当前位置:首页 » 存储配置 » 大数据存储算法

大数据存储算法

发布时间: 2022-06-12 10:49:54

‘壹’ 大数据量最近的存储分表常见算法

大数据量最近的存储分表常见算法
当一个应用的数据量大的时候,我们用单表和单库来存储会严重影响操作速度,如mysql的myisam存储,我们经过测试,200w以下的时候,mysql的访问速度都很快,但是如果超过200w以上的数据,他的访问速度会急剧下降,影响到我们webapp的访问速度,而且数据量太大的话,如果用单表存储,就会使得系统相当的不稳定,mysql服务很容易挂掉。所以当数据量超过200w的时候,建议系统工程师还是考虑分表.
以下是几种常见的分表算法。
1.按自然时间来分表/分库;
如一个应用的数据在一年后数据量会达到200w左右,那么我们就可以考虑用一年的数据来做为一个表或者库来存储,例如,表名为app,那么2010年的数据就是app_2010,app_2011;如果数据量在一个月就达到了200w左右,那么我们就可以用月份来分,app_2010_01,app_2010_02.
2.按数字类型hash分表/分库;
如果我们要存储用户的信息,我们应用的注册量很大,我们用单表是不能满足存储需求的,那么我们就可以用用户的编号来进行hash,常见的是用取余操作,如果我们要分30张表来存储用户的信息,那么用户编号为1的用户1%30=1,那么我们就存在user_01表里,如用户的编号为500,那么500%30=20,那么我们就将此用户的信息存储在user_20的表里.
3.按md5值来分表/分库;
我们假设要存储用户上传的文件,如果上传量大的话,也会带来系统的瓶颈问题,我们做过试验,在一个文件夹下如果超过200个文件的话,文件的浏览效率会降低,当然,这个不属于我们本文讨论的范围,这块也要做散列操作.我们可以用文件的用户名来md5或者用文件的md5校验值来做,我们就可以用md5的前5位来做hash,这样最多我们就可以得到5^5=3125个表,每次在存储文件的时候,就可以用文件名的md5值的前5位来确定这个文件该存那张表.
4.实例:某微博的url加密算法和存储策略的猜想.
现在好多微博都用这样的url来访问,如果他们的域名为www.example.com,那么如果你发微博的时候,你会发现你所发的url都变成了http://t.cn/Mx4ja1,这样的形式,他们是怎么进行这样的转换呢?我猜想就是用到了我们上面讲的md5的存储和查找规则,用你发的url来进行md5,得到md5值之后,如我们例子来说,就会用前6位来进行分表.
5.分表所带来的问题.
分表也会带来一系列的问题,如分页的实现,统计的实现,如果我们要做一个所有数据的分页,那么我们得每张表都得遍历一遍,这样访问效率会很低下.之前我尝试过用mysql的代理来实现,最终用tcsql来实现了.
6.分表算法的选择.
首先,分表适合于没有大的列表的应用来使用,要不然,会为这部分做好多额外的工作,如果你的应用数据量不是特别大的话,最好别用分表。7.针对每秒插入数据500+的设想为什么要这个呢,因为很多数据库在数据上千万级别后,每秒插入数据的数度不是很快了,所以500/秒的速度够呛,解决方案设想:建立数据总表及两个缓冲表,结构完全相同,将数据先插入其中一个缓冲表中,等到一定时间(插入效率降低之前),转向插入另一个缓冲表,同时启动一个后台进程将第
一个缓冲表的的数据转入总表,转入总表后删除第一个缓冲表中的数据; 再等到一定时间(还是插入效率降低之前),转向插入第一个缓冲表,这时启动一个后台进程将第
二个缓冲表的的数据转入总表,转入总表后删除第二个缓冲表中的数据; 如此循环往复...

如果后台进程处理的时间超过两个缓冲表的循环周期的话,甚至可以考虑建立三个乃至四个缓冲表。

这仅仅是解决插入效率,查询什么的问题也大。

‘贰’ 大数据技术有哪些

随着大数据分析市场迅速扩展,哪些技术是最有需求和最有增长潜力的呢?在Forrester Research的一份最新研究报告中,评估了22种技术在整个数据生命周期中的成熟度和轨迹。这些技术都对大数据的实时、预测和综合洞察有着巨大的贡献。
1. 预测分析技术
这也是大数据的主要功能之一。预测分析允许公司通过分析大数据源来发现、评估、优化和部署预测模型,从而提高业务性能或降低风险。同时,大数据的预测分析也与我们的生活息息相关。淘宝会预测你每次购物可能还想买什么,爱奇艺正在预测你可能想看什么,百合网和其他约会网站甚至试图预测你会爱上谁……
2. NoSQL数据库
NoSQL,Not Only SQL,意思是“不仅仅是SQL”,泛指非关系型数据库。NoSQL数据库提供了比关系数据库更灵活、可伸缩和更便宜的替代方案,打破了传统数据库市场一统江山的格局。并且,NoSQL数据库能够更好地处理大数据应用的需求。常见的NoSQL数据库有HBase、Redis、MongoDB、Couchbase、LevelDB等。
3. 搜索和知识发现
支持来自于多种数据源(如文件系统、数据库、流、api和其他平台和应用程序)中的大型非结构化和结构化数据存储库中自助提取信息的工具和技术。如,数据挖掘技术和各种大数据平台。
4. 大数据流计算引擎
能够过滤、聚合、丰富和分析来自多个完全不同的活动数据源的数据的高吞吐量的框架,可以采用任何数据格式。现今流行的流式计算引擎有Spark Streaming和Flink。
5. 内存数据结构
通过在分布式计算机系统中动态随机访问内存(DRAM)、闪存或SSD上分布数据,提供低延迟的访问和处理大量数据。
6. 分布式文件存储
为了保证文件的可靠性和存取性能,数据通常以副本的方式存储在多个节点上的计算机网络。常见的分布式文件系统有GFS、HDFS、Lustre 、Ceph等。
7. 数据虚拟化
数据虚拟化是一种数据管理方法,它允许应用程序检索和操作数据,而不需要关心有关数据的技术细节,比如数据在源文件中是何种格式,或者数据存储的物理位置,并且可以提供单个客户用户视图。
8. 数据集成
用于跨解决方案进行数据编排的工具,如Amazon Elastic MapRece (EMR)、Apache Hive、Apache Pig、Apache Spark、MapRece、Couchbase、Hadoop和MongoDB等。
9. 数据准备
减轻采购、成形、清理和共享各种杂乱数据集的负担的软件,以加速数据对分析的有用性。
10. 数据质量
使用分布式数据存储和数据库上的并行操作,对大型高速数据集进行数据清理和充实的产品。

‘叁’ 大数据的计算模式

1,大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产

2,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式计算架构。它的特色在于对海量数据的挖掘,但它必须依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术。

他俩之间的关系你可以这样来理解,云计算技术就是一个容器,大数据正是存放在这个容器中的水,大数据是要依靠云计算技术来进行存储和计算的。

(3)大数据存储算法扩展阅读:

大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。

云计算的关键词在于“整合”,无论你是通过现在已经很成熟的传统的虚拟机切分型技术,还是通过google后来所使用的海量节点聚合型技术,他都是通过将海量的服务器资源通过网络进行整合,调度分配给用户,从而解决用户因为存储计算资源不足所带来的问题。

大数据正是因为数据的爆发式增长带来的一个新的课题内容,如何存储如今互联网时代所产生的海量数据,如何有效的利用分析这些数据等等。

大数据的趋势:

趋势一:数据的资源化

何为资源化,是指大数据成为企业和社会关注的重要战略资源,并已成为大家争相抢夺的新焦点。因而,企业必须要提前制定大数据营销战略计划,抢占市场先机。

趋势二:与云计算的深度结合

大数据离不开云处理,云处理为大数据提供了弹性可拓展的基础设备,是产生大数据的平台之一。自2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。除此之外,物联网、移动互联网等新兴计算形态,也将一齐助力大数据革命,让大数据营销发挥出更大的影响力。

趋势三:科学理论的突破

随着大数据的快速发展,就像计算机和互联网一样,大数据很有可能是新一轮的技术革命。随之兴起的数据挖掘、机器学习和人工智能等相关技术,可能会改变数据世界里的很多算法和基础理论,实现科学技术上的突破。

‘肆’ 大数据核心技术有哪些

大数据技术的体系庞大且复杂,基础的技术包含数据的采集、数据预处理、分布式存储、NoSQL数据库、数据仓库、机器学习、并行计算、可视化等各种技术范畴和不同的技术层面。首先给出一个通用化的大数据处理框架,主要分为下面几个方面:数据采集与预处理、数据存储、数据清洗、数据查询分析和数据可视化。

一、数据采集与预处理

对于各种来源的数据,包括移动互联网数据、社交网络的数据等,这些结构化和非结构化的海量数据是零散的,也就是所谓的数据孤岛,此时的这些数据并没有什么意义,数据采集就是将这些数据写入数据仓库中,把零散的数据整合在一起,对这些数据综合起来进行分析。数据采集包括文件日志的采集、数据库日志的采集、关系型数据库的接入和应用程序的接入等。在数据量比较小的时候,可以写个定时的脚本将日志写入存储系统,但随着数据量的增长,这些方法无法提供数据安全保障,并且运维困难,需要更强壮的解决方案。

Flume NG作为实时日志收集系统,支持在日志系统中定制各类数据发送方,用于收集数据,同时,对数据进行简单处理,并写到各种数据接收方(比如文本,HDFS,Hbase等)。Flume NG采用的是三层架构:Agent层,Collector层和Store层,每一层均可水平拓展。其中Agent包含Source,Channel和 Sink,source用来消费(收集)数据源到channel组件中,channel作为中间临时存储,保存所有source的组件信息,sink从channel中读取数据,读取成功之后会删除channel中的信息。

NDC,Netease Data Canal,直译为网易数据运河系统,是网易针对结构化数据库的数据实时迁移、同步和订阅的平台化解决方案。它整合了网易过去在数据传输领域的各种工具和经验,将单机数据库、分布式数据库、OLAP系统以及下游应用通过数据链路串在一起。除了保障高效的数据传输外,NDC的设计遵循了单元化和平台化的设计哲学。

Logstash是开源的服务器端数据处理管道,能够同时从多个来源采集数据、转换数据,然后将数据发送到您最喜欢的 “存储库” 中。一般常用的存储库是Elasticsearch。Logstash 支持各种输入选择,可以在同一时间从众多常用的数据来源捕捉事件,能够以连续的流式传输方式,轻松地从您的日志、指标、Web 应用、数据存储以及各种 AWS 服务采集数据。

Sqoop,用来将关系型数据库和Hadoop中的数据进行相互转移的工具,可以将一个关系型数据库(例如Mysql、Oracle)中的数据导入到Hadoop(例如HDFS、Hive、Hbase)中,也可以将Hadoop(例如HDFS、Hive、Hbase)中的数据导入到关系型数据库(例如Mysql、Oracle)中。Sqoop 启用了一个 MapRece 作业(极其容错的分布式并行计算)来执行任务。Sqoop 的另一大优势是其传输大量结构化或半结构化数据的过程是完全自动化的。

流式计算是行业研究的一个热点,流式计算对多个高吞吐量的数据源进行实时的清洗、聚合和分析,可以对存在于社交网站、新闻等的数据信息流进行快速的处理并反馈,目前大数据流分析工具有很多,比如开源的strom,spark streaming等。

Strom集群结构是有一个主节点(nimbus)和多个工作节点(supervisor)组成的主从结构,主节点通过配置静态指定或者在运行时动态选举,nimbus与supervisor都是Storm提供的后台守护进程,之间的通信是结合Zookeeper的状态变更通知和监控通知来处理。nimbus进程的主要职责是管理、协调和监控集群上运行的topology(包括topology的发布、任务指派、事件处理时重新指派任务等)。supervisor进程等待nimbus分配任务后生成并监控worker(jvm进程)执行任务。supervisor与worker运行在不同的jvm上,如果由supervisor启动的某个worker因为错误异常退出(或被kill掉),supervisor会尝试重新生成新的worker进程。

当使用上游模块的数据进行计算、统计、分析时,就可以使用消息系统,尤其是分布式消息系统。Kafka使用Scala进行编写,是一种分布式的、基于发布/订阅的消息系统。Kafka的设计理念之一就是同时提供离线处理和实时处理,以及将数据实时备份到另一个数据中心,Kafka可以有许多的生产者和消费者分享多个主题,将消息以topic为单位进行归纳;Kafka发布消息的程序称为procer,也叫生产者,预订topics并消费消息的程序称为consumer,也叫消费者;当Kafka以集群的方式运行时,可以由一个服务或者多个服务组成,每个服务叫做一个broker,运行过程中procer通过网络将消息发送到Kafka集群,集群向消费者提供消息。Kafka通过Zookeeper管理集群配置,选举leader,以及在Consumer Group发生变化时进行rebalance。Procer使用push模式将消息发布到broker,Consumer使用pull模式从broker订阅并消费消息。Kafka可以和Flume一起工作,如果需要将流式数据从Kafka转移到hadoop,可以使用Flume代理agent,将Kafka当做一个来源source,这样可以从Kafka读取数据到Hadoop。

Zookeeper是一个分布式的,开放源码的分布式应用程序协调服务,提供数据同步服务。它的作用主要有配置管理、名字服务、分布式锁和集群管理。配置管理指的是在一个地方修改了配置,那么对这个地方的配置感兴趣的所有的都可以获得变更,省去了手动拷贝配置的繁琐,还很好的保证了数据的可靠和一致性,同时它可以通过名字来获取资源或者服务的地址等信息,可以监控集群中机器的变化,实现了类似于心跳机制的功能。

二、数据存储

Hadoop作为一个开源的框架,专为离线和大规模数据分析而设计,HDFS作为其核心的存储引擎,已被广泛用于数据存储。

HBase,是一个分布式的、面向列的开源数据库,可以认为是hdfs的封装,本质是数据存储、NoSQL数据库。HBase是一种Key/Value系统,部署在hdfs上,克服了hdfs在随机读写这个方面的缺点,与hadoop一样,Hbase目标主要依靠横向扩展,通过不断增加廉价的商用服务器,来增加计算和存储能力。

Phoenix,相当于一个Java中间件,帮助开发工程师能够像使用JDBC访问关系型数据库一样访问NoSQL数据库HBase。

Yarn是一种Hadoop资源管理器,可为上层应用提供统一的资源管理和调度,它的引入为集群在利用率、资源统一管理和数据共享等方面带来了巨大好处。Yarn由下面的几大组件构成:一个全局的资源管理器ResourceManager、ResourceManager的每个节点代理NodeManager、表示每个应用的Application以及每一个ApplicationMaster拥有多个Container在NodeManager上运行。

Mesos是一款开源的集群管理软件,支持Hadoop、ElasticSearch、Spark、Storm 和Kafka等应用架构。

Redis是一种速度非常快的非关系数据库,可以存储键与5种不同类型的值之间的映射,可以将存储在内存的键值对数据持久化到硬盘中,使用复制特性来扩展性能,还可以使用客户端分片来扩展写性能。

Atlas是一个位于应用程序与MySQL之间的中间件。在后端DB看来,Atlas相当于连接它的客户端,在前端应用看来,Atlas相当于一个DB。Atlas作为服务端与应用程序通讯,它实现了MySQL的客户端和服务端协议,同时作为客户端与MySQL通讯。它对应用程序屏蔽了DB的细节,同时为了降低MySQL负担,它还维护了连接池。Atlas启动后会创建多个线程,其中一个为主线程,其余为工作线程。主线程负责监听所有的客户端连接请求,工作线程只监听主线程的命令请求。

Ku是围绕Hadoop生态圈建立的存储引擎,Ku拥有和Hadoop生态圈共同的设计理念,它运行在普通的服务器上、可分布式规模化部署、并且满足工业界的高可用要求。其设计理念为fast analytics on fast data。作为一个开源的存储引擎,可以同时提供低延迟的随机读写和高效的数据分析能力。Ku不但提供了行级的插入、更新、删除API,同时也提供了接近Parquet性能的批量扫描操作。使用同一份存储,既可以进行随机读写,也可以满足数据分析的要求。Ku的应用场景很广泛,比如可以进行实时的数据分析,用于数据可能会存在变化的时序数据应用等。

在数据存储过程中,涉及到的数据表都是成千上百列,包含各种复杂的Query,推荐使用列式存储方法,比如parquent,ORC等对数据进行压缩。Parquet 可以支持灵活的压缩选项,显着减少磁盘上的存储。

三、数据清洗

MapRece作为Hadoop的查询引擎,用于大规模数据集的并行计算,”Map(映射)”和”Rece(归约)”,是它的主要思想。它极大的方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统中。

随着业务数据量的增多,需要进行训练和清洗的数据会变得越来越复杂,这个时候就需要任务调度系统,比如oozie或者azkaban,对关键任务进行调度和监控。

Oozie是用于Hadoop平台的一种工作流调度引擎,提供了RESTful API接口来接受用户的提交请求(提交工作流作业),当提交了workflow后,由工作流引擎负责workflow的执行以及状态的转换。用户在HDFS上部署好作业(MR作业),然后向Oozie提交Workflow,Oozie以异步方式将作业(MR作业)提交给Hadoop。这也是为什么当调用Oozie 的RESTful接口提交作业之后能立即返回一个JobId的原因,用户程序不必等待作业执行完成(因为有些大作业可能会执行很久(几个小时甚至几天))。Oozie在后台以异步方式,再将workflow对应的Action提交给hadoop执行。

Azkaban也是一种工作流的控制引擎,可以用来解决有多个hadoop或者spark等离线计算任务之间的依赖关系问题。azkaban主要是由三部分构成:Relational Database,Azkaban Web Server和Azkaban Executor Server。azkaban将大多数的状态信息都保存在MySQL中,Azkaban Web Server提供了Web UI,是azkaban主要的管理者,包括project的管理、认证、调度以及对工作流执行过程中的监控等;Azkaban Executor Server用来调度工作流和任务,记录工作流或者任务的日志。

流计算任务的处理平台Sloth,是网易首个自研流计算平台,旨在解决公司内各产品日益增长的流计算需求。作为一个计算服务平台,其特点是易用、实时、可靠,为用户节省技术方面(开发、运维)的投入,帮助用户专注于解决产品本身的流计算需求。

四、数据查询分析

Hive的核心工作就是把SQL语句翻译成MR程序,可以将结构化的数据映射为一张数据库表,并提供 HQL(Hive SQL)查询功能。Hive本身不存储和计算数据,它完全依赖于HDFS和MapRece。可以将Hive理解为一个客户端工具,将SQL操作转换为相应的MapRece jobs,然后在hadoop上面运行。Hive支持标准的SQL语法,免去了用户编写MapRece程序的过程,它的出现可以让那些精通SQL技能、但是不熟悉MapRece 、编程能力较弱与不擅长Java语言的用户能够在HDFS大规模数据集上很方便地利用SQL 语言查询、汇总、分析数据。

Hive是为大数据批量处理而生的,Hive的出现解决了传统的关系型数据库(MySql、Oracle)在大数据处理上的瓶颈 。Hive 将执行计划分成map->shuffle->rece->map->shuffle->rece…的模型。如果一个Query会被编译成多轮MapRece,则会有更多的写中间结果。由于MapRece执行框架本身的特点,过多的中间过程会增加整个Query的执行时间。在Hive的运行过程中,用户只需要创建表,导入数据,编写SQL分析语句即可。剩下的过程由Hive框架自动的完成。

Impala是对Hive的一个补充,可以实现高效的SQL查询。使用Impala来实现SQL on Hadoop,用来进行大数据实时查询分析。通过熟悉的传统关系型数据库的SQL风格来操作大数据,同时数据也是可以存储到HDFS和HBase中的。Impala没有再使用缓慢的Hive+MapRece批处理,而是通过使用与商用并行关系数据库中类似的分布式查询引擎(由Query Planner、Query Coordinator和Query Exec Engine三部分组成),可以直接从HDFS或HBase中用SELECT、JOIN和统计函数查询数据,从而大大降低了延迟。Impala将整个查询分成一执行计划树,而不是一连串的MapRece任务,相比Hive没了MapRece启动时间。

Hive 适合于长时间的批处理查询分析,而Impala适合于实时交互式SQL查询,Impala给数据人员提供了快速实验,验证想法的大数据分析工具,可以先使用Hive进行数据转换处理,之后使用Impala在Hive处理好后的数据集上进行快速的数据分析。总的来说:Impala把执行计划表现为一棵完整的执行计划树,可以更自然地分发执行计划到各个Impalad执行查询,而不用像Hive那样把它组合成管道型的map->rece模式,以此保证Impala有更好的并发性和避免不必要的中间sort与shuffle。但是Impala不支持UDF,能处理的问题有一定的限制。

Spark拥有Hadoop MapRece所具有的特点,它将Job中间输出结果保存在内存中,从而不需要读取HDFS。Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。Spark 是在 Scala 语言中实现的,它将 Scala 用作其应用程序框架。与 Hadoop 不同,Spark 和 Scala 能够紧密集成,其中的 Scala 可以像操作本地集合对象一样轻松地操作分布式数据集。

Nutch 是一个开源Java 实现的搜索引擎。它提供了我们运行自己的搜索引擎所需的全部工具,包括全文搜索和Web爬虫。

Solr用Java编写、运行在Servlet容器(如Apache Tomcat或Jetty)的一个独立的企业级搜索应用的全文搜索服务器。它对外提供类似于Web-service的API接口,用户可以通过http请求,向搜索引擎服务器提交一定格式的XML文件,生成索引;也可以通过Http Get操作提出查找请求,并得到XML格式的返回结果。

Elasticsearch是一个开源的全文搜索引擎,基于Lucene的搜索服务器,可以快速的储存、搜索和分析海量的数据。设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。

还涉及到一些机器学习语言,比如,Mahout主要目标是创建一些可伸缩的机器学习算法,供开发人员在Apache的许可下免费使用;深度学习框架Caffe以及使用数据流图进行数值计算的开源软件库TensorFlow等,常用的机器学习算法比如,贝叶斯、逻辑回归、决策树、神经网络、协同过滤等。

五、数据可视化

对接一些BI平台,将分析得到的数据进行可视化,用于指导决策服务。主流的BI平台比如,国外的敏捷BI Tableau、Qlikview、PowrerBI等,国内的SmallBI和新兴的网易有数(可点击这里免费试用)等。

在上面的每一个阶段,保障数据的安全是不可忽视的问题。

基于网络身份认证的协议Kerberos,用来在非安全网络中,对个人通信以安全的手段进行身份认证,它允许某实体在非安全网络环境下通信,向另一个实体以一种安全的方式证明自己的身份。

控制权限的ranger是一个Hadoop集群权限框架,提供操作、监控、管理复杂的数据权限,它提供一个集中的管理机制,管理基于yarn的Hadoop生态圈的所有数据权限。可以对Hadoop生态的组件如Hive,Hbase进行细粒度的数据访问控制。通过操作Ranger控制台,管理员可以轻松的通过配置策略来控制用户访问HDFS文件夹、HDFS文件、数据库、表、字段权限。这些策略可以为不同的用户和组来设置,同时权限可与hadoop无缝对接。

‘伍’ C语言用数组存储大型数据的算法

/*
size_a,pa——指向数组a的有效末端
ma——a的最大容量,必须大于na

n=12——求n的阶
p——求阶乘时的当前乘数
*/
#include<stdio.h>
#define Ma 10000
int pa;/*指向数组a的有效末端*/
int p=2;
int memory_over=0;
union data
{ unsigned long int b;
struct
{unsigned l:16;
unsigned h:16;
}m;
}a[Ma];
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
算法说明1:考虑到result比较长,我用a[Ma].b来存储n!的result,每一位a[pa].b能存储4位10进制数字。
因为我定义的数组是静态的,所以Ma应该足够大。
ps:其实只用定义一个unsigned long int b[Ma];就可以了(直接用b[pa]代替a[pa].b),但是我考虑到可能会访问每一结点b[pa]的高16位(a[pa].m.h)和低16位(a[pa].m.l),但是的我考虑是多余的!!不用像我这样定义这么复杂的共用体!!
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
unsigned int cashe;
unsigned int carry;

void main()
{
unsigned int n;/*求n的阶*/
void facto(unsigned int n);
printf("Input n:");
scanf("%u",&n);
/*=================开始求阶乘!=============*/
a[0].b=1;/*初始化*/
facto(n);
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
算法说明2:上面这句直接调用facto(n)来求n!
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/*========================以下是显示最后结果====================================*/
if(memory_over==0)
{printf("the result include %dNO:\n",pa+1);
printf("%u",a[pa--].m.l);
for(;pa>=0;pa--)
printf("%04u",a[pa].m.l);
printf("\n");
}
getch();
}

/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
算法说明2:求阶函数facto(n)说明:
这个函数会不断地调用multiple(),它的作用是每被调用一次就使得a[pa].b与阶数p相乘一次,直到乘完n为止!
{multiple();
p++;/*每一轮乘一个阶数p*/
}
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
void facto(unsigned int n)
{void multiple();
pa=0;
while(pa<Ma-1&&p<=n)/*容量限制*/
{multiple();
p++;/*每一轮乘一个阶数p*/
}
if(p<=n)
{printf("memory out!\n");memory_over=1;}/*如果当前的存储结果的数组a[Ma]不够用!应提高Ma*/

}

/*==============================================================================
算法说明3:乘法函数multiple()说明:负责a[pa].b与阶数p相乘。
a[pa].b有很多结点,a[0].b、a[1].b、a[2].b、a[3].b、a[4].b、。。。
当然是从低结点a[0].b开始不断与p相乘,产生的“进位”加到高位a[1].b,直到a[pa].b*p为止!

随着结果数值增大,pa个结点的a[].b可能容纳不下结果,所以如果a[pa].b与p相乘后还有“进位”carry,就扩大pa,并把carry放入到新增加的结点:
if(carry>0)
a[++pa].b=carry;
===================================================================================*/
void multiple()
{int i=0;
carry=0;
while(i<=pa)/*i指向当前处理的元素a[i],每一轮用一个位与阶数p相乘*/
{a[i].b=a[i].b*p+carry;/*计算结果,要考虑来自低位的进位*/
carry=a[i].b/10000;/*计算进位*/
a[i].b=a[i].b%10000;/*计算余数*/
i++;
}
if(carry>0)
a[++pa].b=carry;
}

‘陆’ 大数据存储与管理多采用什么计算及存储模式

大数据存储与管理多采用云计算以及仓库存储模式。

大数据似乎难以管理,就像一个永无休止统计数据的复杂的漩涡。因此,将信息精简到单一的公司位置似乎是明智的,这是一个仓库,其中所有的数据和服务器都可以被充分地规划指定。

大数据存储方式:

存储管理需要多种技术的协同工作,其中文件系统为其提供最底层存储能力的支持。 分布式文件系统HDFS 是一个高度容错性系统,被设计成适用于批量处理,能够提供高吞吐量的的数据访问。 分布式键值系统:分布式键值系统用于存储关系简单的半结构化数据。

‘柒’ 大数据时代 无处不在的算法应用

大数据时代 无处不在的算法应用
能不能讲讲算法在工作中的运用?你个人学习算法的过程是怎样的?我对算法还是有点怕。除此之外,你认为大学是应该多花时间学应用技术还是理论知识呢?
今天就来聊聊我自己学习算法的过程,以及算法在实际工作中的应用。
以前,我们认为大数据总是优于好算法。也就是说,只要数据量足够大,即使算法没有那么好,也会产生好的结果。
前一阵子“极客时间” App 发布了一条极客新闻:“算法比数据更重要,AlphaGo Zero 完胜旧版。”新闻的内容是谷歌人工智能团队 DeepMind 发布了新版的 AlphaGo 计算机程序,名为 AlphaGo Zero。这款软件能够从空白状态开始,不需要人类输入任何命令,便可以迅速自学围棋,并以 100 比 0 的战绩击败了上一代 AlphaGo。
AlphaGo Zero 最大的突破在于实现了“白板理论”。白板理论认为:婴儿是一块白板,可以通过后天学习和训练来提高智力。AI 的先驱图灵认为,只要能用机器制造一个类似于小孩的 AI,然后加以训练,就能得到一个近似成人智力,甚至超越人类智力的 AI。
自学成才的 AlphaGo Zero 正是实现了这一理论。AlphaGo 的首席研究员大卫·席尔瓦(David Silver)认为,从 AlphaGo Zero 中可以发现,算法比所谓的计算或数据量更为重要。事实上,AlphaGo Zero 使用的计算要比过去的版本少一个数量级,但是因为使用了更多原理和算法,它的性能反而更加强大。
由此可见,在大数据时代,算法的重要性日渐明晰。一个合格的程序员,必须掌握算法。
我不知道大家是怎样一步步开始精通算法和数据结构的。大二时,我第一次接触到了《数据结构》,因为从来没有过这方面的思维训练,当时的我学习这门课比较费力。那时候接触到的编程比较少,所以并没有很多实际经验让我欣赏和体味:一个好的数据结构和算法设计到底 “美” 在哪里。
开始学习的时候,我甚至有点死记硬背的感觉,我并不知道 “如果不这样设计”,实际上会出现哪些问题。各种时间和空间复杂度对我而言,也仅仅是一些不能融入到实际问题的数学游戏。至于“每种最坏情况、平均情况的时间空间复杂度与各种排序”,这些内容为什么那么重要,当时我想,可能因为考试会考吧。
没想到后来的时日,我又与算法重新结缘。可能是因为莱斯大学给的奖学金太高了,所以每个研究生需要无偿当五个学期的助教 。好巧不巧,我又被算法老师两次挑中当助教。所以,在命运强制下,一本《算法导论》就这样被我前前后后仔细学习了不下四遍。这样的结果是,我基本做过整本书的习题,有些还不止做了一遍。我学习算法的过程,就是反复阅读《算法导论》的过程。
那么,学习算法到底有什么用处呢?
首先,算法是面试的敲门砖国内的情况我不太清楚,但就硅谷的 IT 公司而言,不但电话面试偏算法,现场面试至少有两轮都是考算法和编程的。
大一些老一些的公司,像谷歌、Facebook、领英、Dropbox 等,都是直接在白板上写程序。小一些新一些的公司,如 Square、Airbnb 等,都是需要现场上机写出可运行的程序。Twitter、Uber 等公司则是白板上机兼备,视情况而定。
虽说还有其它考系统设计等部分,但如果算法没有打好基础,第一关就很难过,而且算法要熟悉到能够现场短时间内写出正解,所以很多人准备面试前都需要刷题。
有一次我当面试官,电话面试另外一个人,当时是用 Codepad 共享的方式,让对方写一个可运行的正则表达式解析器。45 分钟过去了,对方并没有写出来。我就例行公事地问:“你还有什么问题想问或者想了解么?” 对方估计因为写不出程序很有挫败感,就反问:“你们平时工作难道就是天天写正则表达式的解析器么?”
一瞬间,我竟无言以对。想了想,我回复说:“不用天天写。那我再给你 15 分钟,你证明给我看你还会什么,或者有什么理由让我给你进一步面试的机会?” 对方想了一会,默默挂掉了电话。
老实说,我对目前面试中偏重算法的程度是持保留意见的。算法题答得好,并不能说明你有多牛。牛人也有因为不愿刷题而马失前蹄的时候。但是除了算法测试,显然也没有更好的方法佐证候选人的实力;然而怎样才能最优化面试流程,这也是个讨论起来没完的话题,并且每次讨论必定无果而终。
其次,编程时用到的更多是算法思想,而不是写具体的算法说到实际工作中真正需要使用算法的机会,让我想一想 —— 这个范围应该在 10% 的附近游走。
有些朋友在工作中遇到算法场景多些,有的少些。更多的时候,是对业务逻辑的理解,对程序语言各种特性的熟练使用,对代码风格和模式的把握,各种同步异步的处理,包括代码测试、系统部署是否正规化等等。需要设计甚至实现一个算法的机会确实很少,即使用到,现学可能都来得及。
但是熟悉基本算法的好处在于:如果工作需要读的一段代码中包含一些基本算法思想,你会比不懂算法的人理解代码含义更快。读到一段烂代码,你知道为什么烂,烂在哪,怎么去优化。
当真的需要在程序中设计算法的时候,熟悉算法的你会给出一个更为完备的方案,对程序中出现的算法或比较复杂的时间复杂度问题你会更有敏感性。熟悉算法你还可以成为一个更优秀的面试官,可以和别的工程师聊天时候不被鄙视。
最后,不精通算法的工程师永远不是好工程师当然,除了算法导论中那些已成为经典的基本算法以及算法思想(Divide-and-conquer,Dynamic programming)等,其实我们每天接触到的各种技术中,算法无处不在。
就拿人人都会接触的存储为例吧,各种不同的数据库或者键值存储的实现,就会涉及各种分片(Sharding)算法、缓存失败(Cache Invalidation)算法、 锁定(Locking)算法,包括各种容错算法(多复制的同步算法)。 虽然说平时不太会去写这些算法 —— 除非你恰恰是做数据库实现的 —— 但是真正做到了解这项技术的算法细节和实现细节,无论对于技术选型还是对自己程序的整体性能评估都是至关重要的。
举个例子,当你在系统里需要一个键值存储方案的时候,面对可供选择的各种备选方案,到底应该选择哪一种呢?
永远没有一种方案在所有方面都是最佳的。就拿 Facebook 开源的 RocksDB 来说吧。了解它历史的人都知道,RocksDB 是构建在 LevelDB 之上的,可以在多 CPU 服务器上高效运行的一种键值存储。而 LevelDB 又是基于谷歌的 BigTable 数据库系统概念设计的。
早在 2004 年,谷歌开始开发 BigTable,其代码大量的依赖谷歌内部的代码库,虽然 BigTable 很牛,却因此无法开源。2011 年,谷歌的杰夫·迪恩和桑杰·格玛沃尔特开始基于 BigTable 的思想,重新开发一个开源的类似系统,并保证做到不用任何谷歌的代码库,于是就有了 LevelDB。这样一个键值存储的实现也用在了谷歌浏览器的 IndexedDB 中,对于谷歌浏览器的开源也提供了一定的支持。
我曾经在文章中提到过 CockroachDB,其实又可以看作是基于 RocksDB 之上的一个分布式实现。从另一个层面上讲,CockroachDB 又可以说是 Spanner 的一个开源实现。知道这些,就知道这些数据库或键值存储其实都同出一系。再来看看 LevelDB 底层的 SSTable 算法,就知道他们都是针对高吞吐量(high throughput),顺序读 / 写工作负载(sequential read/write workloads)有效的存储系统。
当然,一个系统里除了最基本的算法,很多的实现细节和系统架构都会对性能及应用有很大的影响。然而,对算法本身的理解和把握,永远是深入了解系统不可或缺的一环。
类似的例子还有很多,比如日志分析、打车软件的调度算法。
拿我比较熟悉的支付领域来说吧,比如信用卡 BIN 参数的压缩,从服务端到移动 App 的数据传输,为了让传输数据足够小,需要对数据进行压缩编码。
每个国家,比如中国、韩国、墨西哥信用卡前缀格式都不一样,如何尽量压缩同时又不会太复杂,以至于影响移动 App 端的代码复杂度,甚至形成 Bug 等,也需要对各种相关算法有详尽地了解,才有可能做出最优的方案。
关于算法我们来总结一下:
在大数据时代,数据和算法都同等重要,甚至算法比计算能力或数据量更为重要。
如何学习算法呢?读经典着作、做题,然后在实践中阅读和使用算法。
算法是面试的敲门砖,可以帮助你得到一份自己喜欢的工作。
写程序中用到的更多是算法思想,不是写具体的算法。
不精通算法的工程师永远不会是一个优秀的工程师,只有对各种相关算法有详尽理解,才有可能做出最优的方案。

‘捌’ 大数据方面核心技术有哪些

大数据技术的体系庞大且复杂,基础的技术包含数据的采集、数据预处理、分布式存储、数据库、数据仓库、机器学习、并行计算、可视化等。

1、数据采集与预处理:

Flume NG实时日志收集系统,支持在日志系统中定制各类数据发送方,用于收集数据;

Zookeeper是一个分布式的,开放源码的分布式应用程序协调服务,提供数据同步服务。

2、数据存储:

Hadoop作为一个开源的框架,专为离线和大规模数据分析而设计,HDFS作为其核心的存储引擎,已被广泛用于数据存储。

HBase,是一个分布式的、面向列的开源数据库,可以认为是hdfs的封装,本质是数据存储、NoSQL数据库。

3、数据清洗:MapRece作为Hadoop的查询引擎,用于大规模数据集的并行计算

4、数据查询分析:

Hive的核心工作就是把SQL语句翻译成MR程序,可以将结构化的数据映射为一张数据库表,并提供 HQL(Hive SQL)查询功能。

Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。

5、数据可视化:对接一些BI平台,将分析得到的数据进行可视化,用于指导决策服务。

‘玖’ 大数据存储与应用特点及技术路线分析

大数据存储与应用特点及技术路线分析

大数据时代,数据呈爆炸式增长。从存储服务的发展趋势来看,一方面,对数据的存储量的需求越来越大;另一方面,对数据的有效管理提出了更高的要求。大数据对存储设备的容量、读写性能、可靠性、扩展性等都提出了更高的要求,需要充分考虑功能集成度、数据安全性、数据稳定性,系统可扩展性、性能及成本各方面因素。

大数据存储与应用的特点分析

“大数据”是由数量巨大、结构复杂、类型众多数据构成的数据集合,是基于云计算的数据处理与应用模式,通过数据的整合共享,交叉复用形成的智力资源和知识服务能力。其常见特点可以概括为3V:Volume、Velocity、Variety(规模大、速度快、多样性)。

大数据具有数据规模大(Volume)且增长速度快的特性,其数据规模已经从PB级别增长到EB级别,并且仍在不断地根据实际应用的需求和企业的再发展继续扩容,飞速向着ZB(ZETA-BYTE)的规模进军。以国内最大的电子商务企业淘宝为例,根据淘宝网的数据显示,至2011年底,淘宝网最高单日独立用户访问量超过1.2亿人,比2010年同期增长120%,注册用户数量超过4亿,在线商品数量达到8亿,页面浏览量达到20亿规模,淘宝网每天产生4亿条产品信息,每天活跃数据量已经超过50TB.所以大数据的存储或者处理系统不仅能够满足当前数据规模需求,更需要有很强的可扩展性以满足快速增长的需求。

(1)大数据的存储及处理不仅在于规模之大,更加要求其传输及处理的响应速度快(Velocity)。

相对于以往较小规模的数据处理,在数据中心处理大规模数据时,需要服务集群有很高的吞吐量才能够让巨量的数据在应用开发人员“可接受”的时间内完成任务。这不仅是对于各种应用层面的计算性能要求,更加是对大数据存储管理系统的读写吞吐量的要求。例如个人用户在网站选购自己感兴趣的货物,网站则根据用户的购买或者浏览网页行为实时进行相关广告的推荐,这需要应用的实时反馈;又例如电子商务网站的数据分析师根据购物者在当季搜索较为热门的关键词,为商家提供推荐的货物关键字,面对每日上亿的访问记录要求机器学习算法在几天内给出较为准确的推荐,否则就丢失了其失效性;更或者是出租车行驶在城市的道路上,通过GPS反馈的信息及监控设备实时路况信息,大数据处理系统需要不断地给出较为便捷路径的选择。这些都要求大数据的应用层可以最快的速度,最高的带宽从存储介质中获得相关海量的数据。另外一方面,海量数据存储管理系统与传统的数据库管理系统,或者基于磁带的备份系统之间也在发生数据交换,虽然这种交换实时性不高可以离线完成,但是由于数据规模的庞大,较低的数据传输带宽也会降低数据传输的效率,而造成数据迁移瓶颈。因此大数据的存储与处理的速度或是带宽是其性能上的重要指标。

(2)大数据由于其来源的不同,具有数据多样性的特点。

所谓多样性,一是指数据结构化程度,二是指存储格式,三是存储介质多样性。对于传统的数据库,其存储的数据都是结构化数据,格式规整,相反大数据来源于日志、历史数据、用户行为记录等等,有的是结构化数据,而更多的是半结构化或者非结构化数据,这也正是传统数据库存储技术无法适应大数据存储的重要原因之一。所谓存储格式,也正是由于其数据来源不同,应用算法繁多,数据结构化程度不同,其格式也多种多样。例如有的是以文本文件格式存储,有的则是网页文件,有的是一些被序列化后的比特流文件等等。所谓存储介质多样性是指硬件的兼容,大数据应用需要满足不同的响应速度需求,因此其数据管理提倡分层管理机制,例如较为实时或者流数据的响应可以直接从内存或者Flash(SSD)中存取,而离线的批处理可以建立在带有多块磁盘的存储服务器上,有的可以存放在传统的SAN或者NAS网络存储设备上,而备份数据甚至可以存放在磁带机上。因而大数据的存储或者处理系统必须对多种数据及软硬件平台有较好的兼容性来适应各种应用算法或者数据提取转换与加载(ETL)。

大数据存储技术路线最典型的共有三种:

第一种是采用MPP架构的新型数据库集群,重点面向行业大数据,采用Shared Nothing架构,通过列存储、粗粒度索引等多项大数据处理技术,再结合MPP架构高效的分布式计算模式,完成对分析类应用的支撑,运行环境多为低成本 PC Server,具有高性能和高扩展性的特点,在企业分析类应用领域获得极其广泛的应用。

这类MPP产品可以有效支撑PB级别的结构化数据分析,这是传统数据库技术无法胜任的。对于企业新一代的数据仓库和结构化数据分析,目前最佳选择是MPP数据库。

第二种是基于Hadoop的技术扩展和封装,围绕Hadoop衍生出相关的大数据技术,应对传统关系型数据库较难处理的数据和场景,例如针对非结构化数据的存储和计算等,充分利用Hadoop开源的优势,伴随相关技术的不断进步,其应用场景也将逐步扩大,目前最为典型的应用场景就是通过扩展和封装 Hadoop来实现对互联网大数据存储、分析的支撑。这里面有几十种NoSQL技术,也在进一步的细分。对于非结构、半结构化数据处理、复杂的ETL流程、复杂的数据挖掘和计算模型,Hadoop平台更擅长。

第三种是大数据一体机,这是一种专为大数据的分析处理而设计的软、硬件结合的产品,由一组集成的服务器、存储设备、操作系统、数据库管理系统以及为数据查询、处理、分析用途而特别预先安装及优化的软件组成,高性能大数据一体机具有良好的稳定性和纵向扩展性。

以上是小编为大家分享的关于大数据存储与应用特点及技术路线分析的相关内容,更多信息可以关注环球青藤分享更多干货

‘拾’ 大数据量存储的方案

hadoop

什么是大数据存储?

首先,我们需要清楚大数据与其他类型数据的区别以及与之相关的技术(主要是分析应用程序)。大数据本
身意味着非常多需要使用标准存储技术来处理的数据。大数据可能由TB级(或者甚至PB级)信息组成,既包括结构化数据(数据库、日志、SQL等)以及非结
构化数据(社交媒体帖子、传感器、多媒体数据)。此外,大部分这些数据缺乏索引或者其他组织结构,可能由很多不同文件类型组成。
由于这些数据缺乏一致性,使标准处理和存储技术无计可施,而且运营开销以及庞大的数据量使我们难以使用传统的服务器和SAN方法来有效地进行处理。换句话说,大数据需要不同的处理方法:自己的平台,这也是Hadoop可以派上用场的地方。
Hadoop
是一个开源分布式计算平台,它提供了一种建立平台的方法,这个平台由标准化硬件(服务器和内部服务器存储)组成,并形成集群能够并行处理大数据请求。在存
储方面来看,这个开源项目的关键组成部分是Hadoop分布式文件系统(HDFS),该系统具有跨集群中多个成员存储非常大文件的能力。HDFS通过创建
多个数据块副本,然后将其分布在整个集群内的计算机节点,这提供了方便可靠极其快速的计算能力。
从目前来看,为大数据建立足够大的存储平台最简单的方法就是购买一套服务器,并为每台服务器配备数TB级的驱动器,然后让Hadoop来完成余下的工作。对于一些规模较小的企业而言,可能只要这么简单。然而,一旦考虑处理性能、算法复杂性和数据挖掘,这种方法可能不一定能够保证成功。

热点内容
java软件开发培训怎么样 发布:2025-01-11 02:17:53 浏览:193
md5加密优点 发布:2025-01-11 02:12:52 浏览:435
读取文件夹所有文件名 发布:2025-01-11 02:12:50 浏览:681
云服务器华为 发布:2025-01-11 02:11:07 浏览:162
路由器重置了wifi默认密码是什么 发布:2025-01-11 02:03:55 浏览:659
2019速腾买什么配置好 发布:2025-01-11 01:35:07 浏览:831
博越存储异常 发布:2025-01-11 01:24:31 浏览:918
我的世界还原中国服务器版图 发布:2025-01-11 01:18:45 浏览:384
pythonopenasfile 发布:2025-01-11 01:17:06 浏览:973
hbasejavaapi 发布:2025-01-11 01:11:09 浏览:747