当前位置:首页 » 存储配置 » 大数据的数据存储管理

大数据的数据存储管理

发布时间: 2022-06-04 11:34:27

1. 传统的数据存储个管理技术与大数据时代存储和管理技术的区别

咨询记录 · 回答于2021-09-27

2. 大数据处理要遵循什么流程

数据治理流程是从数据规划、数据采集、数据储存管理到数据应用整个流程的无序到有序的过程,也是标准化流程的构建过程。

根据每一个过程的特点,我们可以将数据治理流程总结为四个字,即“理”、“采”、“存”、“用”。



1.理:梳理业务流程,规划数据资源

对于企业来说,每天的实时数据都会超过TB级别,需要采集用户的哪些数据,这么多的数据放在哪里,如何放,以什么样的方式放?

这些问题都是需要事先进行规划的,需要有一套从无序变为有序的流程,这个过程需要跨部门的协作,包括了前端、后端、数据工程师、数据分析师、项目经理等角色的参与。

2.采:ETL采集、去重、脱敏、转换、关联、去除异常值

前后端将采集到的数据给到数据部门,数据部门通过ETL工具将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程,目的是将散落和零乱的数据集中存储起来。

3.存:大数据高性能存储及管理

这么多的业务数据存在哪里?这需要有一高性能的大数据存储系统,在这套系统里面将数据进行分门别类放到其对应的库里面,为后续的管理及使用提供最大的便利。

4.用:即时查询、报表监控、智能分析、模型预测

数据的最终目的就是辅助业务进行决策,前面的几个流程都是为最终的查询、分析、监控做铺垫。

这个阶段就是数据分析师的主场,分析师们运用这些标准化的数据可以进行即时的查询、指标体系和报表体系的建立、业务问题的分析,甚至是模型的预测。

3. 大数据存储与应用特点及技术路线分析

大数据存储与应用特点及技术路线分析

大数据时代,数据呈爆炸式增长。从存储服务的发展趋势来看,一方面,对数据的存储量的需求越来越大;另一方面,对数据的有效管理提出了更高的要求。大数据对存储设备的容量、读写性能、可靠性、扩展性等都提出了更高的要求,需要充分考虑功能集成度、数据安全性、数据稳定性,系统可扩展性、性能及成本各方面因素。

大数据存储与应用的特点分析

“大数据”是由数量巨大、结构复杂、类型众多数据构成的数据集合,是基于云计算的数据处理与应用模式,通过数据的整合共享,交叉复用形成的智力资源和知识服务能力。其常见特点可以概括为3V:Volume、Velocity、Variety(规模大、速度快、多样性)。

大数据具有数据规模大(Volume)且增长速度快的特性,其数据规模已经从PB级别增长到EB级别,并且仍在不断地根据实际应用的需求和企业的再发展继续扩容,飞速向着ZB(ZETA-BYTE)的规模进军。以国内最大的电子商务企业淘宝为例,根据淘宝网的数据显示,至2011年底,淘宝网最高单日独立用户访问量超过1.2亿人,比2010年同期增长120%,注册用户数量超过4亿,在线商品数量达到8亿,页面浏览量达到20亿规模,淘宝网每天产生4亿条产品信息,每天活跃数据量已经超过50TB.所以大数据的存储或者处理系统不仅能够满足当前数据规模需求,更需要有很强的可扩展性以满足快速增长的需求。

(1)大数据的存储及处理不仅在于规模之大,更加要求其传输及处理的响应速度快(Velocity)。

相对于以往较小规模的数据处理,在数据中心处理大规模数据时,需要服务集群有很高的吞吐量才能够让巨量的数据在应用开发人员“可接受”的时间内完成任务。这不仅是对于各种应用层面的计算性能要求,更加是对大数据存储管理系统的读写吞吐量的要求。例如个人用户在网站选购自己感兴趣的货物,网站则根据用户的购买或者浏览网页行为实时进行相关广告的推荐,这需要应用的实时反馈;又例如电子商务网站的数据分析师根据购物者在当季搜索较为热门的关键词,为商家提供推荐的货物关键字,面对每日上亿的访问记录要求机器学习算法在几天内给出较为准确的推荐,否则就丢失了其失效性;更或者是出租车行驶在城市的道路上,通过GPS反馈的信息及监控设备实时路况信息,大数据处理系统需要不断地给出较为便捷路径的选择。这些都要求大数据的应用层可以最快的速度,最高的带宽从存储介质中获得相关海量的数据。另外一方面,海量数据存储管理系统与传统的数据库管理系统,或者基于磁带的备份系统之间也在发生数据交换,虽然这种交换实时性不高可以离线完成,但是由于数据规模的庞大,较低的数据传输带宽也会降低数据传输的效率,而造成数据迁移瓶颈。因此大数据的存储与处理的速度或是带宽是其性能上的重要指标。

(2)大数据由于其来源的不同,具有数据多样性的特点。

所谓多样性,一是指数据结构化程度,二是指存储格式,三是存储介质多样性。对于传统的数据库,其存储的数据都是结构化数据,格式规整,相反大数据来源于日志、历史数据、用户行为记录等等,有的是结构化数据,而更多的是半结构化或者非结构化数据,这也正是传统数据库存储技术无法适应大数据存储的重要原因之一。所谓存储格式,也正是由于其数据来源不同,应用算法繁多,数据结构化程度不同,其格式也多种多样。例如有的是以文本文件格式存储,有的则是网页文件,有的是一些被序列化后的比特流文件等等。所谓存储介质多样性是指硬件的兼容,大数据应用需要满足不同的响应速度需求,因此其数据管理提倡分层管理机制,例如较为实时或者流数据的响应可以直接从内存或者Flash(SSD)中存取,而离线的批处理可以建立在带有多块磁盘的存储服务器上,有的可以存放在传统的SAN或者NAS网络存储设备上,而备份数据甚至可以存放在磁带机上。因而大数据的存储或者处理系统必须对多种数据及软硬件平台有较好的兼容性来适应各种应用算法或者数据提取转换与加载(ETL)。

大数据存储技术路线最典型的共有三种:

第一种是采用MPP架构的新型数据库集群,重点面向行业大数据,采用Shared Nothing架构,通过列存储、粗粒度索引等多项大数据处理技术,再结合MPP架构高效的分布式计算模式,完成对分析类应用的支撑,运行环境多为低成本 PC Server,具有高性能和高扩展性的特点,在企业分析类应用领域获得极其广泛的应用。

这类MPP产品可以有效支撑PB级别的结构化数据分析,这是传统数据库技术无法胜任的。对于企业新一代的数据仓库和结构化数据分析,目前最佳选择是MPP数据库。

第二种是基于Hadoop的技术扩展和封装,围绕Hadoop衍生出相关的大数据技术,应对传统关系型数据库较难处理的数据和场景,例如针对非结构化数据的存储和计算等,充分利用Hadoop开源的优势,伴随相关技术的不断进步,其应用场景也将逐步扩大,目前最为典型的应用场景就是通过扩展和封装 Hadoop来实现对互联网大数据存储、分析的支撑。这里面有几十种NoSQL技术,也在进一步的细分。对于非结构、半结构化数据处理、复杂的ETL流程、复杂的数据挖掘和计算模型,Hadoop平台更擅长。

第三种是大数据一体机,这是一种专为大数据的分析处理而设计的软、硬件结合的产品,由一组集成的服务器、存储设备、操作系统、数据库管理系统以及为数据查询、处理、分析用途而特别预先安装及优化的软件组成,高性能大数据一体机具有良好的稳定性和纵向扩展性。

以上是小编为大家分享的关于大数据存储与应用特点及技术路线分析的相关内容,更多信息可以关注环球青藤分享更多干货

4. 大数据的处理流程包括了哪些环节

处理大数据的四个环节:

  • 收集:原始数据种类多样,格式、位置、存储、时效性等迥异。数据收集从异构数据源中收集数据并转换成相应的格式方便处理。

  • 存储:收集好的数据需要根据成本、格式、查询、业务逻辑等需求,存放在合适的存储中,方便进一步的分析。

  • 变形:原始数据需要变形与增强之后才适合分析,比如网页日志中把IP地址替换成省市、传感器数据的纠错、用户行为统计等。

  • 分析:通过整理好的数据分析what happened、why it happened、what is happening和what will happen,帮助企业决策。

5. 大数据处理一般有哪些流程

第一,数据收集


定义:利用多种轻型数据库来接收发自客户端的数据,并且用户可以通过这些数据库来进行简略的查询和处理工作。


特色和应战:并发系数高。


运用的产品:MySQL,Oracle,HBase,Redis和 MongoDB等,并且这些产品的特色各不相同。


第二,统计剖析


定义:将海量的来自前端的数据快速导入到一个集中的大型分布式数据库 或者分布式存储集群,利用分布式技术来对存储于其内的集中的海量数据 进行普通的查询和分类汇总等,以此满足大多数常见的剖析需求。


特色和应战:导入数据量大,查询涉及的数据量大,查询恳求多。


运用的产品:InfoBright,Hadoop(Pig和Hive),YunTable, SAP Hana和Oracle Exadata,除Hadoop以做离线剖析为主之外,其他产品可做实时剖析。


第三,发掘数据


定义:基于前面的查询数据进行数据发掘,来满足高档其他数据剖析需求。


特色和应战:算法复杂,并且计算涉及的数据量和计算量都大。


运用的产品:R,Hadoop Mahout。


关于大数据处理一般有哪些流程,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

6. 什么是大数据存储管理

1.分布式存储

传统化集中式存储存在已有一段时间。但大数据并非真的适合集中式存储架构。Hadoop设计用于将计算更接近数据节点,同时采用了HDFS文件系统的大规模横向扩展功能。

虽然,通常解决Hadoop管理自身数据低效性的方案是将Hadoop 数据存储在SAN上。但这也造成了它自身性能与规模的瓶颈。现在,如果你把所有的数据都通过集中式SAN处理器进行处理,与Hadoop的分布式和并行化特性相悖。你要么针对不同的数据节点管理多个SAN,要么将所有的数据节点都集中到一个SAN。

但Hadoop是一个分布式应用,就应该运行在分布式存储上,这样存储就保留了与Hadoop本身同样的灵活性,不过它也要求拥抱一个软件定义存储方案,并在商用服务器上运行,这相比瓶颈化的Hadoop自然更为高效。

2.超融合VS分布式

注意,不要混淆超融合与分布式。某些超融合方案是分布式存储,但通常这个术语意味着你的应用和存储都保存在同一计算节点上。这是在试图解决数据本地化的问题,但它会造成太多资源争用。这个Hadoop应用和存储平台会争用相同的内存和CPU。Hadoop运行在专有应用层,分布式存储运行在专有存储层这样会更好。之后,利用缓存和分层来解决数据本地化并补偿网络性能损失。

3.避免控制器瓶颈(Controller Choke Point)

实现目标的一个重要方面就是——避免通过单个点例如一个传统控制器来处理数据。反之,要确保存储平台并行化,性能可以得到显着提升。

此外,这个方案提供了增量扩展性。为数据湖添加功能跟往里面扔x86服务器一样简单。一个分布式存储平台如有需要将自动添加功能并重新调整数据。

4.删重和压缩

掌握大数据的关键是删重和压缩技术。通常大数据集内会有70%到90%的数据简化。以PB容量计,能节约数万美元的磁盘成本。现代平台提供内联(对比后期处理)删重和压缩,大大降低了存储数据所需能力。

5.合并Hadoop发行版

很多大型企业拥有多个Hadoop发行版本。可能是开发者需要或是企业部门已经适应了不同版本。无论如何最终往往要对这些集群的维护与运营。一旦海量数据真正开始影响一家企业时,多个Hadoop发行版存储就会导致低效性。我们可以通过创建一个单一,可删重和压缩的数据湖获取数据效率

6.虚拟化Hadoop

虚拟化已经席卷企业级市场。很多地区超过80%的物理服务器现在是虚拟化的。但也仍有很多企业因为性能和数据本地化问题对虚拟化Hadoop避而不谈。

7.创建弹性数据湖

创建数据湖并不容易,但大数据存储可能会有需求。我们有很多种方法来做这件事,但哪一种是正确的?这个正确的架构应该是一个动态,弹性的数据湖,可以以多种格式(架构化,非结构化,半结构化)存储所有资源的数据。更重要的是,它必须支持应用不在远程资源上而是在本地数据资源上执行。

不幸的是,传统架构和应用(也就是非分布式)并不尽如人意。随着数据集越来越大,将应用迁移到数据不可避免,而因为延迟太长也无法倒置。

理想的数据湖基础架构会实现数据单一副本的存储,而且有应用在单一数据资源上执行,无需迁移数据或制作副本

8.整合分析

分析并不是一个新功能,它已经在传统RDBMS环境中存在多年。不同的是基于开源应用的出现,以及数据库表单和社交媒体,非结构化数据资源(比如,维基网络)的整合能力。关键在于将多个数据类型和格式整合成一个标准的能力,有利于更轻松和一致地实现可视化与报告制作。合适的工具也对分析/商业智能项目的成功至关重要。

9. 大数据遇见大视频

大数据存储问题已经让人有些焦头烂额了,现在还出现了大视频现象。比如,企业为了安全以及操作和工业效率逐渐趋于使用视频监控,简化流量管理,支持法规遵从性和几个其它的使用案例。很短时间内这些资源将产生大量的内容,大量必须要处理的内容。如果没有专业的存储解决方案很可能会导致视频丢失和质量降低的问题。

10.没有绝对的赢家

Hadoop的确取得了一些进展。那么随着大数据存储遍地开花,它是否会成为赢家,力压其它方案,其实不然。

比如,基于SAN的传统架构在短期内不可取代,因为它们拥有OLTP,100%可用性需求的内在优势。所以最理想的办法是将超融合平台与分布式文件系统和分析软件整合在一起。而成功的最主要因素则是存储的可扩展性因素。

7. 大数据的数据的存储方式是什么

大数据有效存储和管理大数据的三种方式:
1.
不断加密
任何类型的数据对于任何一个企业来说都是至关重要的,而且通常被认为是私有的,并且在他们自己掌控的范围内是安全的。然而,黑客攻击经常被覆盖在业务故障中,最新的网络攻击活动在新闻报道不断充斥。因此,许多公司感到很难感到安全,尤其是当一些行业巨头经常成为攻击目标时。
随着企业为保护资产全面开展工作,加密技术成为打击网络威胁的可行途径。将所有内容转换为代码,使用加密信息,只有收件人可以解码。如果没有其他的要求,则加密保护数据传输,增强在数字传输中有效地到达正确人群的机会。
2.
仓库存储
大数据似乎难以管理,就像一个永无休止统计数据的复杂的漩涡。因此,将信息精简到单一的公司位置似乎是明智的,这是一个仓库,其中所有的数据和服务器都可以被充分地规划指定。然而,有些报告指出了反对这种方法的论据,指出即使是最大的存储中心,大数据的指数增长也不再能维持。
然而,在某些情况下,企业可能会租用一个仓库来存储大量数据,在大数据超出的情况下,这是一个临时的解决方案,而LCP属性提供了一些很好的机会。毕竟,企业不会立即被大量的数据所淹没,因此,为物理机器租用仓库至少在短期内是可行的。这是一个简单有效的解决方案,但并不是永久的成本承诺。
3.
备份服务
-
云端
当然,不可否认的是,大数据管理和存储正在迅速脱离物理机器的范畴,并迅速进入数字领域。除了所有技术的发展,大数据增长得更快,以这样的速度,世界上所有的机器和仓库都无法完全容纳它。
因此,由于云存储服务推动了数字化转型,云计算的应用越来越繁荣。数据在一个位置不再受到风险控制,并随时随地可以访问,大型云计算公司(如谷歌云)将会更多地访问基本统计信息。数据可以在这些服务上进行备份,这意味着一次网络攻击不会消除多年的业务增长和发展。最终,如果出现网络攻击,云端将以A迁移到B的方式提供独一无二的服务。

8. 大数据采集与存储的基本步骤有哪些

数据抽取



针对大数据分析平台需要采集的各类数据,分别有针对性地研制适配接口。对于已有的信息系统,研发对应的接口模块与各信息系统对接,不能实现数据共享接口的系统通过ETL工具进行数据采集,支持多种类型数据库,按照相应规范对数据进行清洗转换,从而实现数据的统一存储管理。



数据预处理



为使大数据分析平台能更方便对数据进行处理,同时为了使得数据的存储机制扩展性、容错性更好,需要把数据按照相应关联性进行组合,并将数据转化为文本格式,作为文件存储下来。



数据存储



除了Hadoop中已广泛应用于数据存储的HDFS,常用的还有分布式、面向列的开源数据库Hbase,HBase是一种key/value系统,部署在HDFS上,与Hadoop一样,HBase的目标主要是依赖横向扩展,通过不断的增加廉价的商用服务器,增加计算和存储能力。



关于大数据采集与存储的基本步骤有哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

9. 大数据时代,数据的存储与管理有哪些要求

数据时代的到来,数据的存储有以下主要要求:
首先,海量数据被及时有效地存储。根据现行技术和预防性法规和标准,系统采集的信息的保存时间不少于30天。数据量随时间的增加而线性增加。

其次,数据存储系统需要具有可扩展性,不仅要满足海量数据的不断增长,还要满足获取更高分辨率或更多采集点的数据需求。

第三,存储系统的性能要求很高。在多通道并发存储的情况下,它对带宽,数据容量,高速缓存等有很高的要求,并且需要针对视频性能进行优化。

第四,大数据应用需要对数据存储进行集中管理分析。

热点内容
方舟编译器下载要钱吗 发布:2024-11-14 12:29:20 浏览:62
jspoa源码 发布:2024-11-14 12:21:31 浏览:420
不记得了密码怎么办 发布:2024-11-14 12:18:58 浏览:442
python字符串的大小 发布:2024-11-14 12:17:24 浏览:222
源码编辑软件 发布:2024-11-14 12:15:00 浏览:386
java中object 发布:2024-11-14 12:11:48 浏览:636
买车时哪些配置需要另外加钱 发布:2024-11-14 12:10:19 浏览:534
在哪里修改密码和手机号 发布:2024-11-14 12:10:08 浏览:932
c语言双轨加密算法 发布:2024-11-14 12:08:41 浏览:689
java母 发布:2024-11-14 12:08:36 浏览:456