当前位置:首页 » 存储配置 » 高精度存储

高精度存储

发布时间: 2022-06-22 21:02:59

‘壹’ pascal 高精度中的存储可以用val来实现字符与数字的转换吗

这个可以用IntToStr但要库的支持如uses SysUtils;var s:string;begin s:=IntToStr(123456); writeln(s);end.

‘贰’ 1. 高精度48×48点阵汉字的字模信息需要用( )个字节存储。

16乘16 一个字占32 字节
24乘24 一个字占72 字节
40乘40 一个字占200 字节
48乘48 一个字占288 字节

‘叁’ 高精度64乘64点阵汉字的字模信息需要用几个字节存储

for ($i=0; $i<count($values); $i++) {
$sql = "insert into customer (openid, opercode, text, time, worker) values
$stmt = $dbh->prepare( $sql );
$stmt->execute( array( ".$values[$i]." ) );
$rn = $stmt->rowCount();
echo "<script>alert();</script>";
}

‘肆’ 在java 中怎么理解高精度和低精度

高精度和低精度 就是针对小数位数 来说的,

高精度 存储和保留的小数位数多,经度就高。
低经度 存储和保留的小数位数相比高精度少 ,经度低。

‘伍’ C++高精度算法的倒序储存 请问我这两种写法出来的效果为什么不一样

for(i=1;i<=la;i++)a[i]=a1[la-i+1]-'0';//1
for(i=1;i<=lb;i++)b[i]=b1[lb-i+1]-'0';//2
for(i=1;i<la;i++)a[la-i]=a1[i]-48;//3
for(i=1;i<lb;i++)b[lb-i]=b1[i]-48;//4

请问上述代码中的la、lb是数组的长度吗???还是???

‘陆’ 什么是高精度

高精度算法在一般的科学计算中,会经常算到小数点后几百位或者更多,当然也可能是几千亿几百亿的大数字.
一般这类数字我们统称为高精度数,高精度算法是用计算机对于超大数据的一种模拟加,减,乘,除,乘方,阶乘,开方等运算.
譬如一个很大的数字N >= 10^ 100, 很显然这样的数字无法在计算机中正常存储.
于是, 我们想到了办法,将这个数字拆开,拆成一位一位的 或者是四位四位的存储到一个数组中, 用一个数组去表示一个数字.这样这个数字就被称谓是高精度数.
对于高精度数,也要像平常数一样做加减乘除以及乘方的运算,于是就有了高精度算法:
下面提供了Pascal的高精度加法, 高精度乘以单精度, 高精度乘以高精度的代码, 其他版本请各位大牛添加进来吧!
Pascal代码如下(非完整); k为预定进制,加大进制以提高速度。
Procere HPule(a, b: Arr; Var c:Arr); //高精度加法
Var
i: Integer;
Begin
FillChar(c, SizeOf(c), 0);
For i:= 1 To Maxn-1 Do Begin
c[i]:= c[i] + a[i] + b[i];
c[i + 1] := c[i] Div k;
c[i] := c[i] Mod k;
End;
End;
Procere HPule(a: Arr; b:Integer; Var c:Arr); //高精度乘以单精度
Var
i: Integer;
Begin
FillChar(c, SizeOf(c), 0);
For i:= 1 To Maxn-1 Do Begin
c[i] := c[i] + a[i] * b;
c[i+1]:= c[i] Div k;
c[i]:= c[i] Mod k
End;
End;
Procere HPule(a, b: Arr; ; Var c:Arr); //高精度乘以高精度
Var
i, j: Integer;
Begin
FillChar(c, SizeOf(c), 0);
For i:= 1 To Maxn Do
For j := 1 To Maxn Begin
c[i+j-1] := c[i+j-1] + a[i] * b[j];
c[i+j]:= c[i+j-1] Div k;
c[i+j-1]:= c[i+j-1] Mod k
End;
End;
Ps:为了防止网络错误识别, 过程中有不少符号是全角状态输入.
高精度加法
var
a,b,c:array[1..201] of 0..9;
n:string;
lena,lenb,lenc,i,x:integer;
begin
write('Input augend:'); readln(n);lena:=length(n);
for i:=1 to lena do a[lena-i+1]:=ord(n)-ord('0');{加数放入a数组}
write('Input addend:'); readln(n); lenb:=length(n);
for i:=1 to lenb do b[lenb-i+1]:=ord(n)-ord('0');{被加数放入b数组}
i:=1;
while (i<=lena) or(i<=lenb) do
begin
x := a + b + x div 10; {两数相加,然后加前次进位}
c := x mod 10; {保存第i位的值}
i := i + 1
end;
if x>=10 {处理最高进位}
then begin lenc:=i; c:=1 end
else lenc:=i-1;
for i:=lenc downto 1 do write(c); writeln {输出结果}
end.
高精度乘法(低对高)
const max=100; n=20;
var a:array[1..max]of 0..9;
i,j,k;x:integer;
begin
k:=1; a[k]:=1;{a=1}
for i:=2 to n do{a*2*3….*n}
begin
x:=0;{进位初始化}
for j:=1 do k do{a=a*i}
begin
x:=x+a[j]*i; a[j]:=x mod 10;x:=x div 10
end;
while x>0 do {处理最高位的进位}
begin
k:=k+1;a[k]:=x mod 10;x:=x div 10
end
end;
writeln;
for i:=k dowento 1 write(a){输出a}
end.
高精度乘法(高对高)
var a,b,c:array[1..200] of 0..9;
n1,n2:string; lena,lenb,lenc,i,j,x:integer;
begin
write('Input multiplier:'); readln(n1);
write('Input multiplicand:'); readln(n2);
lena:=length(n1); lenb:=length(n2);
for i:=1 to lena do a[lena-i+1]:=ord(n1)-ord('0');
for i:=1 to lenb do b[lenb-i+1]:=ord(n2)-ord('0');
for i:=1 to lena do
begin
x:=0;
for j:=1 to lenb do{对乘数的每一位进行处理}
begin
x := a*b[j]+x div 10+c;{当前乘积+上次乘积进位+原数}
c:=x mod 10;
end;
c:= x div 10;{进位}
end;
lenc:=i+j;
while (c[lenc]=0) and (lenc>1) do dec(lenc); {最高位的0不输出}
for i:=lenc downto 1 do write(c); writeln
end.
高精度除法
fillchar(s,sizeof(s),0);{小数部分初始化}
fillchar(posi,sizeof(posi),0); {小数值的位序列初始化}
len←0;st←0; {小数部分的指针和循环节的首指针初始化}
read(x,y);{读被除数和除数}
write(x div y);{输出整数部分}
x←x mod y;{计算x除以y的余数}
if x=0 then exit;{若x除尽y,则成功退出}
while len<limit do{若小数位未达到上限,则循环}
begin
inc(len);posi[x]←len;{记下当前位小数,计算下一位小数和余数}
x←x*10; s[len]←x div y;x←x mod y;
if posi[x]<>0 {若下一位余数先前出现过,则先前出现的位置为循环节的开始}
then begin st←posi[x]; break;end;{then}
if x=0 then break; {若除尽,则成功退出}
end;{while}
if len=0
then begin writeln;exit;end;{若小数部分的位数为0,则成功退出;否则输出小数点}
write('.');
if st=0 {若无循环节,则输出小数部分,否则输出循环节前的小数和循环节}
then for i←1 to len do write(s)
else begin
for i←1 to st-1 do write(s);
write('(');
for i←st to len do write(s);
write(')');
end;{else}

‘柒’ 大端存储法还是小端存储法对存储数据有什么要求与影响

大端排序的好处是接收数据的程序可以优先得到数据的最高位,以便快速反应。
比如我有一个控制温度的上位机程序,该程序接收大端方式编码的温度信号0x00fe,对比原来的温度值,假设是0x0135。那么在接受第一个字节0x00的时候,上位机就可以判断温度比原来下降了,可以立即发出指令打开加热器。而对于小端排序的方式,上位机只有在接收到完整的两个字节的时候才能做出反应。如果采用串行通信,用只对信号的每一个字节单独校验的话,波特率为9600时,大端编码下,上位机的响应时间为1ms,小端排序方式下,上位机响应时间为2ms。这时,大端编码就比小端排序更快。如果需要对完整的通信包进行校验,则没有区别。
在串行通信测试程序中,计算机显示的字节顺序一般就是接收顺序。如果用大端编码的话,测试程序直接就可以显示出从大到小排列好的数据。而小端排序的方向相反,可视性不好,容易看花眼掉。
结论是:1、串行通信(包括以太网、WIFI、串口、USB等)如果采用大端编码有时会使系统响应更快速。2、串行通信采用大端编码有利于调试。
小端排序下,选定一个数据的起点后,只需要重复进位加法就可以实现高精度加法计算。减法也是一样。数组的第0位固定是最低位。而大端方式下,如果高精度计算的精度可变,就很难确定数组的第0位到底代表多大。不同精度的计算还会产生数据对齐问题。比如早期的16位CPU中,int类型和long类型做加法,用小端排序就很容易从指针位置开始计算。而大端排序则非常复杂。加法运算是非常常用的运算,其性能直接影响程序的整体性能。所以CPU中要采用性能较好的小端排序。
由于CPU本身是小端排序,如果内存和文件也采用小端排序的话,就可以把文件中的数据直接存储到内存中,再直接把内存中的数据存储到CPU的寄存器。这样不仅提高计算机的性能,程序也变得简单。
结论是:所有直接与硬件有关的代码都适合按小端排序

‘捌’ c++为什么高精度要倒序储存

这是当年硬件设计决定的,不是语言决定的。原因倒是没有说,有的硬件是倒序,有得是顺序,也 不一致

‘玖’ 高精度为什么用char数组存储而不用字符串存储

热点内容
圆角输入框android 发布:2025-01-08 22:32:50 浏览:752
linuxshellip 发布:2025-01-08 22:31:52 浏览:883
怎么测试环境有没有配置成功 发布:2025-01-08 22:25:39 浏览:1000
贝尔编程剧 发布:2025-01-08 22:19:16 浏览:869
android源码在线阅读 发布:2025-01-08 22:06:28 浏览:214
500平方球馆如何配置空调 发布:2025-01-08 21:51:40 浏览:418
大气企业源码 发布:2025-01-08 21:50:47 浏览:196
安卓系统怎么换手写输入 发布:2025-01-08 21:42:22 浏览:908
php购物商城 发布:2025-01-08 21:37:27 浏览:480
加密文件不能复制 发布:2025-01-08 21:36:09 浏览:411