上,副本数可在文件生成时指定(默认3)
NameNode 是主节点,存储文件的元数据如文件名,文件目录结构,文件属性(生成时间,副本数,文件权限),以及每个文件的块列表以及块所在的DataNode等等
DataNode 在本地文件系统存储文件块数据,以及块数据的校验和。
可以创建、删除、移动或重命名文件,当文件创建、写入和关闭之后不能修改文件内容。
NameNode启动流程
1、Name启动的时候首先将fsimage(镜像)载入内存,并执行(replay)编辑日志editlog的的各项操作;
2、一旦在内存中建立文件系统元数据映射,则创建一个新的fsimage文件(这个过程不需SecondaryNameNode) 和一个空的editlog;
3、在安全模式下,各个datanode会向namenode发送块列表的最新情况;
4、此刻namenode运行在安全模式。即NameNode的文件系统对于客服端来说是只读的。(显示目录,显示文件内容等。写、删除、重命名都会失败);
5、NameNode开始监听RPC和HTTP请求
解释RPC:RPC(Remote Procere Call Protocol)——远程过程通过协议,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议;
6、系统中数据块的位置并不是由namenode维护的,而是以块列表形式存储在datanode中;
7、在系统的正常操作期间,namenode会在内存中保留所有块信息的映射信息。
HDFS的特点
优点:
1)处理超大文件
这里的超大文件通常是指百MB、数百TB大小的文件。目前在实际应用中,HDFS已经能用来存储管理PB级的数据了。
2)流式的访问数据
HDFS的设计建立在更多地响应"一次写入、多次读取"任务的基础上。这意味着一个数据集一旦由数据源生成,就会被复制分发到不同的存储节点中,然后响应各种各样的数据分析任务请求。在多数情况下,分析任务都会涉及数据集中的大部分数据,也就是说,对HDFS来说,请求读取整个数据集要比读取一条记录更加高效。
3)运行于廉价的商用机器集群上
Hadoop设计对硬件需求比较低,只须运行在低廉的商用硬件集群上,而无需昂贵的高可用性机器上。廉价的商用机也就意味着大型集群中出现节点故障情况的概率非常高。这就要求设计HDFS时要充分考虑数据的可靠性,安全性及高可用性。
缺点:
1)不适合低延迟数据访问
如果要处理一些用户要求时间比较短的低延迟应用请求,则HDFS不适合。HDFS是为了处理大型数据集分析任务的,主要是为达到高的数据吞吐量而设计的,这就可能要求以高延迟作为代价。
2)无法高效存储大量小文件
因为Namenode把文件系统的元数据放置在内存中,所以文件系统所能容纳的文件数目是由Namenode的内存大小来决定。一般来说,每一个文件、文件夹和Block需要占据150字节左右的空间,所以,如果你有100万个文件,每一个占据一个Block,你就至少需要300MB内存。当前来说,数百万的文件还是可行的,当扩展到数十亿时,对于当前的硬件水平来说就没法实现了。还有一个问题就是,因为Map task的数量是由splits来决定的,所以用MR处理大量的小文件时,就会产生过多的Maptask,线程管理开销将会增加作业时间。举个例子,处理10000M的文件,若每个split为1M,那就会有10000个Maptasks,会有很大的线程开销;若每个split为100M,则只有100个Maptasks,每个Maptask将会有更多的事情做,而线程的管理开销也将减小很多。
1280M 1个文件 10block*150字节 = 1500 字节 =1.5KB
1280M 12.8M 100个 100个block*150字节 = 15000字节 = 15KB
3)不支持多用户写入及任意修改文件
在HDFS的一个文件中只有一个写入者,而且写操作只能在文件末尾完成,即只能执行追加操作。目前HDFS还不支持多个用户对同一文件的写操作,以及在文件任意位置进行修改。
四、HDFS文件 读写流程
4.1 读文件流程
(1) 打开分布式文件
调用 分布式文件 DistributedFileSystem.open()方法。
(2) 从 NameNode 获得 DataNode 地址
DistributedFileSystem 使用 RPC 调用 NameNode, NameNode返回存有该副本的 DataNode 地址, DistributedFileSystem 返回一个输入流 FSDataInputStream对象, 该对象封存了输入流DFSInputStream。
(3) 连接到DataNode
调用 输入流 FSDataInputStream 的 read() 方法, 从而输入流DFSInputStream 连接 DataNodes。
(4) 读取DataNode
反复调用 read()方法, 从而将数据从 DataNode 传输到客户端。
(5) 读取另外的DataNode直到完成
到达块的末端时候, 输入流 DFSInputStream 关闭与DataNode 连接,寻找下一个 DataNode。
(6) 完成读取, 关闭连接
即调用输入流 FSDataInputStream.close() 。
4.2 写文件流程
(1) 发送创建文件请求: 调用分布式文件系统DistributedFileSystem.create()方法;
(2) NameNode中创建文件记录: 分布式文件系统DistributedFileSystem 发送 RPC 请求给namenode, namenode 检查权限后创建一条记录, 返回输出流 FSDataOutputStream, 封装了输出流 DFSOutputDtream;
(3) 客户端写入数据: 输出流 DFSOutputDtream 将数据分成一个个的数据包, 并写入内部队列。 DataStreamer 根据 DataNode 列表来要求 namenode 分配适合的新块来存储数据备份。一组DataNode 构成管线(管线的 DataNode 之间使用 Socket 流式通信)
(4) 使用管线传输数据: DataStreamer 将数据包流式传输到管线第一个DataNode, 第一个DataNode 再传到第二个DataNode ,直到完成。
(5) 确认队列: DataNode 收到数据后发送确认, 管线的DataNode所有的确认组成一个确认队列。 所有DataNode 都确认, 管线数据包删除。
(6) 关闭: 客户端对数据量调用close() 方法。 将剩余所有数据写入DataNode管线, 并联系NameNode且发送文件写入完成信息之前等待确认。
(7) NameNode确认
(8) 故障处理: 若过程中发生故障, 则先关闭管线, 把队列中所有数据包添加回去队列, 确保数据包不漏。 为另一个正常DataNode的当前数据块指定一个新的标识, 并将该标识传送给NameNode, 一遍故障DataNode在恢复后删除上面的不完整数据块. 从管线中删除故障DataNode 并把余下的数据块写入余下正常的DataNode。 NameNode发现复本两不足时, 会在另一个节点创建一个新的复本
❹ hdfs的元数据持久化触发的条件是什么
hdfs的元数据持久化触发的条件是:
在一个BFC中,垂直方向上,盒子是从包含块顶部开始一个挨着一个布局的,两个相邻的盒子的垂直距离是由margin属性决定的,在一个BFC中的两个相邻的块级盒子的垂直外边距会产生塌陷。
在一个BFC中,水平方向上,每个盒子的左边缘都会接触包含块的左边缘(从右向左的格式则相反)。除非出现浮动元素和其他元素相互作用的情况(当有浮动元素时,行盒可能因浮动元素而收缩,如果有盒子形成了新的BFC,那这个盒子也可能因浮动元素而变窄)。
名字节点和数据节点
HDFS是一个主从结构,一个HDFS集群是由一个名字节点,它是一个管理文件命名空间和调节客户端访问文件的主服务器,当然还有一些数据节点,通常是一个节点一个机器,它来管理对应节点的存储。HDFS对外开放文件命名空间并允许用户数据以文件形式存储。
内部机制是将一个文件分割成一个或多个块,这些块被存储在一组数据节点中。名字节点用来操作文件命名空间的文件或目录操作,如打开,关闭,重命名等等。
❺ 分布式文件系统hdfs主要由哪些功能模块构成
HDFS命名空间采用层次化(树状——译者注)的结构存放文件和目录。文件和目录用NameNode上的inodes表示。Inode记录了权限,修改和访问时间,命名空间,磁盘容量等属性。文件内容会被分成不同的“大块”(典型分块策略是每块128M,不过用户可以对每个文件的分块大小进行选择)。NameNode负责维护命名空间树以及与DataNode上文件分块的映射关系。目前采用的设计结构是,没一个集群只有一个NameNode,一个NameNode可以对应多个DataNode以及成千上万的HDFS客户端。一个DataNode可以同步执行多个应用任务。
❻ hdfs的特点有哪些
hdfs的特点
一、hdfs的优点
1.支持海量数据的存储:一般来说,HDFS存储的文件可以支持TB和PB级别的数据。
2.检测和快速应对硬件故障:在集群环境中,硬件故障是常见性问题。因为有上千台服务器连在一起,故障率很高,因此故障检测和自动恢复hdfs文件系统的一个设计目标。假设某一个datanode挂掉之后,因为数据是有备份的,还可以从其他节点里找到。namenode通过心跳机制来检测datanode是否还存活。
3.流式数据访问:(HDFS不能做到低延迟的数据访问,但是HDFS的吞吐量大)=》Hadoop适用于处理离线数据,不适合处理实时数据。HDFS的数据处理规模比较大,应用一次需要大量的数据,同时这些应用一般都是批量处理,而不是用户交互式处理。应用程序能以流的形式访问数据库。主要的是数据的吞吐量,而不是访问速度。访问速度最终是要受制于网络和磁盘的速度,机器节点再多,也不能突破物理的局限。
4.简化的一致性模型:对于外部使用用户,不需要了解hadoop底层细节,比如文件的切块,文件的存储,节点的管理。一个文件存储在HDFS上后,适合一次写入,多次读取的场景。因为存储在HDFS上的文件都是超大文件,当上传完这个文件到hadoop集群后,会进行文件切块,分发,复制等操作。如果文件被修改,会导致重新触发这个过程,而这个过程耗时是最长的。所以在hadoop里,2.0版本允许数据的追加,单不允许数据的修改。
5.高容错性:数据自动保存多个副本,副本丢失后自动恢复。可构建在廉价的机器上,实现线性扩展。当集群增加新节点之后,namenode也可以感知,将数据分发和备份到相应的节点上。
6.商用硬件:Hadoop并不需要运行在昂贵且高可靠的硬件上。它是设计运行在商用硬件(在各种零售店都能买到的普通硬件)的集群上的,因此至少对于庞大的集群来说,节点故障的几率还是非常高的。HDFS遇到上述故障时,被设计成能够继续运行且不让用户察觉到明显的中断。
二、HDFS缺点(局限性)
1、不能做到低延迟数据访问:由于hadoop针对高数据吞吐量做了优化,牺牲了获取数据的延迟,所以对于低延迟数据访问,不适合hadoop。对于低延迟的访问需求,HBase是更好的选择。
2、不适合大量的小文件存储 :由于namenode将文件系统的元数据存储在内存中,因此该文件系统所能存储的文件总数受限于namenode的内存容量。根据经验,每个文件、目录和数据块的存储信息大约占150字节。因此,如果有一百万个小文件,每个小文件都会占一个数据块,那至少需要300MB内存。如果是上亿级别的,就会超出当前硬件的能力。
3、修改文件:对于上传到HDFS上的文件,不支持修改文件。Hadoop2.0虽然支持了文件的追加功能,但是还是不建议对HDFS上的文件进行修改。因为效率低下。HDFS适合一次写入,然后多次读取的场景。
4、不支持用户的并行写:同一时间内,只能有一个用户执行写操作。
❼ HSDF 主要组件有哪些
数据块,NameNode,DataNode,SecondaryNameNode。
1、主要组件有数据块(Block),HDFS中的文件是以数据块的形式存储的,默认最基本的存储单位是128MB的数据块。
2、NameNode,NameNode是HDFS中存储元数据(元数据就是文件名称,大小和在电脑中的位置)的地方。
3、DataNode,DataNode才是HDFS中真正存储数据的地方。
4、SecondaryNameNode,SecondaryNameNode其实是一个辅助工具,它用于帮助NameNode管理元数据,从而使NameNode能够快速、高效的工作。
❽ 关于hdfs的物理存储路径问题
我没用过Hive,但HDFS的存储机制都是一样的。
你所谓的物理位置指的是在操作系统中的磁盘路径?
这个路径是在Hadoop配置的时候写在hdfs-site.xml文件的dfs.datanode.data.dir字段里的,在每个datanode的这个文件夹里存着该节点上存储的所有数据块block,以blk_打头。
dfs.namenode.data.dir指定的文件夹在namenode中则存在元数据。
所以即便你知道这个所谓的物理路径也没什么用,数据都是以block形式存在的,大的数据还由好多个block组成,而且每个block还有副本。
❾ hdfs和glusterFS哪个更适合做分布式存储
glusterfs 无元数据分布式网络存储系统, hdfs 有元数据分布式网络存储系统, 按理说这两个东西真的不应该放在一起来比较。
首先两者的发展思路是不同的, glusterfs支持标准的posix接口, hdfs自己私有的对外接口, 一致性hash 和 有元数据中心架构实现差距很大。
当然要比较必须得有一样的东西, 那就是都能做分布式网络文件存储系统。在这个大方向上一致, 那就有比较的可能啦。